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ABSTRACT

A major problem in sound field reconstruction systems is
how to record the higher order (> 1) harmonic components
of a given sound field. Spherical harmonics analysis is used
to establish theory and design of a higher order recording
system, which comprises an array of small microphones
arranged in a spherical configuration and associated signal
processing. This result has implications to the advancement
of future sound field reconstruction systems. An example
of a third order system for operation over a 10:1 frequency
range of340 Hz to3.4 kHz is given.

1. INTRODUCTION

In three-dimensional (3D) audio systems, the aim is to give
one or more listeners the impression of being immersed in
a realistic acoustic environment. This requires recording a
sound field in a given environment (e.g., a musical show)
and reproducing it accurately over a certain region of space.
Such a recording should capture the sound field not only at
a single point but over the desired region of reconstruction
and over the entire audio frequency band. This is the prob-
lem to be addressed in this paper.

Sound field reconstruction methods such as ambisonics
[1] are based on measuring thespherical harmoniccom-
position of a given sound field. Standard omni-directional
microphones can record only the zero order harmonic of a
sound field, and there are commercially available first or-
der directional microphones [2], which can be used to mea-
sure up to first order spherical harmonics of a sound field.
A system for recording 2D soundfields has recently been
presented in [3]. Until now, however, the technology has
not been advanced enough to record higher order harmon-
ics, which are necessary to reproduce a 3D soundfield ac-
curately over a region of space. In this paper, we provide
theory and guidelines to design higher order microphones.
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Notation

Throughout this paper we use the following notational con-
ventions: vectors are represented by lower case bold face,
e.g.,x. A unit vector in the directionx is denoted bŷx, i.e.,
x̂ = x/‖‖x‖‖. The symboli =

√−1 is used to denote the
imaginary part of a complex number.

2. HARMONIC REPRESENTATION OF A SOUND
FIELD

2.1. Background

Consider a regionΩ in the space and assume all sound
sources are located outside of this region. Then the sound
field at a pointx = x[sin θ cos φ, sin θ sin φ, cos θ]T within
the regionΩ and frequencyf is given by [4]

S(x; f) =
∞∑

n=0

n∑
m=−n

γnm(f) jn(
2π

c
fx) Ynm(x̂), (1)

wherex = ‖‖x‖‖, c is the speed of wave propagation,jn(·)
is thenth order spherical Bessel function of the first kind,
Ynm(·) arespherical harmonics, andγnm(f) are a set of
harmonic coefficients, which do not depend on radial and
angular information of the pointx.

The spherical harmonics are defined as [5, p.194]

Ynm(x̂) =

√
(2n + 1)

4π

(n− |m|)!
(n + |m|)! Pn|m|(cos θ) eimφ,

(2)
whereθ andφ are the elevation and azimuth angles ofx̂,
respectively, andPnm(·) is the associated Legendre func-
tion (which reduces to the Legendre function form = 0).
The subscriptn is referred to as theorder of the spher-
ical harmonic, andm is referred to as themode. For
each ordern, there are2n + 1 modes (corresponding to
m = −n, . . . , n). Spherical harmonics exhibit the follow-



ing orthogonality property [5, p.191],

∫
Y ∗

nm(x̂)Ypq(x̂)dx̂ = δnpδmq, (3)

whereδnp denotes the Kronecker delta function and the in-
tegration is over the unit sphere.

The representation (1) captures any arbitrary sound field
due to both plane wave (farfield) sources and spherical wave
(nearfield) sources. Note that the harmonic coefficients
γnm(f) are independent of location. Thus, if we can record
them, the corresponding sound field can be reconstructed
accurately. In our earlier work [4], we have shown how
to reconstruct a sound field given a set of harmonic coeffi-
cients using an array of loudspeakers. In the sequel, we will
investigate how to record the harmonic coefficients using a
spherical array of microphones.

2.2. Soundfield Decomposition

Mathematically, we can calculate the harmonic coefficients
γnm(f) for frequencyf by using (1) and (3) as

γnm(f) =
1

jn( 2π
c xf)

∫
S(x; f)Y ∗

nm(x̂)dx̂ (4)

where the integration is over the unit sphere andS(x; f) is
measured on a sphere of radiusx. Equation (4) is valid only
if jn( 2π

c xf) 6= 0 for the frequency of interestf andx. We
will revisit this restriction when we consider placement of
microphones to realize (4). We can use (4) to decompose a
sound field in a given region into a set of harmonic coeffi-
cients which describe the sound field at every point of the
given region.

A higher order sound field microphone must be able
to extract harmonic coefficientsγnm(f), n > 0, m =
−n, · · · , n from the sound field surrounding it. Naturally,
an omni-directional microphone records the zero order har-
monic coefficientγ00(f). The challenge is how to extract
higher order harmonic coefficients from the sound field.
Our approach is to realize (4) using an array of omni-
directional microphones in a suitable 3-dimensional config-
uration.

3. SPHERICAL MICROPHONE ARRAY

3.1. Approximation

To facilitate a practical realization, we may approximate the
integration in (4) by a finite summation. ConsiderQ omni-
directional microphones placed on the surface of a sphere of
radiusR, then we can obtain the sound field measurements
S(Rx̂q; f), q = 1, · · · , Q. Thus we may approximate (4)

by

γ̃nm(f) =
1

jn( 2π
c Rf)

Q∑
q=1

S(Rx̂q; f)Y ∗
nm(x̂q)wq, (5)

wherewq, q = 1, · · · , Q are a set of suitable weights.
The above approximation provides a method to extract

higher order harmonic coefficientsγnm(f) of the sound
field using a spherical array of microphones. However, sev-
eral important theoretical and practical questions naturally
arise from this approximation. These are addressed below.

3.2. Number of Microphones

We can observe from (1) that a functionS(Rx̂; f) of a high-
est nonzero orderN on a surface of a sphere has(N + 1)2

independent harmonic components. Therefore, we should
be able to sample a sound field of orderN , with at least
(N + 1)2 points on a sphere of radiusR without losing in-
formation. Thus, a constraint on the number of microphones
is

Q ≥ (N + 1)2. (6)

We can place microphones in a number of different config-
urations. One possibility is to place them on an equiangular
grid in elevation (θ) and azimuth (φ) directions. However,
this will result in more dense packing near poles. In such
an arrangement,(N + 1)2 microphones are not sufficient
to reproduce the sound field by its samples. For equiangular
configuration, there have to be(2N−1) points in both eleva-
tion and azimuth directions, hence a minimum of(2N−1)2

microphones are necessary [6].
Since we could like to use as few microphones as pos-

sible, intuitively we need to place them on the sphere in an
equidistance to each other. The question of how to placeQ
points on the sphere in number of different optimum criteri-
ons is partially answered in [7, 8]. There is no general direct
mathematical formula available to find these points, how-
ever, although numerical co-ordinates are available. Since
these available coordinates of points on the sphere are not
accurately equidistance to each other but optimum in some
way, we may have to use a higherQ than the minimum num-
ber given by (6).

3.3. Radius of Sphere and Frequency Band

We need to choose the radius of the sphereR such that

jn(
2π

c
fR) 6= 0 for n = 0, · · · , N andf ∈ [fl : fu] (7)

wherefl andfu are the lower and upper frequencies of the
bandwidth of interest, and

jn(
2π

c
fR) = 0 for n > N1 > N andf ∈ [fl : fu]. (8)
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Fig. 1. Plots of spherical Bessel functions of ordersn =
0, 1, 2, 3, 4, 5. The Bessel functions have bandpass charac-
ter for ordersn > 0.

Constraint (7) is necessary to have valid harmonic coeffi-
cients (5), and the constraint (8) guarantees that the sound
fieldS(Rx̂; f) is order limited toN1. The second constraint
enables us to use the minimumQmin = (N1 + 1)2 micro-
phones to sample the sound field accurately.

Figure 1 depicts the spherical Bessel functions of few
orders. Observe that the spherical Bessel functions have a
spatial bandpass character for ordersn > 0, and initially
they are approximately zero. Also note that the higher the
ordern the larger the initial zero value region ofjn(·). This
shows qualitatively why we can approximately satisfy both
constraints (7) and (8) for suitable values ofR, N andN1.

4. ERROR ANALYSIS

In general, constraint (8) cannot be satisfied exactly. One
must therefore consider what error is involved in calculat-
ing the harmonic coefficients if the soundfield is not order
limited on the measurement sphere of radiusR.

Consider a general soundfieldS(x; f) that can be repre-
sented by (1). LetS0:N (x; f) denote the component of this
soundfield consisting only of terms up to orderN , i.e.,

S0:N (x; f) =
N∑

n=0

n∑
m=−n

γnm(f) jn(
2π

c
fx)Ynm(x̂). (9)

The true soundfield can then be written asS(x; f) =
S0:N (x; f) + SN+1:∞(x; f). Assume that the approxima-
tion (5) is exact1 if the soundfield is only composed of terms

1The approximation error could be made arbitrarily small by choosing
an appropriate number of microphones and their positions, or by using
some form of ‘continuous’ microphone that better implements the required
integration.

up to orderN , i.e.,

γ̃nm(f) =
1

jn( 2π
c Rf)

Q∑
q=1

S0:N (Rx̂q; f)Y ∗
nm(x̂q)wq

=
1

jn( 2π
c xf)

∫
S0:N (x; f)Y ∗

nm(x̂)dx̂ = γnm(f),

whereγnm are the true harmonic coefficients up to orderN .
However, in calculating̃γnm(f) one does not have access
to the order limited soundfieldS0:N (x; f), but only to the
true soundfieldS(x; f). Thus, the coefficients that one can
actually measure are given by

γ̃nm(f) =
1

jn( 2π
c Rf)

Q∑
q=1

(
S0:N (Rx̂q; f)

+SN+1:∞(Rx̂q; f)
)
Y ∗

nm(x̂q)wq

= γnm + εnm, (10)

whereεnm represents theorder-limiting error. It is given by

εnm =
1

jn( 2π
c Rf)

Q∑
q=1

Y ∗
nm(x̂q)wq

×
∞∑

p=N+1

p∑
s=−p

γps(f) jp(
2π

c
Rf)Yps(x̂q).(11)

Observe that the order-limiting error in the lower order co-
efficients therefore depends on the true values of the higher
order coefficients. Although these will in general be un-
known, one can conclude that provided the higher order
spherical Bessel functionsjn(·), n = N + 1, . . . ,∞, are of
significantly smaller amplitude than the lower order spheri-
cal Bessel functions on the measurement sphere, the order-
limiting error will be relatively small. However, if we can
have a very large number of microphones or a ‘continuous’
microphone, then the order-limiting error can be made arbi-
trary small or eliminated. That is,

lim
Q→∞

εnm =
1

jn( 2π
c Rf)

∞∑

p=N+1

p∑
s=−p

γps(f) jp(
2π

c
Rf)

×
∫

Yps(x̂)Y ∗
nm(x̂)dx = 0,

(12)

where the integration vanishes due the orthogonality prop-
erty of the spherical harmonics (3). Further, quantitative
error analysis will be presented in a future journal paper.

5. DESIGN EXAMPLE

To demonstrate application of the above theory, we now
present a specific design example. We will consider a third



Order (n) Argument
0 0.89
1 1.47
2 2.05
3 2.63
4 3.21
5 3.78
6 4.36
7 4.94
8 5.51

Table 1. Argument of spherical Bessel function for each
order such that higher order terms are at least 10 dB down.

order system (i.e., it will record all ordersn = 0, . . . , 3) for
operation over a 10:1 frequency range of 340 Hz to 3.4 kHz.

Because constraint (8) cannot be satisfied exactly, in
practice one must choose an appropriate radius for the de-
sired frequency range based on the bandpass characteris-
tic of the spherical Bessel functions. We shall choose the
maximum radius as corresponding to the argument of the
spherical Bessel function for which the next highest order
is at least 10 dB below the maximum desired order (which
should ensure that the order-limited error is small). It is
straightforward to calculate these from Fig. 1, and the re-
sults are shown in Table 1 for systems up to eighth order.

Thus we see that if we restrict the argument of the spher-
ical Bessel function to 2.63, then the fourth order terms will
be down by at least 10 dB (and higher order terms are in
fact down by more than 20 dB). Thus, although the system
is not strictly limited to third order, higher order terms are
negligible and thus will not unduly effect the approximation
of the lower order terms. For the chosen frequency range,
with a speed of wave propagation ofc = 342 m/s, we there-
fore choose to place the microphones on a sphere of radius
R = 4 cm. Theoretically, a third order system should only
require(N + 1)2 = 16 microphones. More accurate results
are obtained, however, if one uses extra microphones. We
will therefore use a total of(N + 2)2 = 25 microphones
placed on the surface of the 4 cm sphere at locations deter-
mined by [8]; appropriate values of the integration weights
wq to be used in (5) are also provided in [8].

As an example we considered the recording of a plane-
wave soundfield using the designed third order microphone.
The soundfield2

S(x; f) = ei2πf/c(ŷT x),

whereŷ is the direction of plane-wave incidence, was sam-
pled by the spherical microphone array. Then the spheri-
cal harmonics coefficients were calculated according to (5),

2This is an infinite order soundfield.
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Fig. 2. True 3rd order soundfield, and recorded soundfield,
for a 500 Hz plane wave.
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Fig. 3. True 3rd order soundfield, and recorded soundfield,
for a 1 kHz plane wave.

whereS(Rx̂q; f) is the signal of frequencyf sampled at
microphoneq. Using these approximated spherical har-
monics coefficients, we then calculated the recorded sound-
field according to (9), and compared it to the true 3rd order
soundfield. Results of simulations at four separate frequen-
cies are shown in Figs. 2 to 5.

We note that the spherical microphone array is able to
accurately record the third order soundfield over the desired
frequency range. The accuracy is worse at low frequen-
cies (see Fig. 2), since at 500 Hz, where the argument of
the spherical Bessel function on the measurement sphere is
0.37, we notice from Fig. 1 that the 3rd order components
are very small. At high frequencies, although the recorded
soundfield is very close to the true 3rd order soundfield,
to accurately reproduce the full plane-wave soundfield3 re-
quires orders aboven = 3. This is a fundamental property
of soundfields, and can only be rectified by designing higher
order soundfield microphones. Because of the limited fre-
quency range over which a given spherical microphone ar-
ray will be able to accurately record a soundfield of given
order, we believe that higher order soundfield microphones
will require arrays that are positioned on spheres of several
different radii. This is currently a topic of ongoing research.

3This is especially true at locations far from the origin of the spherical
microphone array.
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Fig. 4. True 3rd order soundfield, and recorded soundfield,
for a 2 kHz plane wave.
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Fig. 5. True 3rd order soundfield, and recorded soundfield,
for a 3 kHz plane wave.

6. CONCLUSION

We have established the theory and demonstrated the prac-
tical design of a system for recording higher order sound-
fields. This system is implemented using a spherical micro-
phone array. Simulation results show that the higher order
soundfield microphone is able to accurately record a sound-
field over an extended region of space within a desired fre-
quency range.
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