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ABSTRACT

A scheme is presented for encoding general complex sounces i
high-order Ambisonic soundfields, with control over pasitand
orientation. Also reviewed is related work by the author be t

binaural rendering of nearfield sources, accounting fudlythe B

physical constraints of this problem. Together these dgwveénts

provide a means for creating high quality nearfield auditdisy Figure 1: Encoding a complex sourc€) denotes the extended
plays over headphones. source object, ané the central point of the listener.

1. INTRODUCTION
2. BINAURAL RENDERING OF SOUNDFIELD

A natural goal in many auditory displays is to be able to repro ENCODINGS
duce the perception of an arbitrary audio environment a agel o )
possible. In addition to this it is often desirable to be ableom- 2.1. Ambisonic encoding

pose the environment from audio objects, which can be Idcaid
transformed in flexible ways. This paper addresses the gmobf
composing an environment given by a high-order Ambisonic de
scription, [1, 2], using source objects that can each mauefinite
source region of sound to any desired accuracy. By its ghtyera
this scheme includes the composition of near objects which ¢
vey a complex soundfield to the listener. Such soundfieldgeo
valuable information about source location, and itis alsggested
that they can help greatly in terms of display realism duehto t
complex nature of the near soundfields. For example, we might
wish to create the perception of listening to a violin 50crmagw
and be able to move and rotate the violin. The high-order Am-
bisonic encoding can be used to render a display over loaéispe
ers, however we focus here on rendering by headphonesyasieer
called binaural rendering, as this is likely to be the mosttcal
method for high definition nearfield displays. Speaker systare
limited by the number of speakers and the acoustics withiiclivh
they operate. Binaural systems have no theoretical liraitaf but

do require good quality headtracking in order for the soured p
sented to be consistent with the head direction. Headtigays-
tems have improved rapidly in recent years both in qualitg an
cost.

We begin by reviewing recent work [3] on the binaural ren- . - -
dering of nearfield monopole sources. This exposes a problem p(r. k) = Zl Jm (kr) Zymn(075)3mn(k) ’ 1)
with rendering such soundfields, for which a solution is i&fte m ma
Following on from this, a method is found for transformingean
coding of a general source to a listener-based soundfielterg;
taking into account the position and orientation of the seufFig-
ure 1 is a very simple schematic of the process being corsider

The soundfield encoding can be applied directly to the prasijo Y7 (0,8) = V2m 41 Py (sin 8) x {COS nf o =41

Ambisonics is a methodology developed for encoding soulddfie
and decoding them onto speaker arrays, [4, 5]. Initiallyaswsed
only to 1st order, with 4 signals that encode a full sphereoahsl
around a central listener. More recently Ambisonics has leee-
ployed at higher orders, whereby it is possible to not ontyease
the angular resolution of distant sources, but also exteadis-
tening region and recreate accurately the soundfield fraarfieéd
sources, [2]. We shall refer informally to an encoding of anyer
asB-format borrowing the original terminology for 1st order. Us-
ing high-order encodings, the listener receives distanes about
near sources exactly as they would for the real soundfietdiuse
the soundfield around the listener can be reconstructettailyi
well.

The Ambisonic encoded signals are defined by a spherical har-
monic expansion of a source-free region of the pressure f&dd
called the interior expansion because it is valid for geniéeils
within a radius that contains no source region. Althoughdist
cussion does not depend on a particular representatiordefer
initeness we use signal#y,,, (k), defined with the real-valued
N3D spherical harmonics, [1],

where

described binaural rendering, and more generally withlsgrear- sinng ifo=-1
ray rendering systems. )
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P (sin ) = ¢ (2- 50,n)% Pon(sind) . (3)

Forn = 0, o only takes the value-1. 6 here measures the angle
around the coordinate symmetry axis, anf2 — § is the angle
between the axis and the coordinate direction, so&faiuld nor-
mally be called the elevation, as shown in Figure 2.

z

Figure 2: Spherical coordinates used.

From here on we shall use a slightly simplified notation that
removes the need fer by extendingr to negative values as used
in the standard complex set,

Y = {

Similarly the encoded signals becofg,,, (k).

+1
Y!7L7L
Y71

m|n|

ifn>0

ifn<0 @

2.2. Conversion to binaural

In a binaural rendering system the listener is presenteld avie

signal to each ear canal direct. Binaural signals can beeteri

from an Ambisonic encoding, using Head Related Transfecfun

tions (HRTFs),[6], as described below. The Ambisonic e

easily rotated, which facilitates compensation for heagenent.
Conversion to binaural can be achieved approximately by sum

ming speaker array feeds that are each filtered by an HRTHhmatc

ing the speaker position, [7, 8]. Figure 3 illustrates thymal flow

in this process.

HRTFs

Encode Decode

Soundfield B-format Speakers Binaural

Figure 3: Encoding a soundfield to binaural via virtual sgeak

A natural extension of this idea to an exact method for binau-
ral signals, is to transform the encoded soundfield into mguiave
expansion, and weight each component planewave by theydane
HRTF matching its direction and frequency, [9, 10]. The pro-
cess can be applied to high-order Ambisonic encodings conta
sources at various distances. A straightforward binaymataach
would require HRTF sets for each source distance, however de
coding the high-order signal requires only the planewavd HR
set. This is not too surprising, as the HRTF sets are defingdrwi
the constraints of the wave equation, and so are all reldtkeere
is another less obvious advantage, which is that complescesu
can be conveniently converted to binaural via an encodirigh-
order B-format, as will be demonstrated later in this agticlA

single nearfield HRTF set cannot be applied in a simple way to a
complex source description to yield the required binauigrals.
Figure 4 depicts an overview of the encoding process fromaou
field to binaural using a planewave expansion.

HRTFs

Encode Transform

Soundfield B-format Planewaves Binaural

Figure 4: Encoding a soundfield to binaural via a planewave ex
pansion.

The process is exact in the farfield, but as explained |dteret
is a subtle source of error which can affect near sourcest Wi
detail the steps to generate binaural signals from higleroB#t
format using a planewave expansion.

We aim to represent a source-free region by an expansion in
planewaves, known as a Herglotz expansion, with coeffisjefd, k)
defined over unit vectors, so that

1
p(T, k) = E

[ dste) T us, )
where integration is over the unit sphere. The sphericahbaic
expansion of the source-free region, using standard comsplger-
ical harmonicsy;,, corresponding to N3D harmonid$,, is

®)

p(r,k) = jm(kr) > Yin(0,8)An (k) - (6)

jm (kr) are the spherical bessel functions. From Egs. (6) and (5)
valid planewave coefficients can be found in terms of the Spale
harmonic coefficientsi;, [10],

p(s, k) => i "An(k)Yn(s) )
and in terms of the N3D convention,
(8)

p(s. k) = 3 Boun (k) Yo (s) -

The lack of a complex factor in Eq. (8) reflects the fact that in
Ambisonics, plane waves with zero phase at the center hale re
valued encodings, allowing the identification to be madevben
microphone polar patterns and the N3D harmonics. From the li
ear supposition of planewaves, the binaural signdi¢k), p™ (k)

are found by integrating the planewave weights with HRTF re-
sponsesH”(ks), H®(ks), over the sphere,

P = [ dS(s)u(s H" (ks) |
for the left side and similarly for the right. In practice timegral
can be replaced by a quadrature sum, with very little losscef a
curacy for a sufficient number of quadrature points, of ottier
number of spherical harmonics in (8), [10].

In addition, we can explicitly calculate the nearfield HRTF o
wavenumberk and given position, by binaurally synthesizing a
pure nearfield monopole with thatand position. This is given by
p* (k) in Eq. (9). Figure 5 summarizes this. The planewave ex-
pansions of monopoles are investigated further in the restian.

9)
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Encode Transform HRTFs
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B-format Planewaves| near HRTF

Figure 5: Finding a nearfield HRTF from a monopole encoding.
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0

Figure 6: Spherical harmonic freefield expansion of a disgala
monopole.

3. SCATTERING OF NEARFIELD SOURCES

3.1. Spherical expansion of a monopole

To study expansions of near sources we look in detail at threopude.
The important features are also true for general sourcesoropole
source at non-central positiati has the following expansion in,
valid only forr < r’, [11],

67ik\'r77' |

=ik Z]m kr)hm( k:r

m=0

Z Yo (0',6") Yo (6, 6)

(10)
wherej,,, (kr') and h.,, (kr) are the spherical Bessel function of
the first kind and spherical Hankel function of the secondikin
The positive frequency convention is chosen which giveswn o
ward moving wave for a time pieag“!. For the following dis-
cussion it is important to emphasize the region of validdythe
expansion is a sphere extending as far as the source, dsaiifes
in Figure 6. For more general sources that extend over andig@o
valid region extends as far as the maximum radius that does no
enclose part of any source.

A freefield expansion cannot represent a monopole outséle th
valid region because it must retain zero divergence evegygvin
the region of the monopole’s origin the expansion flows irsar
to the freefield origin. The bessel functiofs(kr) are very close
to zero forkr < m, so for a general freefield expansion,,q. ~
kr' is sufficient to synthesize accurately in the regior. r'. A
detailed error analysis has been given, [10].

|r— 7|

3.2. Scattering validity of synthesized sources

An HRTF filter generates the signal at an ear resulting froen th
scattering of a plane wave by the listener. The phase of treplave

is assumed to be zeroed to the center of the head. We can xpres

the resultant field as a sum of the original unscattered figditlae
scattered component,= pi» + pscat. The scattering can be for-
mulated in terms of the Sommerfield radiation conditionsiciwh
state thaips..: depends only op;,, at the boundary of the scat-
tering body. As we have seen, the Ambisonic representafian o
nearfield source is accurate only within a limited regionpraiter
how high the order of approximation. The derived planewase d
composition, can also only be accurate within the limitegiae.

The example in Figure 7 is formed from 196 plane waves, whose
directions are distributed around the sphere on Fleiges)qdl2].
One symmetric half of the normalized field is showRe(p)/|p|.
If part of the scattering body is outside this region, thenis no
longer correct on all of the scattering body. The binaurghais,
found according to Eq. (9), are part of the resultant figldnd so
in general suffer loss of accuracy when the valid region dus
enclose the scattering surface. Figure 8 illustrates tis ffront
view of a listener, where the source is close enough thaythiag
from the shoulders downwards is excluded from the validaegi
It has been shown previously that the torso plays a significde

Figure 7: Planewave-from-spherical expansion of a moreopih
r’ =2\, Mmax = 12, 196 Fliege nodes.

The arrows in Figure 8 show the flow of energy in the freefield
expansion of the source. In a field with a real source, bothwer
would point away from the source. It is evident that the scatt
in the shoulder region using the freefield will be quite diffiet
to the scattering with a source field, and cause differencelsd
resultant field at the ears.

3.3. Higher accuracy nearfield expansions

The above result is not too surprising in retrospect, bexaves
should not expect to be able to construct the response franreaes
embedded in an arbitrarily complex scattering geometnygusnly
planewave scattering responses. However, the questioaimsem
how well can we do with planewave HRTFs? Planewave expan-
sions have a useful property that spherical harmonic expasns
lack, they can be translated and expressed about a diffieoantt
simply by multiplying by phase factors: If a position relatito

the new center ig’, and the corresponding position relative to the

valid region

source

v
.

Figure 8: Parts of scattering body outside the valid exmenss-
gion of a near source.
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Figure 9: Shifted planewave expansion center for full scatg
with a near source.

old center isr, thenr = r’ + x, wherez is the translation from
the old to the new center. SA¥ 7 = ik @+7") = cik@ gikr'
Therefore from Eq. (5) the expansion coefficients about twe n
center arqy’ (k) = e™*® (k). Using this result, we can take the
expansion for a source at a large radius, then shift the ceotine
source is at the required relative location. In the prodessdgion

of validity has been expanded, so a greater scattering bandlpe
included, and the resulting binaural signals will be moreusate.
Figure 9 illustrates this, showing a body entirely withire talid
region for scattering, and with a source near to the head.

There is a price to be paid for the improved rendering of the
source however. The new region of validity excludes other ne
sources, which must be rendered separately with their ovits,sh
rather than from a single harmonic expansion. Also the néweisp
ical expansion must be specified to higher order, becauseethe
gion being scattered is at a greater radius in the freefigbdrmex

()

Figure 10: Planewave expansion coefficientifee 2, mmaz =
12.

Figure 11: Planewave expansion coefficientifee 4\, mmaes =

sion. As a result of this the number of planewaves and hence,

HRTFs must be increased. The number of nodes requi@¢is)
wherer is the radius of curvature of the region boundary. How-
ever, on the positive side, the corrected planewave expassian
be summed to create a single planewave expansion for sexznal
sources. This would suggest that planewave expansiongivieeul
a more efficient representation of sources. However theyoogn
be accurate in up to half of the space, and so must be transfiorm
according to their position relative to the listener.

The limit of the boundary of validity obtained by shifting, &
plane through the source, so it is impossible, as conjetwadier,
to precisely generate binaural signals, using planewaveRsRor
sources in concave regions of the scattering body, suchdes thre
chin.

Figures 10 and 11 show two plots of the magnityides)| of
the planewave decomposition of a freefield expansion of copale
source atr = 2\, 4\ respectively. ¢ is the spherical coordinate
measuring the angle between the direction and the cooedéyat-
metry axis, with¢ = 0 being the direction to the source. The de-
composition of a source in a general position is just a romatif
u(¢). The greater detail seen in Figure 11 compared with Figure
10, reflects that it is sensitive to higher resolution HRTEda

4. TRANSFORMING COMPLEX SOURCE ENCODINGS
TO A FREEFIELD ENCODING

As discussed in the introduction, we wish to generalize tlee p
vious discussion on binaural rendering from monopole sEsito
general complex sources. First we consider an appropegte+
sentation for the source, and then the transformation teefiéld

encoding that can be applied to the binaural rendering tqukn
of the last section.

4.1. The exterior harmonic expansion

A natural way to represent a general source region igxterior
expansiorfor the wave equation. This is valid outside a radius con-
taining all parts of the source. The basis functions in tegdency
domain using spherical coordinates arg(kr)Y:.. (0, d), where

hm (kr) are the spherical hankel functions of the second kind, [11].
m is the multipole order of each function, akd= 27/ is the
wavenumber. The type of hankel function chosen gives an out-
ward moving wave when associated with a positive frequeinoy t
piecee’?, the same convention used in [2].

An infinitesimally defined multipole of order. can always be
expressed exactly using an exterior expansion with ternis op
derm. For this reason an exterior expansion is alternativel\zedal
anexterior multipole expansioar just amultipole [14]. Another
term used isingular expansionsince the center of the expansion
has a singularity. The exterior expansion relates closeilye non-
uniform directivity of a source, as discussed below, andgna
shall be to manipulate it to provide an Ambisonic source dnco
ing. By multipole we shall mean an exterior expansion, wles
otherwise stated.

The remainder of this section reviews the exterior expansio
and introduces the conventions that will be used. We agaiptad
the N3D convention defined by (2). For convenience we define
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coefficients O, (k), by a general exterior expansion,

p(r k) =k i7" hn (k) Y Yiun (0,6)Omn (k) (12)

so that in the farfield wherg,,, (kr) tends toi™*e=%" /kr, the
field becomes

e*ikr

Pfar = ” (12)

> Y (0,8)Oman (k) .
The O, (k) coefficients then directly express the non-uniform
directivity in this regime, where locally the field tends to aut-
ward moving plane wave. In the tii&,.,, (k) coincide with theO-
formatencoding used previously for Ambisonic synthesis, [15, 9].

Z axis

The same name will be used here for the more general case de-

scribed by (11). We emphasize that this is just a convenfim,
convenience and appropriate to its context, in the samees&Ens
B-format is defined.

Omn (k) can be readily calculated from measurements of the
field on a sphere at any radiuutside the source region. Apply-
ing an integral over the spheré dQ Y,.,.(6, 6) to (11) gives

gt fdQ Y (0,8)p(r, k)
dmkhy, (kr) '

For a real object the field could be measured approximatety wi
pressure microphones placed located on a sphere a fixedadista
from the source. In the farfield where the field becomes planar
inwardly pointing directional mics are equally effectivieen the
appropriate equalization. For devices such as loudspedkat
convert electricity to sound linearly, the process can Inepki
fied by repeated response measurements with a single misthat
moved. Speaker simulations might for instance be usefuigh-h
end architectural simulations. When th,, (k) responses are
convolved with input signals for the speakers, the expansig-
nals are generated.

Omn(k) = (13)

4.2. Source approximation order and error

We consider now the order to which a source is approximated,
mmaz- We wish to minimize this subject to reconstruction error
constraints. A source can be arbitrarily small and stillehpower

up to any multipole order, for example using the explicit diefi
tion of infinitesimal multipoles. However this is unusualareal
acoustic source because opposed component sources amnot u
ally found very close together. Detailed error analysig][$hows
that for a more typical source, the relative error decreemsgislly
throughl atm,q.. ~ 277’ /A = kr’, wherer’ is the radius of the
source.

4.3. Multi-resolution sources

So far we have considered using single multipole expansibms
some cases a hybrid approach may be more appropriate, ilh whic
a source is represented using a several multipoles. Thecises-

Figure 12: Cross-section of a field plot for a 13th order feddfi
expansion, center &, of a monopole, centéd. Error contours
are shown at th&% and10% levels. The cross-section fis= 0.
x, z are cartesian coordinates in length units.

scheme of successive simplification resembles the mudtihgion
techniques common in computer graphics, [16].

5. AMBISONIC ENCODING OF MULTIPOLES

As we have seen, high-order Ambisonics is founded on th&dtde
or interior expansion, (1). Consider a field containing agken
monopole set away from the freefield expansion center. Bg). (1
can be recast as the freefield expansion for a monopole, mgfixi
r and instead varying’. The form of this expansion is then con-
sistent with Eq. (1), from which the values of tfi&,, (k) can be
read off, as shown in [2]. The condition of convergemée< r
now implies that the expansion convergeishin a circle that just
touches the monopole source.

Figure 12 shows a normalized field pl&e(p)/|p| for such
a monopole reconstructed to the 13th order, and set at andésta
2 from the expansion center. Outside this area the exparsian i
valid freefield, although no longer matches the source fi@lder-
all convergence behaviour within the valid region is like ather
freefield, although close to the monopole,< A, the order re-
quired to achieve a given error is increased compared to atbmo
freefield, as we would expect, [14]. The limit set to the regio
of freefield convergence by the source can not be exceedat by i
creasing the freefield order.

Higher multipole sources must also have freefield expagsion
about a displace origin, since they can be expressed as af$mm o
finitesimal monopoles. The freefield expansion is then waittin
a radius that does not include any of the source.

5.1. Multipole to freefield coefficient transformation

The main task in this section is to fif8)., (k) in the presence of

sary whenever we wish to find the field at a free space inside thea multipole described b®,. (k) at a given position. It would be

bounding sphere of an object, for example nearer to a tabiigcsu
than its length. Outside the total bounding sphere a singiki-m
pole is sufficient. As we move closer to some part of the source
more multipoles are neccessary. Far from the object cordpgare
its size the field can be approximated as a plane wave, using th
O-format coefficients to determine the direction dependeiibis

desirable to find a generalized closed form expression, raghéo
monopole case in [2]. However, it is not very apparent how thi
could be done or even if it would be the most practical method o
calculation. Instead a more pragmatic approach is adopétd-y
ing eventually a manageable integral expression. To bdgiar(d
(11) are equated. The notation is modified according to EigGr
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B - ~C

Figure 13: Vector notation

Z imjm(kT’B) z Ymn(eB7 5B)an(k)

(14)
=k Z iirﬂilhm(kro) Z Ymn(007 5O)Omn(k)

To isolate B (k) the operatorf dQ2p Y,/ (05, 05) is ap-
plied, withrg a freely chosen constant, afd, do andro are
functions of the vector s, yielding

Ari™ s (kr ) By s (k)

=D i "N " Oman(k)

m n (15)
/ dQB Ym’n/ (9}3, 5B)Ymn (90, 5o)hm(k‘7'o)
Relabeling indicesB.» (k) can be written as
an(k) = Z anm’n’ (k7 T)Om’n’ (k)7 (16)
where the filter matridxdZ,,, ..,/ s (k, 7) is
anm’n’ (k7 1")
B kifmfmlfl
AT jm(krE) (17)

/dQB Ymn(93,5B)Ym,n/(90,5o)hm/ (k?”o) .

Ther direction dependence in the matrix can be factored out by _ ki

transforming the component8,,, (k) and O, (k) so they are
relative tor. Figure 14 shows the relationship between the initial
coordinate axisz, and the vector;, connecting the centrds and

0. ¢ = w/2 — ¢ together withd specify a rotation mapping
ontor, written in components aB,,,/,,/, (6, ¢). The third degree
of freedom is unspecified, although it must be consistenerdh
fore R, (0, — @) transformsBi,., (k) andO,r (k) to find their
coordinates relative tp,

B;n/n’ (k) = z Rm/n'n(ev _¢)Bm/n(k) (18)

O;n’n’ (k) = z Rm/n'n(ev _¢)Om/n(k) (19)

Now Eq. (16) can be written with artdirection-independent
matrix, My nm/ns (K, 1),

B:nn(k) = Z M nm/ (kv T)O:n/n’ (k)7

m’/ ,n’/

(20)

where

Figure 14: Finding components relativerto

anm’n’ (k7 T‘)
kifmfm/fl

- A7 jm (kT B)

/dQB Ymn(957 6B)Ym’n’(007 5O)hm’(kTo)‘

(21)

The coordinates in the integral are now relative t@although they
haven’t been relabeled. The symmetry this brings, withinde-
pendent oflg = 0o, can be used to factor the integral into a prod-
uct of 6 and¢ integrals. To make this cleaf,.. (0, d) is factored
into

V2cosnf ifn>0
Yin (0,8) = P (sind) x { 1 ifn=0 (22)
V2sinnf ifn <0
where for convenience latef,.,, is defined,
Pon(siné) = [ (2m + 1)M P (sind)  (23)
(m+ [n[)t = ™"

and P, () is the associated Legendre polynomial. (21) becomes

anm’n’ (k7 T)

-—m—m'—1

47 (krE)

/déB cos 5Blf’mn(sin 5B)Pm/n/ (sin 80) b (ko) X 270,00

—_ —_ /_
Spmr ki ™mT™ L

2jm(krB)

+1 R R
/ dsgPmn($B) Prin (80)hm: (kT0) |

-1

(24)

wheresp = sindg andso = sindo. so andro can be found
fromr,rg andsp usingrgsg—roso =r.ro = rv1+ a? — 2asp
andso = r(asgp —1)/ro, wherea = rg/r. Settinga = .51111
ensures good numerical behaviour.

Eqg. (20) can now be simplified using,

Biun(K) = 37 2 Mot (k) Ol (B), (259)

m,n

where we define a simplified matrix coefficient with 3 indicather
than 4.



Proceedings of the 13 International Conference on Auditory Display, Montré@hnada, June 26 - 29, 2007

L dspP, P h
2m () /,1 b (o) nrn (50) e (0),

(26)

with » = k implicit. Clearly this is defined only fon < m and

n < m'. This means for a given source the number of filters in-

creases only linearly with B-format order required. The riger

coefficients are given in terms of one parameteil he actual filter

acting in (25) is scaled in frequency by the radiuand there is a

distance factoil /r. Putting this together with (18) gives,.... (k)

in terms ofOp.n (k),

Mo (k) =

Bun(k) = 3 Rt (0,6) 3 %an/m,(kr)
" ™ @27)
> " Ryt (0, —¢) O (K)

n!!

Note that an orientation rotation could be incorporated the first
rotation acting orO,,, .

5.2. Validation and properties

To provide an immediate confidence test that the derived derm
las are correct, a random test 5th order multipole was aoctsi,
shown in Figure 15, and compared with the 13th order freefield
expansion calculated using the matrix (27), shown in Fidufe
The error contours in Figure 16 at 10% and 1% levels are far dev
ations from the original multipole shown in Figure 15. Thgioa

of agreement extends as far as the center of the originaipolgt

as expected, and supports the derivations in this section.

z axis

Figure 15: Cross-section of a field plot for a 5th order molip
center alO. The cross-section &= 0. z, z are cartesian coordi-
nates in length units.

Next we examiné\,,, ... (kr) by checking that it is consistent
with previous results for the monopole case,[2], in which &m-
coded signal is given b, = S(k)Fm (kr)Ymn(6,0), where
Fr(kr) = i ™hm(kr)/ho(kr). To match the alignment used
to define M,/ (kr), 0 = § = w/2. We first note that the
source termS(k) includes the delay and distance attenuation so

that S(k) = etr Ooo(k). In order to isolate the part matching

T

Figure 16: Cross-section of a field plot for a 13th order feddfi
expansion, center &, of a multipole, cente®. Error contours are
shown at the % and10% levels. The cross-sectionfis= 0. z, z
are cartesian coordinates in length units.
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k
Figure 17: Amplitude response for

Mmoo(k:r)/(e*ik’"/7")/Ymo(07 w/2),m=1,2,3,4

F, (kr), we look at the adjusted value,
Minoo(kr) /(™" /1) /Yo (0,7/2) .

With » = 1, this produces the plots shown in Figure 17, match-
ing previous results, [2]. The general picture at highertipales

is that, with thee™**" /r piece factored out, the response is al-
ways minimum phase. For smailthe order of the filter becomes
m + m/, while for largek it is n. The transition occurs around
k = 2 corresponding tex 0.3 wavelength separation from the
source. M,,...» (kr) has symmetries which reduce the computa-
tional cost of using ithM,,,m: (k1) = Moy (k1) (=1)7 ™ =
M, —nm (k7). The first of these is useful for cross checking the
accuracy of value, since the integrals are different.

In [2] filters were commuted from the decoding stage to con-
trol the large amplitudes at low values of The situation at first
appears worse here because filters encoding high multipales
have much higher order for the same ordepf the B-format en-
coding. However, at the values bfwhere the filters grow large,
the size of the source object in wavelengths becomes snmal, a
a lower source order suffices to approximate it well, accaydo
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outside the source. This can then be converted to a corrected
planewave expansion and used to render binaural signadsfeal
nearfield locations. The processing of reverberant sigsafso
mentioned using related techniques.

We have not presented any tests applying our methods with
real HRTF data. This is clearly an important and complex,task
which we hope to address. Working with high quality persenal
ized HRTFs will be a key factor. With the on-going refinemeht o
virtual reality systems, the considerations presented hez ex-
pected to become increasingly relevant.

the discussion in Section 3 where a regular source is caeside
This means that low frequencies can be filtered out progregsi
from the higher orders of object encoding, so avoiding esiwes
gains. The filtering should be performed dynamically acicaydo
distance. The highest order retained,,.. is determined by the
highest frequencyf...., that is required to be accurately recon-
structed, as described in Section 3. For an accurately rembst!
field of sufficiently low frequency, a monopole suffices.

We do not investigate the implementation of the filter matrix
in detail here, but note that in general it will take a similamm
to that described for the monopole case, [2]. Because tleesfilt
are evaluated numerically, they must be converted to IIRfby
pole/zero fitting. Filter modification according to radiuancthen
achieved by scaling the poles and zeros in frequency.
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an(k) = Z 'r’,;ze'r’;}m’n/ (k7mB7mo)Om’n/(k) ) (28)

m/ n/

Secondly, we can transform the reverberant fiélg,, , to the field
based at another listener locatidsy,,,,, using a variant of the ma-
trix in (26),

Blun(k) = 3 Ruuns (0.6) 37 2 MEE o (kr) [9]
n’ m’ (29)

Z Rynininre (97 _¢) B (k) )
~ [10]

where

(11]

k‘m,fm +1 . . )
MEE (k) = FT / s Pon) Parn (o8 (r5)

B 2jm(r) J_1 (30)

The advantage of these methods is that we can efficientlyrgene
high quality reverberation, with controllable listenersgmn and

source orientation. [13]

6. CONCLUSION

The paper began by looking at how nearfield sources can be ren{14]
dered binaurally using only planewave HRTFs. An inherentc®

of error was found owing to the nature of the freefield harroni
expansion. This can be corrected at the expense of beingable [15]
use a single harmonic expansion to encode all nearfield ssuitc
is possible however to sum the corrected planewave expangio

give a single planewave expansion for all near sources tistt e [16]

outside the convex hull of the scattering envelope of theriier.
The paper continued by deriving a transformation law from
a multipole source to a freefield harmonic expansion at atpoin

Sabin, Advances in Multiresolution for Geometric Mod-
elling, Springer, 2005.



