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ABSTRACT

A scheme is presented for encoding general complex sources in
high-order Ambisonic soundfields, with control over position and
orientation. Also reviewed is related work by the author on the
binaural rendering of nearfield sources, accounting fully for the
physical constraints of this problem. Together these developments
provide a means for creating high quality nearfield auditorydis-
plays over headphones.

1. INTRODUCTION

A natural goal in many auditory displays is to be able to repro-
duce the perception of an arbitrary audio environment as well as
possible. In addition to this it is often desirable to be ableto com-
pose the environment from audio objects, which can be located and
transformed in flexible ways. This paper addresses the problem of
composing an environment given by a high-order Ambisonic de-
scription, [1, 2], using source objects that can each model any finite
source region of sound to any desired accuracy. By its generality
this scheme includes the composition of near objects which con-
vey a complex soundfield to the listener. Such soundfields provide
valuable information about source location, and it is also suggested
that they can help greatly in terms of display realism due to the
complex nature of the near soundfields. For example, we might
wish to create the perception of listening to a violin 50cm away,
and be able to move and rotate the violin. The high-order Am-
bisonic encoding can be used to render a display over loudspeak-
ers, however we focus here on rendering by headphones, otherwise
called binaural rendering, as this is likely to be the most practical
method for high definition nearfield displays. Speaker systems are
limited by the number of speakers and the acoustics within which
they operate. Binaural systems have no theoretical limitations, but
do require good quality headtracking in order for the sound pre-
sented to be consistent with the head direction. Headtracking sys-
tems have improved rapidly in recent years both in quality and
cost.

We begin by reviewing recent work [3] on the binaural ren-
dering of nearfield monopole sources. This exposes a problem
with rendering such soundfields, for which a solution is offered.
Following on from this, a method is found for transforming anen-
coding of a general source to a listener-based soundfield encoding,
taking into account the position and orientation of the source. Fig-
ure 1 is a very simple schematic of the process being considered.
The soundfield encoding can be applied directly to the previously
described binaural rendering, and more generally with speaker ar-
ray rendering systems.
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Figure 1: Encoding a complex source.O denotes the extended
source object, andB the central point of the listener.

2. BINAURAL RENDERING OF SOUNDFIELD
ENCODINGS

2.1. Ambisonic encoding

Ambisonics is a methodology developed for encoding soundfields,
and decoding them onto speaker arrays, [4, 5]. Initially it was used
only to 1st order, with 4 signals that encode a full sphere of sound
around a central listener. More recently Ambisonics has been em-
ployed at higher orders, whereby it is possible to not only increase
the angular resolution of distant sources, but also extend the lis-
tening region and recreate accurately the soundfield from nearfield
sources, [2]. We shall refer informally to an encoding of anyorder
asB-format, borrowing the original terminology for 1st order. Us-
ing high-order encodings, the listener receives distance cues about
near sources exactly as they would for the real soundfield, because
the soundfield around the listener can be reconstructed arbitrarily
well.

The Ambisonic encoded signals are defined by a spherical har-
monic expansion of a source-free region of the pressure field, also
called the interior expansion because it is valid for general fields
within a radius that contains no source region. Although ourdis-
cussion does not depend on a particular representation, fordef-
initeness we use signals,Bσ

mn(k), defined with the real-valued
N3D spherical harmonics, [1],

p(r, k) =
X

m

imjm(kr)
X

n,σ

Y σ
mn(θ, δ)Bσ

mn(k) , (1)

where

Y σ
mn(θ, δ) =

√
2m + 1 P̃mn(sin δ) ×

(

cos nθ if σ = +1

sin nθ if σ = −1

(2)
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P̃mn(sin δ) =

s

(2 − δ0,n)
(m − n)!

(m + n)!
Pmn(sin δ) . (3)

For n = 0, σ only takes the value+1. θ here measures the angle
around the coordinate symmetry axis, andπ/2 − δ is the angle
between the axis and the coordinate direction, so thatδ would nor-
mally be called the elevation, as shown in Figure 2.

z

δ

θ

Figure 2: Spherical coordinates used.

From here on we shall use a slightly simplified notation that
removes the need forσ by extendingn to negative values as used
in the standard complex set,

Ymn =

(

Y +1
mn if n ≥ 0

Y −1
m|n|

if n < 0
. (4)

Similarly the encoded signals becomeBmn(k).

2.2. Conversion to binaural

In a binaural rendering system the listener is presented with one
signal to each ear canal direct. Binaural signals can be derived
from an Ambisonic encoding, using Head Related Transfer Func-
tions (HRTFs),[6], as described below. The Ambisonic encoding is
easily rotated, which facilitates compensation for head movement.

Conversion to binaural can be achieved approximately by sum-
ming speaker array feeds that are each filtered by an HRTF match-
ing the speaker position, [7, 8]. Figure 3 illustrates the signal flow
in this process.

Encode

Soundfield B−format Speakers Binaural

HRTFsDecode

Figure 3: Encoding a soundfield to binaural via virtual speakers.

A natural extension of this idea to an exact method for binau-
ral signals, is to transform the encoded soundfield into a planewave
expansion, and weight each component planewave by the planewave
HRTF matching its direction and frequency, [9, 10]. The pro-
cess can be applied to high-order Ambisonic encodings containing
sources at various distances. A straightforward binaural approach
would require HRTF sets for each source distance, however de-
coding the high-order signal requires only the planewave HRTF
set. This is not too surprising, as the HRTF sets are defined within
the constraints of the wave equation, and so are all related.There
is another less obvious advantage, which is that complex sources
can be conveniently converted to binaural via an encoding inhigh-
order B-format, as will be demonstrated later in this article. A

single nearfield HRTF set cannot be applied in a simple way to a
complex source description to yield the required binaural signals.
Figure 4 depicts an overview of the encoding process from sound-
field to binaural using a planewave expansion.
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Figure 4: Encoding a soundfield to binaural via a planewave ex-
pansion.

The process is exact in the farfield, but as explained later, there
is a subtle source of error which can affect near sources. First we
detail the steps to generate binaural signals from high-order B-
format using a planewave expansion.

We aim to represent a source-free region by an expansion in
planewaves, known as a Herglotz expansion, with coefficientsµ(s, k)
defined over unit vectorss, so that

p(r, k) =
1

4π

Z

Su

dS(s) eiks·rµ(s, k) , (5)

where integration is over the unit sphere. The spherical harmonic
expansion of the source-free region, using standard complex spher-
ical harmonicsY n

m corresponding to N3D harmonicsYmn, is

p(r, k) =
X

m

jm(kr)
X

n

Y n
m(θ, δ)An

m(k) . (6)

jm(kr) are the spherical bessel functions. From Eqs. (6) and (5)
valid planewave coefficients can be found in terms of the spherical
harmonic coefficientsAn

m [10],

µ(s, k) =
X

m,n

i−nAn
m(k)Y n

m(s) , (7)

and in terms of the N3D convention,

µ(s, k) =
X

m,n

Bmn(k)Ymn(s) . (8)

The lack of a complex factor in Eq. (8) reflects the fact that in
Ambisonics, plane waves with zero phase at the center have real-
valued encodings, allowing the identification to be made between
microphone polar patterns and the N3D harmonics. From the lin-
ear supposition of planewaves, the binaural signals,pL(k), pR(k)
are found by integrating the planewave weights with HRTF re-
sponses,HL(ks), HR(ks), over the sphere,

pL(k) =

Z

Su

dS(s)µ(s, k)HL(ks) , (9)

for the left side and similarly for the right. In practice theintegral
can be replaced by a quadrature sum, with very little loss of ac-
curacy for a sufficient number of quadrature points, of orderthe
number of spherical harmonics in (8), [10].

In addition, we can explicitly calculate the nearfield HRTF of
wavenumberk and given position, by binaurally synthesizing a
pure nearfield monopole with thatk and position. This is given by
pL(k) in Eq. (9). Figure 5 summarizes this. The planewave ex-
pansions of monopoles are investigated further in the next section.
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near HRTFB−format
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Figure 5: Finding a nearfield HRTF from a monopole encoding.
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Figure 6: Spherical harmonic freefield expansion of a displaced
monopole.

3. SCATTERING OF NEARFIELD SOURCES

3.1. Spherical expansion of a monopole

To study expansions of near sources we look in detail at the monopole.
The important features are also true for general sources. A monopole
source at non-central positionr′ has the following expansion inr,
valid only for r < r′, [11],

e−ik|r−r′|

|r − r′| = ik
∞

X

m=0

jm(kr)hm(kr′)
m

X

n=−m

Ymn(θ′, δ′)Ymn(θ, δ) ,

(10)
wherejm(kr′) andhm(kr) are the spherical Bessel function of
the first kind and spherical Hankel function of the second kind.
The positive frequency convention is chosen which gives an out-
ward moving wave for a time pieceeiωt. For the following dis-
cussion it is important to emphasize the region of validity for the
expansion is a sphere extending as far as the source, as illustrated
in Figure 6. For more general sources that extend over a region the
valid region extends as far as the maximum radius that does not
enclose part of any source.

A freefield expansion cannot represent a monopole outside the
valid region because it must retain zero divergence everywhere. In
the region of the monopole’s origin the expansion flows inwards
to the freefield origin. The bessel functionsjm(kr) are very close
to zero forkr < m, so for a general freefield expansionmmax ≈
kr′ is sufficient to synthesize accurately in the regionr < r′. A
detailed error analysis has been given, [10].

3.2. Scattering validity of synthesized sources

An HRTF filter generates the signal at an ear resulting from the
scattering of a plane wave by the listener. The phase of the planewave
is assumed to be zeroed to the center of the head. We can express
the resultant field as a sum of the original unscattered field and the
scattered component,p = pin + pscat. The scattering can be for-
mulated in terms of the Sommerfield radiation conditions, which
state thatpscat depends only onpin at the boundary of the scat-
tering body. As we have seen, the Ambisonic representation of a
nearfield source is accurate only within a limited region, nomatter
how high the order of approximation. The derived planewave de-
composition, can also only be accurate within the limited region.

The example in Figure 7 is formed from 196 plane waves, whose
directions are distributed around the sphere on Fleige nodes, [12].
One symmetric half of the normalized field is shown,Re(p)/|p|.
If part of the scattering body is outside this region, thenpin is no
longer correct on all of the scattering body. The binaural signals,
found according to Eq. (9), are part of the resultant fieldp, and so
in general suffer loss of accuracy when the valid region doesnot
enclose the scattering surface. Figure 8 illustrates this for a front
view of a listener, where the source is close enough that everything
from the shoulders downwards is excluded from the valid region.
It has been shown previously that the torso plays a significant role
in localization, [13].

Figure 7: Planewave-from-spherical expansion of a monopole with
r′ = 2λ, mmax = 12, 196 Fliege nodes.

The arrows in Figure 8 show the flow of energy in the freefield
expansion of the source. In a field with a real source, both arrows
would point away from the source. It is evident that the scattering
in the shoulder region using the freefield will be quite different
to the scattering with a source field, and cause differences in the
resultant field at the ears.

3.3. Higher accuracy nearfield expansions

The above result is not too surprising in retrospect, because we
should not expect to be able to construct the response from a source
embedded in an arbitrarily complex scattering geometry using only
planewave scattering responses. However, the question remains,
how well can we do with planewave HRTFs? Planewave expan-
sions have a useful property that spherical harmonic expansions
lack, they can be translated and expressed about a differentpoint
simply by multiplying by phase factors: If a position relative to
the new center isr′, and the corresponding position relative to the

valid region

source

Figure 8: Parts of scattering body outside the valid expansion re-
gion of a near source.
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Figure 9: Shifted planewave expansion center for full scattering
with a near source.

old center isr, thenr = r
′ + x, wherex is the translation from

the old to the new center. Soeik·r = eik·(x+r
′) = eik·x eik·r′

.
Therefore from Eq. (5) the expansion coefficients about the new
center areµ′(k) = eik·xµ(k). Using this result, we can take the
expansion for a source at a large radius, then shift the center so the
source is at the required relative location. In the process the region
of validity has been expanded, so a greater scattering body can be
included, and the resulting binaural signals will be more accurate.
Figure 9 illustrates this, showing a body entirely within the valid
region for scattering, and with a source near to the head.

There is a price to be paid for the improved rendering of the
source however. The new region of validity excludes other near
sources, which must be rendered separately with their own shifts,
rather than from a single harmonic expansion. Also the new spher-
ical expansion must be specified to higher order, because there-
gion being scattered is at a greater radius in the freefield expan-
sion. As a result of this the number of planewaves and hence
HRTFs must be increased. The number of nodes required isO(kr)
wherer is the radius of curvature of the region boundary. How-
ever, on the positive side, the corrected planewave expansions can
be summed to create a single planewave expansion for severalnear
sources. This would suggest that planewave expansions would be
a more efficient representation of sources. However they canonly
be accurate in up to half of the space, and so must be transformed
according to their position relative to the listener.

The limit of the boundary of validity obtained by shifting, is a
plane through the source, so it is impossible, as conjectured earlier,
to precisely generate binaural signals, using planewave HRTFs, for
sources in concave regions of the scattering body, such as under the
chin.

Figures 10 and 11 show two plots of the magnitude|µ(φ)| of
the planewave decomposition of a freefield expansion of a monopole
source atr = 2λ, 4λ respectively.φ is the spherical coordinate
measuring the angle between the direction and the coordinate sym-
metry axis, withφ = 0 being the direction to the source. The de-
composition of a source in a general position is just a rotation of
µ(φ). The greater detail seen in Figure 11 compared with Figure
10, reflects that it is sensitive to higher resolution HRTF data.

4. TRANSFORMING COMPLEX SOURCE ENCODINGS
TO A FREEFIELD ENCODING

As discussed in the introduction, we wish to generalize the pre-
vious discussion on binaural rendering from monopole sources to
general complex sources. First we consider an appropriate repre-
sentation for the source, and then the transformation to a freefield

−π −π/2 π0 π/2

µ(φ)

φ

Figure 10: Planewave expansion coefficient forr = 2λ, mmax =
12.

−π −π/2 π0 π/2

µ(φ)

φ

Figure 11: Planewave expansion coefficient forr = 4λ, mmax =
24.

encoding that can be applied to the binaural rendering technique
of the last section.

4.1. The exterior harmonic expansion

A natural way to represent a general source region is theexterior
expansionfor the wave equation. This is valid outside a radius con-
taining all parts of the source. The basis functions in the frequency
domain using spherical coordinates arehm(kr)Ymn(θ, δ), where
hm(kr) are the spherical hankel functions of the second kind, [11].
m is the multipole order of each function, andk = 2π/λ is the
wavenumber. The type of hankel function chosen gives an out-
ward moving wave when associated with a positive frequency time
pieceeiωt, the same convention used in [2].

An infinitesimally defined multipole of orderm can always be
expressed exactly using an exterior expansion with terms upto or-
derm. For this reason an exterior expansion is alternatively called
anexterior multipole expansionor just amultipole, [14]. Another
term used issingular expansion, since the center of the expansion
has a singularity. The exterior expansion relates closely to the non-
uniform directivity of a source, as discussed below, and ourgoal
shall be to manipulate it to provide an Ambisonic source encod-
ing. By multipole we shall mean an exterior expansion, unless
otherwise stated.

The remainder of this section reviews the exterior expansion
and introduces the conventions that will be used. We again adopt
the N3D convention defined by (2). For convenience we define
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coefficients,Omn(k), by a general exterior expansion,

p(r, k) = k
X

m

i−m−1hm(kr)
X

n

Ymn(θ, δ)Omn(k) , (11)

so that in the farfield wherehm(kr) tends toim+1e−ikr/kr, the
field becomes

pfar =
e−ikr

r

X

m,n

Ymn(θ, δ)Omn(k) . (12)

The Omn(k) coefficients then directly express the non-uniform
directivity in this regime, where locally the field tends to an out-
ward moving plane wave. In the theOmn(k) coincide with theO-
formatencoding used previously for Ambisonic synthesis, [15, 9].
The same name will be used here for the more general case de-
scribed by (11). We emphasize that this is just a convention,for
convenience and appropriate to its context, in the same sense as
B-format is defined.

Omn(k) can be readily calculated from measurements of the
field on a sphere at any radiusr outside the source region. Apply-
ing an integral over the sphere,

R

dΩ Ymn(θ, δ) to (11) gives

Omn(k) =
im+1

R

dΩ Ymn(θ, δ)p(r, k)

4πkhm(kr)
. (13)

For a real object the field could be measured approximately with
pressure microphones placed located on a sphere a fixed distance
from the source. In the farfield where the field becomes planar,
inwardly pointing directional mics are equally effective given the
appropriate equalization. For devices such as loudspeakers that
convert electricity to sound linearly, the process can be simpli-
fied by repeated response measurements with a single mic thatis
moved. Speaker simulations might for instance be useful in high-
end architectural simulations. When theOmn(k) responses are
convolved with input signals for the speakers, the expansion sig-
nals are generated.

4.2. Source approximation order and error

We consider now the order to which a source is approximated,
mmax. We wish to minimize this subject to reconstruction error
constraints. A source can be arbitrarily small and still have power
up to any multipole order, for example using the explicit defini-
tion of infinitesimal multipoles. However this is unusual ina real
acoustic source because opposed component sources are not usu-
ally found very close together. Detailed error analysis, [14], shows
that for a more typical source, the relative error decreasesrapidly
through1 atmmax ≈ 2πr′/λ = kr′, wherer′ is the radius of the
source.

4.3. Multi-resolution sources

So far we have considered using single multipole expansions. In
some cases a hybrid approach may be more appropriate, in which
a source is represented using a several multipoles. This is necces-
sary whenever we wish to find the field at a free space inside the
bounding sphere of an object, for example nearer to a table surface
than its length. Outside the total bounding sphere a single multi-
pole is sufficient. As we move closer to some part of the source
more multipoles are neccessary. Far from the object compared to
its size the field can be approximated as a plane wave, using the
O-format coefficients to determine the direction dependence. This

−3 −2 −1 0 1 2 3

2

1

0

−1

−2

B

z axis

kz/2π

kx/2π

m

Figure 12: Cross-section of a field plot for a 13th order freefield
expansion, center atB, of a monopole, centerO. Error contours
are shown at the1% and10% levels. The cross-section isθ = 0.
x, z are cartesian coordinates in length units.

scheme of successive simplification resembles the multi-resolution
techniques common in computer graphics, [16].

5. AMBISONIC ENCODING OF MULTIPOLES

As we have seen, high-order Ambisonics is founded on the freefield
or interior expansion, (1). Consider a field containing a single
monopole set away from the freefield expansion center. Eq. (10)
can be recast as the freefield expansion for a monopole, by fixing
r and instead varyingr′. The form of this expansion is then con-
sistent with Eq. (1), from which the values of theBmn(k) can be
read off, as shown in [2]. The condition of convergencer

′ < r

now implies that the expansion convergeswithin a circle that just
touches the monopole source.

Figure 12 shows a normalized field plotRe(p)/|p| for such
a monopole reconstructed to the 13th order, and set at a distance
2λ from the expansion center. Outside this area the expansion is a
valid freefield, although no longer matches the source field.Over-
all convergence behaviour within the valid region is like any other
freefield, although close to the monopole,δ < λ, the order re-
quired to achieve a given error is increased compared to a smooth
freefield, as we would expect, [14]. The limit set to the region
of freefield convergence by the source can not be exceeded by in-
creasing the freefield order.

Higher multipole sources must also have freefield expansions
about a displace origin, since they can be expressed as a sum of in-
finitesimal monopoles. The freefield expansion is then validwithin
a radius that does not include any of the source.

5.1. Multipole to freefield coefficient transformation

The main task in this section is to findBmn(k) in the presence of
a multipole described byOmn(k) at a given position. It would be
desirable to find a generalized closed form expression, as for the
monopole case in [2]. However, it is not very apparent how this
could be done or even if it would be the most practical method of
calculation. Instead a more pragmatic approach is adopted yield-
ing eventually a manageable integral expression. To begin (1) and
(11) are equated. The notation is modified according to Figure 13,
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r

OrB

rO
B

Figure 13: Vector notation

X

m

imjm(krB)
X

n

Ymn(θB , δB)Bmn(k)

= k
X

m

i−m−1hm(krO)
X

n

Ymn(θO, δO)Omn(k)
(14)

To isolateBmn(k) the operator
R

dΩB Ym′n′(θB, δB) is ap-
plied, with rB a freely chosen constant, andθO , δO andrO are
functions of the vectorrB , yielding

4πim
′

jm′ (krB)Bm′n′(k)

=
X

m

i−m−1
X

n

Omn(k)

Z

dΩB Ym′n′(θB, δB)Ymn(θO, δO)hm(krO).

(15)

Relabeling indices,Bmn(k) can be written as

Bmn(k) =
X

m′,n′

Mmnm′n′(k, r)Om′n′(k), (16)

where the filter matrixMmnm′n′(k, r) is

Mmnm′n′(k, r)

=
ki−m−m′−1

4πjm(krB)
Z

dΩB Ymn(θB, δB)Ym′n′(θO , δO)hm′(krO) .

(17)

Ther direction dependence in the matrix can be factored out by
transforming the componentsBmn(k) and Omn(k) so they are
relative tor. Figure 14 shows the relationship between the initial
coordinate axis,̂z, and the vector,r, connecting the centresB and
O. φ = π/2 − δ together withθ specify a rotation mappinĝz
ontor, written in components asRm′n′n(θ, φ). The third degree
of freedom is unspecified, although it must be consistent. There-
foreRm′n′n(θ,−φ) transformsBmn(k) andOmn(k) to find their
coordinates relative tor,

B′
m′n′(k) =

X

n

Rm′n′n(θ,−φ)Bm′n(k) (18)

O′
m′n′(k) =

X

n

Rm′n′n(θ,−φ)Om′n(k) (19)

Now Eq. (16) can be written with anr-direction-independent
matrix,Mmnm′n′(k, r),

B′
mn(k) =

X

m′,n′

Mmnm′n′(k, r)O′
m′n′(k), (20)

where

O
^

ẑ

B

φ rz

Figure 14: Finding components relative tor

Mmnm′n′(k, r)

=
ki−m−m′−1

4πjm(krB)
Z

dΩB Ymn(θB, δB)Ym′n′(θO, δO)hm′(krO).

(21)

The coordinates in the integral are now relative tor, although they
haven’t been relabeled. The symmetry this brings, withrO inde-
pendent ofθB = θO, can be used to factor the integral into a prod-
uct of θ andδ integrals. To make this clearYmn(θ, δ) is factored
into

Ymn(θ, δ) = P̂mn(sin δ) ×

8

>

<

>

:

√
2 cos nθ if n > 0

1 if n = 0√
2 sin nθ if n < 0

(22)

where for convenience later,̂Pmn is defined,

P̂mn(sin δ) =

s

(2m + 1)
(m − |n|)!
(m + |n|)! Pm|n|(sin δ) (23)

andPmn(x) is the associated Legendre polynomial. (21) becomes

Mmnm′n′(k, r)

=
ki−m−m′−1

4πjm(krB)
Z

dδB cos δBP̂mn(sin δB)P̂m′n′(sin δO)hm′ (krO) × 2πδnn′

=
δnn′ki−m−m′−1

2jm(krB)
Z +1

−1

dsBP̂mn(sB)P̂m′n′(sO)hm′(krO) ,

(24)

wheresB = sin δB andsO = sin δO. sO andrO can be found
from r, rB andsB usingrBsB−rOsO = r. rO = r

√
1 + α2 − 2αsB

andsO = r(αsB −1)/rO , whereα = rB/r. Settingα = .51111
ensures good numerical behaviour.

Eq. (20) can now be simplified using,

B′
mn(k) =

X

m,n

1

r
Mmnm′ (kr)O′

m′n(k), (25)

where we define a simplified matrix coefficient with 3 indices rather
than 4.
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Mmnm′ (k) =
ki−m−m′−1

2jm(rB)

Z +1

−1

dsBP̂mn(sB)P̂m′n(sO)hm′(rO),

(26)
with r = k implicit. Clearly this is defined only forn < m and
n < m′. This means for a given source the number of filters in-
creases only linearly with B-format order required. The newfilter
coefficients are given in terms of one parameter,k. The actual filter
acting in (25) is scaled in frequency by the radiusr and there is a
distance factor1/r. Putting this together with (18) givesBmn(k)
in terms ofOmn(k),

Bmn(k) =
X

n′

Rmnn′ (θ, φ)
X

m′

1

r
Mmn′m′(kr)

X

n′′

Rm′n′n′′(θ,−φ) Om′n′′(k)
(27)

Note that an orientation rotation could be incorporated into the first
rotation acting onOmn.

5.2. Validation and properties

To provide an immediate confidence test that the derived formu-
las are correct, a random test 5th order multipole was constructed,
shown in Figure 15, and compared with the 13th order freefield
expansion calculated using the matrix (27), shown in Figure16.
The error contours in Figure 16 at 10% and 1% levels are for devi-
ations from the original multipole shown in Figure 15. The region
of agreement extends as far as the center of the original multipole,
as expected, and supports the derivations in this section.
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Figure 15: Cross-section of a field plot for a 5th order multipole,
center atO. The cross-section isθ = 0. x, z are cartesian coordi-
nates in length units.

Next we examineMmnm′ (kr) by checking that it is consistent
with previous results for the monopole case,[2], in which the en-
coded signal is given byBmn = S(k)Fm(kr)Ymn(θ, δ), where
Fm(kr) = i−mhm(kr)/h0(kr). To match the alignment used
to defineMmnm′ (kr), θ = δ = π/2. We first note that the
source termS(k) includes the delay and distance attenuation so

that S(k) = eikr

r
O00(k). In order to isolate the part matching

−3 −2 −1 0 1 2 3

2

1

0

−1

−2

B

z axis

kz/2π

kx/2π

Figure 16: Cross-section of a field plot for a 13th order freefield
expansion, center atB, of a multipole, centerO. Error contours are
shown at the1% and10% levels. The cross-section isθ = 0. x, z
are cartesian coordinates in length units.
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Figure 17: Amplitude response for
Mm00(kr)/(e−ikr/r)/Ym0(0, π/2), m = 1, 2, 3, 4

Fm(kr), we look at the adjusted value,

Mm00(kr)/(e−ikr/r)/Ym0(0, π/2) .

With r = 1, this produces the plots shown in Figure 17, match-
ing previous results, [2]. The general picture at higher multipoles
is that, with thee−ikr/r piece factored out, the response is al-
ways minimum phase. For smallk the order of the filter becomes
m + m′, while for largek it is n. The transition occurs around
k = 2 corresponding to≈ 0.3 wavelength separation from the
source.Mmnm′ (kr) has symmetries which reduce the computa-
tional cost of using it;Mmnm′ (kr) = Mm′nm(kr)(−1)m+m′

=
Mm−nm′ (kr). The first of these is useful for cross checking the
accuracy of value, since the integrals are different.

In [2] filters were commuted from the decoding stage to con-
trol the large amplitudes at low values ofk. The situation at first
appears worse here because filters encoding high multipolescan
have much higher order for the same orderm of the B-format en-
coding. However, at the values ofk where the filters grow large,
the size of the source object in wavelengths becomes small, and
a lower source order suffices to approximate it well, according to
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the discussion in Section 3 where a regular source is considered.
This means that low frequencies can be filtered out progressively
from the higher orders of object encoding, so avoiding excessive
gains. The filtering should be performed dynamically according to
distance. The highest order retained,mmax is determined by the
highest frequency,fmax, that is required to be accurately recon-
structed, as described in Section 3. For an accurately constructed
field of sufficiently low frequency, a monopole suffices.

We do not investigate the implementation of the filter matrix
in detail here, but note that in general it will take a similarform
to that described for the monopole case, [2]. Because the filters
are evaluated numerically, they must be converted to IIR form by
pole/zero fitting. Filter modification according to radius can then
achieved by scaling the poles and zeros in frequency.

5.3. Reverberation encoding and transformation

This article has focused on the synthesis of the direct signal from
complex objects in the nearfield. Related techniques can be ap-
plied to the synthesis of a reverberant signal originating from a
complex source. There is not space here to give the full details, so
we only outline the results. First, we can encode the reverberant
response to complex source, for a given pair of source and listener
positions using a filter matrixMrev

mnm′n′ which has been measured
from a real acoustic or calculated using ray tracing or similar meth-
ods.

Bmn(k) =
X

m′,n′

Mrev
mnm′n′(k, xB , xO)Om′n′(k) , (28)

Secondly, we can transform the reverberant field,Bmn, to the field
based at another listener location,B′

mn, using a variant of the ma-
trix in (26),

B′
mn(k) =

X

n′

Rmnn′ (θ, φ)
X

m′

1

r
MBB

mn′m′(kr)

X

n′′

Rm′n′n′′(θ,−φ) Bm′n′′(k) ,
(29)

where

MBB
mnm′ (k) =

kim
′−m

2jm(r′B)

Z +1

−1

dsBP̂mn(s′B)P̂m′n(sB)jm′(rB) ,

(30)
The advantage of these methods is that we can efficiently generate
high quality reverberation, with controllable listener position and
source orientation.

6. CONCLUSION

The paper began by looking at how nearfield sources can be ren-
dered binaurally using only planewave HRTFs. An inherent source
of error was found owing to the nature of the freefield harmonic
expansion. This can be corrected at the expense of being ableto
use a single harmonic expansion to encode all nearfield sources. It
is possible however to sum the corrected planewave expansions to
give a single planewave expansion for all near sources that exist
outside the convex hull of the scattering envelope of the listener.

The paper continued by deriving a transformation law from
a multipole source to a freefield harmonic expansion at a point

outside the source. This can then be converted to a corrected
planewave expansion and used to render binaural signals valid for
nearfield locations. The processing of reverberant signalsis also
mentioned using related techniques.

We have not presented any tests applying our methods with
real HRTF data. This is clearly an important and complex task,
which we hope to address. Working with high quality personal-
ized HRTFs will be a key factor. With the on-going refinement of
virtual reality systems, the considerations presented here are ex-
pected to become increasingly relevant.
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