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Abstract

Exterior expansions of complex sound sources are presented as

flexible objects for producing Ambisonic soundfield encodings. The

sources can be synthesized or recorded directly, rotated and positioned

in space. Related techniques can also be used to efficiently add high

quality reverberation depending on the orientation and location of the

source and listener.

1 Introduction

Real soundfields are frequently the result of sound from numerous sound
sources, each localized to a well defined region. Synthesizing these using
speaker-based and headphone-based approaches is a natural goal. Good re-
sults have been achieved for distant sources, which reach the listener as plane
waves. Distance perception can be simulated using distance filtering and re-
verberation balance. It is also possible in low-order Ambisonic systems,[1, 2],
to approximately synthesize a diffuse source at varying distance, [3, 4], which
can be useful in a creative setting. Soundfield synthesis of an object with
non-uniform directivity has been considered in the farfield using spherical
harmonic representation, [3, 4]. With the development of high-order acous-
tic field construction, the simulation of nearfield sources becomes feasible.
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Figure 1: Overall scheme. O denotes the extended source object, and B the
listener.

This has been developed for a monopole source in the context of high-order
Ambisonics by reconstructing a monopole field about the listener, [5]. Using
the wavefield approach,[6, 7], the directional properties of objects have been
encoded with filters that feed the speaker array directly, [8, 9].

A localized source typically differs in two respects from simple monopole
source. The sound radiates from a region of non-zero width, and the di-
rectivity of radiation is not uniform. Near to the object the soundfield will
be reactive, like a monopole’s, but possibly have a much more complex ge-
ometry. We should fully expect this added richness to be exploited by the
auditory system for its information content, and so to have perceptual signifi-
cance. Although this does not appear to have been studied in detail, informal
listening provides strong evidence of spatial perceptual variety amoung com-
plex objects. The study of directional objects using the wavefield approach
also supports the hypothesis. For both practical and creative applications it
would be desirable to find a way to accurately represent a complex source
and encode it into Ambisonic B-format. The conversion from source encod-
ing to Ambisonic encoding depends on the location and orientation desired
of the source. From a single source encoding, that source can be rendered
anywhere and in any orientation around the listener. Figure 1 illustrates this
scheme. The advantage of Ambisonic modularity is apparent here, in that
we seek a process that encodes into a format that is independent of the de-
tails of the rendering mechanism, whether it be a particular speaker array or
headphones. The wavefield approach lacks this intermediate stage, as well as
proving less accurate for given order in some studies [7]. Binaural rendering
of high-order Ambisonics, over headphones, including the nearfield, has been
considered, [10].

The article is organized as follows. First the source representation is
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discussed, followed by the main part, the development of a method to trans-
form a source encoding, with knowledge of its position and orientation, into
an Ambisonic encoding. Some simulations are provided for verification and
illustration. Finally we consider how the approach can be adapted for the
Ambisonic encoding of reverberation depending on source and listener posi-
tions and orientations.

2 Source Representation

We wish to use a representation which can encode any source to any desired
accuracy, relates well to direct measurements of the field, and can be manipu-
lated efficiently. The following possibilities suggest themselves. A source can
be modelled with several monopoles. This would be appropriate if it actually
has this structure, or because a rough and fast model is required. The source
can be positioned and orientated using standard cartesian transformations.
For more accuracy we can attempt to use many monopoles distributed over
the source volume or surfaces. It is far from obvious how this would be done
for a general source. Such a representation contains considerable redundancy
since it describes the structure of the object as well as the sound produced.

2.1 The exterior harmonic expansion

Multipoles in their original form consist of infinitesimal arrangements of
monopole sources. A multipole of sufficient order can represent a the field
around a given extended object arbitrarily well. Although they are operated
on by simple cartesian operations, their infinitesimal nature does not lend
itself to direct numerical manipulation. Also the relationship of multipole
parameters to the directionality of the field rapidly increase in complexity
with order. Closely related is the exterior expansion for the wave equation.
This has basis functions in the frequency domain using spherical coordinates,
hm(kr)Ymn(θ, δ), where hm(kr) are the spherical hankel functions of the sec-
ond kind, [11]. m is the multipole order of each function, and k = 2π/λ
is the wavenumber. The type of hankel function chosen gives an outward
moving wave when associated with a positive frequency time piece eiωt, the
same convention used in [5].

An infinitesimally defined multipole of order m can always be expressed
exactly using an exterior expansion with terms up to order m. For this reason
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an exterior expansion is alternatively called an exterior multipole expansion

or just a multipole, [12]. Another term used is singular expansion, since the
center of the expansion has a singularity. The exterior expansion relates
closely to the non-uniform directivity of a source, as discussed below, and
our principal goal shall be to manipulate it to provide an Ambisonic source
encoding. By multipole we shall mean an exterior expansion, unless otherwise
stated.

The remainder of this section reviews the exterior expansion and intro-
duces the conventions that will be used. In keeping with the high-order Am-
bisonic literature the real-valued N3D spherical harmonic set will be used
throughout, [13, 5]. The components are defined for m ≥ 0 and m ≥ n ≥ 0
by

Y σ
mn

(N3D)(θ, δ) =
√

2m + 1 P̃mn(sin δ) ×
{

cos nθ if σ = +1

sin nθ if σ = −1
(1)

P̃mn(sin δ) =

√

(2 − δ0,n)
(m − n)!

(m + n)!
Pmn(sin δ) (2)

For n = 0, σ only takes the value +1. θ here measures the angle around
the coordinate symmetry axis. π/2 − δ is the angle between the axis and
the coordinate direction, so that δ would normally be called the elevation, as
shown in Figure 2. The symmetry axis is normally called the z axis, which
is not neccessary, but aids labeling in diagrams.

We shall use a slightly simplified notation that removes σ by extending
n to negative values as used in more conventional harmonic sets,

Ymn =

{

Y +1
mn if n ≥ 0

Y −1
m|n| if n < 0 .

(3)

For convenience we define coefficients, Omn(k), by a general exterior ex-
pansion,

p(r, k) = k
∑

m

i−m−1hm(kr)
∑

n

Ymn(θ, δ)Omn(k) , (4)

so that in the farfield where hm(kr) tends to im+1e−ikr/kr, the field becomes
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Figure 2: Spherical coordinates used.

pfar =
e−ikr

r

∑

m,n

Ymn(θ, δ)Omn(k) . (5)

The Omn(k) coefficients then directly express the non-uniform directivity in
this regime, where locally the field tends to an outward moving plane wave.
The signals Omn(k) coincide with the O-format encoding used previously for
Ambisonic synthesis, [3, 4]. The same name will be used here for the more
general case described by (4). We emphasize that this is just a convention,
for convenience and appropriate to its context, in the same sense as B-format
is defined. Nothing essentially new is added.

Omn(k) can be readily calculated from measurements of the field on a
sphere at any radius r outside the source region. Applying an integral over
the sphere,

∫

dΩ Ymn(θ, δ) to (4) gives

Omn(k) =
im+1

∫

dΩ Ymn(θ, δ)p(r, k)

4πkhm(kr)
. (6)

Note hm(kr) does not have zeros for r > 0 so this is well defined at all r.
For a real object the field could be measured approximately with pressure
microphones placed located on a sphere a fixed distance from the source.
In the farfield where the field becomes planar, inwardly pointing directional
microphones are equally effective given the appropriate equalization including
phase. For devices such as loudspeakers that convert electricity to soundly,
the process can be simplified by repeated response measurements with a
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single microphone that is moved. Speaker simulations might for instance
be useful in high-end architectural simulations. When the Omn(k) responses
are convolved with input signals for the speakers, the expansion signals are
generated.

2.2 Source approximation order and error

We consider now the order to which a source is approximated, mmax. We
wish to minimize this subject to reconstruction error constraints. A source
can be arbitrarily small and still have power up to any multipole order, for
example using the explicit definition of infinitesimal multipoles. However
this is unusual in a real acoustic source because opposed component sources
are not usually found very close together. To gain insight into the more
usual case, we examine multipole fields for a source consisting of a monopole
offset from the expansion centre. A monopole source at position r

′ has the
following multipole expansion in r about the origin, valid for r > r′, [11],

e−ik|r−r′|

|r − r′| = ik
∞

∑

m=0

jm(kr′)hm(kr)
m

∑

n=−m

Ymn(θ′, δ′)Ymn(θ, δ) (7)

jm(kr′) is the spherical Bessel function of the first kind. The arrangement
is illustrated in Figure 3.

Note that in this special case, fixing r and varying r′ gives a valid field
expansion for the spherical region centered on the origin, that just excludes
the monopole. However, the field inside an extended source is not fully
determined by its exterior field.

Figures 4 and 5 show some cross-sectional plots of Re(p)/|p|, for different
orders and offset r′ = 2λ, where λ = 2π/k is the wavelength. Only one half
the plane is shown because the field is symmetric about the line from mul-
tipole to monopole. The nearfield resolves sharply as the order is increased.
For order mmax ≈ 2πr′/λ = kr′, the relative error compared with a real
monopole is < 1% for r > r′ + λ. Detailed error analysis of the multipole
approximation, [12], agree with these observations, and fast convergence is
cited as one of the key attributes of the spherical multipoles.

Rewriting for mmax that will ensure good reconstruction of a field from
a region of diameter d, up to frequency, fmax, we find mmax = πdfmax/c.
For example, frequencies up to 1500 Hz from an object 1 m width can be
approximated well with mmax = 14. If we do not require good construction
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Figure 3: Multipole representation of a monopole.

close to the limit r = r′, then the order can be reduced further. The farfield
accuracy is not of so much interest, since at all orders the farfield tends locally
to a plane wave. This can be conventionally encoded in Ambisonics using
Bmn = Ymn(θs, δs)p(k), where the direction is to the source and p(k) is the
pressure from the source measured at the listener. Increasing the multipole
order in this approximation can improve reconstruction in the farfield, but
not the nearfield.

For a general source with diameter d, we cannot expect to use a lower
order than the displaced monopole example for similar accuracy, because
it would be unusual that different parts of the object would cancel out at
higher orders. Conversely we wouldn’t expect higher orders to be required,
because that would require even more cancellation in order to make higher
orders relatively significant. In summary, the formula for mmax provides a
first estimate for the order required to represent the nearfield of a general
object, although this is not true across all possible sources.

2.3 Multi-resolution sources

So far single multipole expansions have been considered for each object. In
some cases a hybrid approach may be more appropriate, in which a source
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Figure 4: Multipole approximation, center O, of a displaced monopole, center
m, r′ = 2λ, mmax = 12. The cross-section is θ = 0. x, z are cartesian
coordinates in length units.

is represented using several multipoles. This is neccessary whenever we wish
to find the field at a free space inside the bounding sphere of an object, for
example nearer to a table surface than its length. Figure 6 illustrates this.

Outside a bounding sphere a single multipole is sufficient, by expanding
around the center of the sphere. As we move closer to some part of the
source more multipoles are neccessary. Far from the object compared to
its size the field can be approximated as a plane wave, using the O-format
coefficients to determine the direction dependence. This scheme of successive
simplification resembles the multi-resolution techniques common in computer
graphics, [14].
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Figure 5: Multipole approximation, center O, of a displaced monopole, center
m, r′ = 2λ, mmax = 16. The cross-section is θ = 0. x, z are cartesian
coordinates in length units.

O O O

B B

Figure 6: When the table sound comes from two sources (right), the listener,
B, can be closer.

3 Ambisonic encoding of multipoles

3.1 Freefield expansion

High-order Ambisonics is founded on the interior expansion that we shall
also call the freefield expansion here, to emphasize that it is used to describe
a sourceless region around the listener. Eq. (8) is the version of the expan-
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sion using N3D harmonics, Ymn(θ, δ), and defines the B-format coefficients,
Bmn(k), [5]. The expansion converges quickly on any source-free field, up
to a given radius r. The typical order required to achieve ≈ 1% error for a
regular freefield, such as a planewave, is mmax ≈ kr, [12, 15].

p(r, k) =
∑

m

imjm(kr)
∑

n

Ymn(θ, δ)Bmn(k) (8)

3.2 Monopole encoding

For fields containing sources it is still possible to create a freefield expansion,
however it is only valid within a region that does not contain any source.
Consider first a field containing a single monopole set away from the freefield
expansion center. Eq. (7) can be recast as the freefield expansion for a
monopole, by fixing r and instead varying r

′. The form of this expansion is
then consistent with Eq. (8), from which the values of the Bmn(k) can be
read off, as shown in [5]. The condition of convergence r

′ < r now implies
that the expansion converges within a circle that just touches the monopole
source. Figure 7 shows a field plot for such a monopole reconstructed to
the 13th order, and set at a distance 2λ from the expansion center. Outside
this area the expansion is a valid freefield, although no longer matches the
source field. Overall convergence behavior within the valid region is like any
other freefield, although close to the monopole, δ < λ, the order required
to achieve a given error is increased compared to a smooth freefield, as we
would expect, [12]. The limit set to the region of freefield convergence by the
source can not be exceeded by increasing the freefield order.

Higher multipole sources have similar freefield expansions, since they can
be generated as composites of infinitesimal monopoles. The convergence
condition is then that the freefield expansion is valid within a radius that
does not include any of the sources.

3.3 Multipole to freefield coefficient transformation

The main task in this section is to find Bmn(k) in the presence of a multipole
described by Omn(k) at a given position. It would be desirable to find a
generalized closed form expression, as for the monopole case in [5]. However,
it is not very apparent how this could be done or even if it would be the
most practical method of calculation, so instead a more pragmatic approach
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Figure 7: Cross-section of a field plot for a 13th order freefield expansion,
center at B, of a monopole, center O. Error contours are shown at the 1%
and 10% levels. The cross-section is θ = 0. x, z are cartesian coordinates in
length units.
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Figure 8: Vector notation

is adopted yielding eventually a manageable integral expression. To begin
(8) and (4) are equated. The notation is modified according to Figure 8,

∑

m

imjm(krB)
∑

n

Ymn(θB, δB)Bmn(k) = k
∑

m

i−m−1hm(krO)
∑

n

Ymn(θO, δO)Omn(k)

(9)
To isolate Bmn(k) the operator

∫

dΩB Ym′n′(θB, δB) is applied, with rB

a freely chosen constant, and θO, δO and rO are functions of the vector rB,
yielding

4πim
′

jm′(krB)Bm′n′(k) = k
∑

m

i−m−1
∑

n

Omn(k)

∫

dΩB Ym′n′(θB, δB)Ymn(θO, δO)hm(krO).

(10)
Relabeling indices, Bmn(k) can be written as

Bmn(k) =
∑

m′,n′

Mmnm′n′(k, r)Om′n′(k), (11)

where the filter matrix Mmnm′n′(k, r) is

Mmnm′n′(k, r) =
ki−m−m′−1

4πjm(krB)

∫

dΩB Ymn(θB, δB)Ym′n′(θO, δO)hm′(krO). (12)

The term jm(krB) in the denominator has zeros for krB at approximately
regular intervals with period π. However, (12) is well defined, because the
zeros can be shifted by changing the free parameter α = rB/r. We return to
this later. The r direction dependence in the matrix can be factored out by
transforming the components Bmn(k) and Omn(k) so they are relative to r.
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Figure 9: Finding components relative to r

Figure 9 shows the relationship between the initial coordinate axis, ẑ, and
the vector, r, connecting the centres B and O. φ = π/2 − δ together with θ
specify a rotation mapping ẑ onto r, written in components as Rm′n′n(θ, φ).
The third degree of freedom is unspecified, although it must be consistent.
Therefore Rm′n′n(θ,−φ) transforms Bmn(k) and Omn(k) to find their coordi-
nates relative to r,

B′
m′n′(k) =

∑

n

Rm′n′n(θ,−φ)Bm′n(k) (13)

O′
m′n′(k) =

∑

n

Rm′n′n(θ,−φ)Om′n(k) (14)

Now Eq. (11) can be written with an r-direction-independent matrix,
Mmnm′n′(k, r),

B′
mn(k) =

∑

m′,n′

Mmnm′n′(k, r)O′
m′n′(k), (15)

where

Mmnm′n′(k, r) =
ki−m−m′−1

4πjm(krB)

∫

dΩB Ymn(θB, δB)Ym′n′(θO, δO)hm′(krO). (16)

The coordinates in the integral are now relative to r, although they haven’t
been relabeled. The symmetry this brings, with rO independent of θB = θO,
can be used to factor the integral into a product of θ and δ integrals. To
make this clear Ymn(θ, δ) is factored into
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Ymn(θ, δ) = P̂mn(sin δ) ×











√
2 cos nθ if n > 0

1 if n = 0√
2 sin nθ if n < 0

(17)

where for convenience later, P̂mn is defined,

P̂mn(sin δ) =

√

(2m + 1)
(m − |n|)!
(m + |n|)! Pm|n|(sin δ) (18)

and Pmn(x) is the associated Legendre polynomial. (16) becomes

Mmnm′n′(k, r) =
ki−m−m′−1

4πjm(krB)

∫

dδB cos δBP̂mn(sin δB)P̂m′n′(sin δO)hm′(krO) × 2πδnn′

=
δnn′ki−m−m′−1

2jm(krB)

∫ +1

−1

dsBP̂mn(sB)P̂m′n′(sO)hm′(krO), (19)

where sB = sin δB and sO = sin δO. sO and rO can be found from r, rB and
sB using rBsB − rOsO = r. rO = r

√
1 + α2 − 2αsB and sO = r(αsB − 1)/rO,

where α = rB/r. The term δnn′ in Eq. (19) allows a simplified 3-index
coefficient matrix to be defined, which can be further simplified by factoring
out a term 1/r and re-expressing the remainder in terms of the product kr.
The implication is that each digital filter derived can be varied according to
distance, r, by frequency scaling by r.

Eq. (15) can now be rewritten,

B′
mn(k) =

∑

m,n

1

r
Mmnm′(kr)O′

m′n(k), (20)

where the new 3-index matrix coefficient is,

Mmnm′(k) =
ki−m−m′−1

2jm(kB)

∫ +1

−1

dsBP̂mn(sB)P̂m′n(sO)hm′(kO), (21)

and kB = αk and kO = k
√

1 + α2 − 2αsB. Clearly this is defined only for
n < m and n < m′, so for a given source the number of filters increases only
linearly with B-format order required. The new filter coefficients are given
in terms of one parameter, k. The actual filter acting in (20) is scaled in
frequency by the radius r and there is a distance factor 1/r.
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Choosing α = m/k keeps jm(kB) close to its first maximum, avoiding the
zeros. For small k, α is limited < 1, otherwise the integral fails. This does
not reintroduce a zero. For m = 0, α = 1/k is used. With the MATLAB
integrator the coefficients can be evaluated to 4 significant figures for coef-
ficient magnitudes between 10000 and 0.0001 over indices up to m, m′ = 30
and up to k = 10000. The accuracy of each coefficient can be checked by
using multiple values of α, and using the symmetry described later. Small k
coefficients are also discussed below. At this stage the accuracy is sufficient
to prove the scheme, and create prototype filters. Alternative methods of
calculation might prove to be valuable, especially for large k in some cases,
although the asymptotic behaviour in this region is quite predictable.

Combining (20) and (21) with (13) gives a new expression of Bmn(k) in
terms of Omn(k),

Bmn(k) =
∑

n′

Rmnn′(θ, φ)
∑

m′

1

r
Mmn′m′(kr)

∑

n′′

Rm′n′n′′(θ,−φ) Om′n′′(k)

(22)
An orientation rotation could be included into the first rotation acting on
Omn. With rotations included, the number of filters required for reconstruct-
ing the field from a given source is still linear in the maximum B-format
order, mmax, for mmax > m′, owing to zeros in Mmn′m′(kr).

3.4 Validation and properties

To provide an immediate confidence test that the derived formulas are cor-
rect, a random test 5th order multipole was constructed, shown in Figure 10,
and compared with the 13th order freefield expansion calculated using the
matrix (22), shown in Figure 11. The error contours in Figure 11 at 10% and
1% levels are for deviations from the original multipole shown in Figure 10.
The region of agreement extends as far as the center of the original multipole,
as expected, and indicates that the calculations described in this section are
correct.

Next we examine Mmnm′(kr) by checking that it is consistent with previ-
ous results for the monopole case,[5], in which the encoded signal is given by
Bmn = S(k)Fm(kr)Ymn(θ, δ), where Fm(kr) = i−mhm(kr)/h0(kr). To match
the alignment used to define Mmnm′(kr), θ = δ = π/2. We first note that
the source term S(k) includes the delay and distance attenuation so that
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Figure 10: Cross-section of a field plot for a 5th order multipole, center at
O. The cross-section is θ = 0. x, z are cartesian coordinates in length units.

S(k) = eikr

r
O00(k). In order to isolate the part matching Fm(kr), we look

at the adjusted value, (1/r)Mm00(kr)/(e−ikr/r)/Ym0(0, π/2). With r = 1,
this produces the plots shown in Figure 12, matching previous results, [5].
Further plots reveal how M extends to encode higher multipoles. Figure 13
is an example showing the amplitude response for M211(k)/e−ik along with
kM211(k)/e−ik to make clear the large k behavior clear. Figure 14 shows the
corresponding phase response. Another example, with n = 2, is shown in
Figures 15 and 16. The general picture is that with the e−ikr/r piece factored
out, the response is always minimum phase. For small k the order of the filter
becomes m + m′, while for large k it is n. The location of the transitional
region increases linearly with m + m′ from k ≈ 2 for m + m′ = 1. For higher
orders, the transitional region can be more complex.

3.4.1 Symmetries

Mmnm′(k) has symmetries, that reduce the number of filters that are needed.
Mmnm′(k) = Mm−nm′(k) = Mm′nm(k)(−1)m+m′

. The last is useful for cross
checking the numerical accuracy of a value, since the two symmetric integrals
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Figure 11: Cross-section of a field plot for a 13th order freefield expansion,
center at B, of a multipole, center O. Error contours are shown at the 1%
and 10% levels. The cross-section is θ = 0. x, z are cartesian coordinates in
length units.
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Figure 12: Amplitude response for Mm00(k)/e−ik/Ym0(0, π/2), m = 1, 2, 3, 4
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Figure 13: Amplitude response for M211(k)/e−ik and kM211(k)/e−ik
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Figure 14: Phase response for M211(k)/e−ik

involve distinct calculations.

3.4.2 Small k and convergence

In [5] filters were commuted from speaker-array decoding to control the large
amplitudes generated in monopole encoding at low values of k. The situation
at first appears worse here because filters encoding high multipoles can have
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Figure 15: Amplitude response for M223(k)/e−ik and k2M223(k)/e−ik
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Figure 16: Phase response for M223(k)/e−ik

much higher order at low k, for the same order m of the B-format encoding.
It has already been noted in section 3.1 that the freefield expansion typically
converges rapidly at m ≈ rk. Convergence to a multipole field is not as good
close to the multipole, as we would expect, and depends on the complexity of
the multipole. This is evident in figures 7 and 11, where rk = 22π ≈ 13, and
mmax = 13. For m+m′ < rk we find that the size of transfer coefficients are
. 10 for all m, m′ up to the maximum of 30 tested. From section 2.2 an object

19



which requires up to order mo has typical radius ro where rok ≈ mo. This
suggests the freefield can be converged well up to the surface of the object
using coefficients that have not become large, since mr = rk−mo = (r−ro)k,
see figure 17. For rk < m + m′ the corresponding transfer coefficient is
then no longer significant in the reconstructed field. The implication for
digital filter design, is that the responses for k < m + m′ can be limited
above to make the filters stable, without significantly affecting reconstruction
accuracy. In [16] a similar conclusion was reached for the monopole case. For
rk < 1, the proximity effect becomes significant. This is the low frequency
boost of directional microphones and hearing. The dominant contribution
comes from the m = 1, m′ = 0 component, so this filter should be extended
sufficiently to cover the range of boost required. Small sources, that can
be approached closely, are typically much weaker sources of low frequencies.
Also, the listener’s ears will not normally be less than a few cms to the source,
and then this is only practical using a binaural rendering system. More
investigation is needed on the convergence properties of freefield multipole
reconstruction, although current results indicate that the scheme presented
here is workable.

B

ro
r

O

Figure 17: Listener convergence region, B, limited by source object region,
O.

3.4.3 Digital filters

The implementation of the digital filters is not investigated in detail here,
but note that in general it will take a similar form to that described for the
monopole case, [5]. Because the filters are evaluated numerically, they must
be converted to IIR form by pole/zero fitting. Variation according to object
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distance can then achieved by frequency scaling the poles and zeros. From
the previous section, it is not required to evaluate (21) for small k, where the
numerical behavior eventually breaks down. The filters for higher values of
m, n, m′ in M(m, n, m′) will be more costly. This will increase the linear rise
in overall cost with mmax mentioned earlier.

4 Reverberation encoding and transformation

This article has focused on the synthesis of the direct signal from complex
objects in the nearfield. Related techniques can be applied to the synthesis
of a reverberant signal originating from a complex source.

4.1 Encoding source directivity in reverberation

Conventional room responses are mono to mono, or mono to multichannel,
where multichannel could include B-format. This means that the reverberant
sound from a source is the same no matter how it is oriented, where as real
reverberation can vary considerably. Using a harmonic matrix of the form
Eq. (12) it is possible, because of linear supposition, to fully encode the
reverberant response to source directivity, for a given pair of source and
listener positions. For a source described by Om′n′(k) and a listening field by
Bmn(k),

Bmn(k) =
∑

m′,n′

M rev
mnm′n′(k, xB, xO)Om′n′(k) , (23)

where xB and xO are the position vectors of the listener and source. The
M rev

mnm′n′ could be measured in a real space using directional sources and direc-
tional microphones, measuring the response on each microphone component
for each source component. There are many ways this could be achieved,
but in any case the directional components must be able to cover the desired
order of spherical harmonic resolution. The order of the source components
is not so important compared to the order of the microphones, since the
latter must support the spatial resolution in the listener’s hearing. A small
source order increase is expected to deliver a considerable advantage over the
conventional zero order source. The encoding of source directivity could be
particularly valuable in an interactive application where the listener controls
the orientation of a sound source, and so can probe the surrounding acoustic.
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M rev
mnm′n′ could also be calculated offline by applying the source-microphone

technique to simulations using ray-tracing or other models.

4.2 Transforming reverberation with listening position

A modified matrix technique can be used to transform reverberation accord-
ing to a change of listening position. This allows a single M rev

mnm′n′ to be used
for a range of listener positions, by transforming Bmn from Eq. (23) to the
reverberant signal at the new position, B′

mn(k). In [17] there is a partial
description of this method. The first pressure or zero-order component of
the reverberant signal is found everywhere in a room using a single expan-
sion. Here we present the full high-order encoding of reverberation about
any point. Reworking the previous calculations leading to Eq. (21) produces
the following result in terms of a new matrix MBB

mnm′ ,

B′
mn(k) =

∑

n′

Rmnn′(θ, φ)
∑

m′

1

r
MBB

mn′m′(kr)
∑

n′′

Rm′n′n′′(θ,−φ) Bm′n′′(k) ,

(24)
where

MBB
mnm′(k) =

kim
′−m

2jm(kB′)

∫ +1

−1

dsBP̂mn(sB′)P̂m′n(sB)jm′(kB) , (25)

with kB′ , sB′ , kB and sB replacing kB, sB, kO and sO respectively. To verify
this, a random 12th order field Bmn has been synthesized, shown in Figure
18, and transformed using Eq. (24) to an 18th order field B′

mn centered
at a distance 2λ from Bmn, shown in Figure 19. The error contours show
clear agreement which extends beyond the center of Bmn to a radius r where
kr ≈ mmax = 18, as expected. As noted previously, when transforming a
multipole source it is not possible to extend beyond the original center in
this way.

This technique can reproduce high definition spatialized reverberation
more efficiently than by direct simulation with ray tracing and similar meth-
ods, since the computational complexity is limited by the reconstruction
order and not the complexity of the simulation.
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Figure 18: Cross-section of a field plot for a 12th order freefield harmonic
expansion, center at B. The cross-section is θ = 0. x, z are cartesian coordi-
nates in length units.

5 Conclusion

A method has been presented for encoding a general acoustic source, and
transcoding it to a high-order Ambisonic signal, dependent on source orien-
tation, and position relative to the listener. The method also lends itself to
the direct measurement of real sources using an array of surrounding micro-
phones. The approach is considerably more elaborate and costly than plane
wave or monopole synthesis, however it is expected that in the context of
complex sources displayed with a high-quality rendering system, the efforts
are worthwhile. Binaural headphone reproduction is particularly attractive,
because the encoding only needs to be of sufficient order for a single listener
rather than a listening area, so reducing computational costs. For instance
for radius 0.2 m, up to 1500 Hz, the required order, m = rk ≈ 6. In a
speaker rendering environment the valid listening region is necessarily fixed
to accommodate multiple listeners. This places constraints on how nearfield
sources can be arranged relative to the listener, so for example it is impos-
sible for a listener to experience near sources directly on the left and the
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Figure 19: Cross-section of a field plot for a 18th order freefield expansion,
center at B’, of a freefield, center B shown in Figure 18. Error contours
are shown at the 1% and 10% levels. The cross-section is θ = 0. x, z are
cartesian coordinates in length units.

right sides while also having a large listening area that can hold multiple
listeners. Binaural reproduction does not suffer this constraint, and so is the
more natural method for nearfield rendering. A possible exception would
be a small speaker array designed for one person. Related results have also
been presented for the generation and transformation of reverberation. In
the future we hope to investigate realizations of these methods.
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