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Abstract

We show how exterior expansions of complex sound sources are
flexible objects for producing Ambisonic soundfield encodings. The
sources can be synthesized or recorded directly, rotated and positioned
in space. Related techniques can also be used to efficiently add high
quality reverberation depending on the orientation and location of the
source and listener.

1 Introduction

Real soundfields are frequently the result of sound from numerous sound
sources, each localized to a well defined region. Synthesizing these using
speaker-based and binaural approaches is a natural goal. Good results have
been achieved for distant sources, which reach the listener as plane waves.
Distance perception can be simulated using distance filtering and reverber-
ation balance. It is also possible in low-order Ambisonic systems,[1, 2], to
approximately synthesize a diffuse source at varying distance, [3, 4], which
can be useful in a creative setting. Soundfield synthesis of an object with
non-uniform directivity has been considered in the farfield using spherical
harmonic representation, [3, 4]. With the development of high-order acous-
tic field construction, the simulation of nearfield sources becomes feasible.
This has been developed for a monopole source in the context of high-order
Ambisonics by reconstructing a monopole field about the listener, [5]. Using
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Figure 1: Overall scheme. O denotes the extended source object, and B the
listener.

the wavefield approach,[6, 7], the directional properties of objects have been
encoded with filters that feed the speaker array directly, [8, 9].

A localized source typically differs in two respects from simple monopole
source. The sound radiates from a region of non-zero width, and the di-
rectivity of radiation is not uniform. Near to the object the soundfield will
be reactive, like a monopole’s, but possibly have a much more complex ge-
ometry. We should fully expect this added richness to be exploited by the
auditory system for its information content, and so to have perceptual signifi-
cance. Although this does not appear to have been studied in detail, informal
listening provides strong evidence of spatial perceptual variety amoung com-
plex objects. The study of directional objects using the wavefield approach
also supports the hypothesis. For both practical and creative applications it
would be desirable to find a way to accurately represent a complex source and
encode it into Ambisonic B-format. The conversion from source encoding to
Ambisonic encoding depends on the location and orientation desired of the
source. From a single source encoding, that source can be rendered anywhere
and in any orientation around the listener. Figure 1 illustrates this scheme.
The advantage of Ambisonic modularity is apparent here, in that we seek
a process that encodes into a format that is independent of the rendering
mechanism, whether it be a particular speaker array or headphones.1 The
wavefield approach lacks this intermediate stage.

The article is organized as follows. First the source representation is
discussed, followed by the main part, the development of a method to trans-
form a source encoding, with knowledge of its position and orientation, into

1See [10] for recent related work by the authors concerning the rendering of Ambisonic
material onto headphones
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an Ambisonic encoding. Some simulations are provided for verification and
illustration. Finally we consider how the approach can be adapted for the
Ambisonic encoding of reverberation depending on source and listener posi-
tions and orientations.

2 Source Representation

We wish to use a representation which can encode any source to any desired
accuracy, relates well to direct observations of the field, and can be manipu-
lated efficiently. The following possibilities suggest themselves. A source can
be modelled with several monopoles. This would be appropriate if it actually
has this structure, or because a rough and fast model is required. The source
can be positioned and orientated using standard cartesian transformations.
For more accuracy we can attempt to use many monopoles distributed over
the source volume or surfaces. It is far from obvious how this would be done
for a general source. Such a representation contains considerable redundancy
since it describes the structure of the object as well as the sound produced.

2.1 The exterior harmonic expansion

Multipoles in their original form consist of infinitesimal arrangements of
monopole sources. A multipole of sufficient order can represent a given field
around an object arbitrarily well. Although they are operated on by simple
cartesian operations, their infinitesimal nature does not lend itself to direct
numerical manipulation. Also the relationship of multipole parameters to the
directionality of the field rapidly increase in complexity with order. Closely
related is the exterior expansion for the wave equation. This has basis func-
tions in the frequency domain using spherical coordinates, hm(kr)Ymn(θ, δ),
where hm(kr) are the spherical hankel functions of the second kind, [11]. m
is the multipole order of each function, and k = 2π/λ is the wavenumber.
The type of hankel function chosen gives an outward moving wave when as-
sociated with a positive frequency time piece eiωt, the same convention used
in [5].

An infinitesimally defined multipole of order m can always be expressed
exactly using an exterior expansion with terms up to order m. For this reason
an exterior expansion is alternatively called an exterior multipole expansion

or just a multipole, [12]. Another term used is singular expansion, since the
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Figure 2: Spherical coordinates used.

center of the expansion has a singularity. The exterior expansion relates
closely to the non-uniform directivity of a source, as discussed below, and
our principal goal shall be to manipulate it to provide an Ambisonic source
encoding. By multipole we shall mean an exterior expansion, unless otherwise
stated.

The remainder of this section reviews the exterior expansion and intro-
duces the conventions that will be used. In keeping with the high-order Am-
bisonic literature the real-valued N3D spherical harmonic set will be used
throughout, [13, 5]. The components are defined for m ≥ 0 and m ≥ n ≥ 0
by

Y σ
mn

(N3D)(θ, δ) =
√

2m + 1 P̃mn(sin δ) ×
{

cos nθ if σ = +1

sin nθ if σ = −1
(1)

P̃mn(sin δ) =

√

(2 − δ0,n)
(m − n)!

(m + n)!
Pmn(sin δ) (2)

For n = 0, σ only takes the value +1. θ here measures the angle around
the coordinate symmetry axis. π/2 − δ is the angle between the axis and
the coordinate direction, so that δ would normally be called the elevation, as
shown in Figure 2. The symmetry axis is normally called the z axis, which
is not neccessary, but aids labeling in diagrams.

We shall use a slightly simplified notation that removes σ by extending
n to negative values as used in more conventional harmonic sets,
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Ymn =

{

Y +1
mn if n ≥ 0

Y −1
m|n| if n < 0 .

(3)

For convenience we define coefficients, Omn(k), by a general exterior ex-
pansion,

p(r, k) = k
∑

m

i−m−1hm(kr)
∑

n

Ymn(θ, δ)Omn(k) , (4)

so that in the farfield where hm(kr) tends to im+1e−ikr/kr, the field be-
comes

pfar =
e−ikr

r

∑

m,n

Ymn(θ, δ)Omn(k) . (5)

The Omn(k) coefficients then directly express the non-uniform directivity
in this regime, where locally the field tends to an outward moving plane wave.
In the the Omn(k) coincide with the O-format encoding used previously for
Ambisonic synthesis, [3, 4]. The same name will be used here for the more
general case described by (4). We emphasize that this is just a convention,
for convenience and appropriate to its context, in the same sense as B-format
is defined. Nothing essentially new is added.

Omn(k) can be readily calculated from measurements of the field on a
sphere at any radius r outside the source region. Applying an integral over
the sphere,

∫

dΩ Ymn(θ, δ) to (4) gives

Omn(k) =
im+1

∫

dΩ Ymn(θ, δ)p(r, k)

4πkhm(kr)
. (6)

For a real object the field could be measured approximately with pressure
microphones placed located on a sphere a fixed distance from the source. In
the farfield where the field becomes planar, inwardly pointing directional mics
are equally effective given the appropriate equalization including phase. For
devices such as loudspeakers that convert electricity to sound linearly, the
process can be simplified by repeated response measurements with a single
mic that is moved. Speaker simulations might for instance be useful in high-
end architectural simulations. When the Omn(k) responses are convolved
with input signals for the speakers, the expansion signals are generated.
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Figure 3: Multipole representation of a monopole.

2.2 Source approximation order and error

We consider now the order to which a source is approximated, mmax. We
wish to minimize this subject to reconstruction error constraints. A source
can be arbitrarily small and still have power up to any multipole order, for
example using the explicit definition of infinitesimal multipoles. However
this is unusual in a real acoustic source because opposed component sources
are not usually found very close together. To gain insight into the more
usual case, we examine multipole fields for a source consisting of a monopole
offset from the expansion centre. A monopole source at position r

′ has the
following multipole expansion in r about the origin, valid for r > r′, [11],

e−ik|r−r′|

|r − r′| = ik
∞

∑

m=0

jm(kr′)hm(kr)
m

∑

n=−m

Ymn(θ′, δ′)Ymn(θ, δ) (7)

jm(kr′) is the spherical Bessel function of the first kind. The arrangement
is illustrated in Figure 3.

Figures 4 and 5 show some cross-sectional plots of Re(p)/|p|, for different
orders and offset r′ = 2λ, where λ = 2π/k is the wavelength. Only one half
the plane is shown because the field is symmetric about the line from mul-
tipole to monopole. The nearfield resolves sharply as the order is increased.
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For order mmax ≈ 2πr′/λ = kr′, the relative error compared with a real
monopole is < 1% for r > r′ + λ. Detailed error analysis of the multipole
approximation, [12], agree with these observations, and fast convergence is
cited as one of the key attributes of the spherical multipoles.

−3 −2 −1 0 1 2 3

3

2

1

0 z axis

kz/2π

kx/2π

O m

Figure 4: Multipole approximation, center O, of a displaced monopole, center
m, r′ = 2λ, mmax = 12. The cross-section is θ = 0. x, z are cartesian
coordinates in length units.

Rewriting for mmax that will ensure good reconstruction of a field from
a region of diameter d, up to frequency, fmax, we find mmax = πdfmax/c.
For example, frequencies up to 1500 Hz from an object 1 m width can be
approximated well with mmax = 14. If we do not require good construction
close to the limit r = r′, then the order can be reduced further. The farfield
accuracy is not of so much interest, since at all orders the farfield tends locally
to a plane wave. This can be conventionally encoded in Ambisonics using
Bmn = Ymn(θs, δs)p(k), where the direction is to the source and p(k) is the
pressure from the source measured at the listener. Increasing the multipole
order in this approximation can provide good reconstruction in the farfield,
but not the nearfield.

For a general source with diameter d, we cannot expect to use a lower
order than the displaced monopole example for similar accuracy, because
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Figure 5: Multipole approximation, center O, of a displaced monopole, center
m, r′ = 2λ, mmax = 16. The cross-section is θ = 0. x, z are cartesian
coordinates in length units.

it would be unusual that different parts of the object would cancel out at
higher orders. Conversely we wouldn’t expect higher orders to be required,
because that would require even more cancellation in order to make higher
orders relatively significant. In summary, the formula for mmax provides a
first estimate for the order required to represent the nearfield of a general
object, although this is not true across all possible sources.

2.3 Multi-resolution sources

So far we have considered using single multipole expansions. In some cases a
hybrid approach may be more appropriate, in which a source is represented
using a several multipoles. This is neccessary whenever we wish to find the
field at a free space inside the bounding sphere of an object, for example
nearer to a table surface than its length. Outside the total bounding sphere
a single multipole is sufficient. As we move closer to some part of the source
more multipoles are neccessary. Far from the object compared to its size the
field can be approximated as a plane wave, using the O-format coefficients to
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determine the direction dependence. This scheme of successive simplification
resembles the multi-resolution techniques common in computer graphics, [14].

3 Ambisonic encoding of multipoles

High-order Ambisonics is founded on the interior expansion that we shall
also call the freefield expansion here, to emphasize that it is used to describe
a sourceless region around the listener. Eq. (8) is the version of the expan-
sion using N3D harmonics, Ymn(θ, δ), and defines the B-format coefficents,
Bmn(k), [5]. The expansion converges quickly on any source-free field, upto
a given radius r. The typical order required to achieve 1% convergence is
mmax ≈ kr, [12].

p(r, k) =
∑

m

imjm(kr)
∑

n

Ymn(θ, δ)Bmn(k) (8)

3.1 Monopole encoding

For fields containing sources it is still possible to create a freefield expan-
sion, however is only valid within a region that does not contain any source.
Consider first a field containing a single monopole set away from the freefield
expansion center. Eq. (7) can be recast as the freefield expansion for a
monopole, by fixing r and instead varying r

′. The form of this expansion is
then consistent with Eq. (8), from which the values of the Bmn(k) can be
read off, as shown in [5]. The condition of convergence r

′ < r now implies
that the expansion converges within a circle that just touches the monopole
source. Figure 6 shows a field plot for such a monopole reconstructed to the
13th order, and set at a distance 2λ from the expansion center. Outside this
area the expansion is a valid freefield, although no longer matches the source
field. Overall convergence behaviour within the valid region is like any other
freefield, although close to the monopole, δ < λ, the order required to achieve
a given error is increased compared to a smooth freefield, as we would expect,
[12]. The limit set to the region of freefield convergence by the source can
not be exceeded by increasing the freefield order.

Higher multipole sources have similar freefield expansions, since they can
be generated as composites of infinitesimal monopoles. The convergence
condition is then that the freefield expansion is valid within a radius that
does not include any of the source.
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Figure 6: Cross-section of a field plot for a 13th order freefield expansion,
center at B, of a monopole, center O. Error contours are shown at the 1%
and 10% levels. The cross-section is θ = 0. x, z are cartesian coordinates in
length units.
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Figure 7: Vector notation

3.2 Multipole to freefield coefficient transformation

The main task in this section is to find Bmn(k) in the presence of a multipole
described by Omn(k) at a given position. It would be desirable to find a
generalized closed form expression, as for the monopole case in [5]. However,
it is not very apparent how this could be done or even if it would be the
most practical method of calculation, so instead a more pragmatic approach
is adopted yielding eventually a manageable integral expression. To begin
(8) and (4) are equated. The notation is modified according to Figure 7,

∑

m

imjm(krB)
∑

n

Ymn(θB, δB)Bmn(k) = k
∑

m

i−m−1hm(krO)
∑

n

Ymn(θO, δO)Omn(k)

(9)
To isolate Bmn(k) the operator

∫

dΩB Ym′n′(θB, δB) is applied, with rB

a freely chosen constant, and θO, δO and rO are functions of the vector rB,
yielding

4πim
′

jm′(krB)Bm′n′(k) = k
∑

m

i−m−1
∑

n

Omn(k)

∫

dΩB Ym′n′(θB, δB)Ymn(θO, δO)hm(krO).

(10)
Relabeling indices, Bmn(k) can be written as

Bmn(k) =
∑

m′,n′

Mmnm′n′(k, r)Om′n′(k), (11)

where the filter matrix Mmnm′n′(k, r) is

Mmnm′n′(k, r) =
ki−m−m′−1

4πjm(krB)

∫

dΩB Ymn(θB, δB)Ym′n′(θO, δO)hm′(krO). (12)
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Figure 8: Finding components relative to r

The r direction dependence in the matrix can be factored out by trans-
forming the components Bmn(k) and Omn(k) so they are relative to r. Figure
8 shows the relationship between the initial coordinate axis, ẑ, and the vec-
tor, r, connecting the centres B and O. φ = π/2− δ together with θ specify
a rotation mapping ẑ onto r, written in components as Rm′n′n(θ, φ). The
third degree of freedom is unspecified, although it must be consistent. There-
fore Rm′n′n(θ,−φ) transforms Bmn(k) and Omn(k) to find their coordinates
relative to r,

B′
m′n′(k) =

∑

n

Rm′n′n(θ,−φ)Bm′n(k) (13)

O′
m′n′(k) =

∑

n

Rm′n′n(θ,−φ)Om′n(k) (14)

Now Eq. (11) can be written with an r-direction-independent matrix,
Mmnm′n′(k, r),

B′
mn(k) =

∑

m′,n′

Mmnm′n′(k, r)O′
m′n′(k), (15)

where

Mmnm′n′(k, r) =
ki−m−m′−1

4πjm(krB)

∫

dΩB Ymn(θB, δB)Ym′n′(θO, δO)hm′(krO). (16)

The coordinates in the integral are now relative to r, although they
haven’t been relabeled. The symmetry this brings, with rO independent
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of θB = θO, can be used to factor the integral into a product of θ and δ
integrals. To make this clear Ymn(θ, δ) is factored into

Ymn(θ, δ) = P̂mn(sin δ) ×











√
2 cos nθ if n > 0

1 if n = 0√
2 sin nθ if n < 0

(17)

where for convenience later, P̂mn is defined,

P̂mn(sin δ) =

√

(2m + 1)
(m − |n|)!
(m + |n|)! Pm|n|(sin δ) (18)

and Pmn(x) is the associated Legendre polynomial. (16) becomes

Mmnm′n′(k, r) =
ki−m−m′−1

4πjm(krB)

∫

dδB cos δBP̂mn(sin δB)P̂m′n′(sin δO)hm′(krO) × 2πδnn′

=
δnn′ki−m−m′−1

2jm(krB)

∫ +1

−1

dsBP̂mn(sB)P̂m′n′(sO)hm′(krO), (19)

where sB = sin δB and sO = sin δO. sO and rO can be found from r, rB and
sB using rBsB − rOsO = r. rO = r

√
1 + α2 − 2αsB and sO = r(αsB − 1)/rO,

where α = rB/r. Setting α = .51111 ensures good numerical behaviour.
Eq. (15) can now be simplified using,

B′
mn(k) =

∑

m,n

1

r
Mmnm′(kr)O′

m′n(k), (20)

where we define a simplified matrix coefficient with 3 indices rather than
4.

Mmnm′(k) =
ki−m−m′−1

2jm(rB)

∫ +1

−1

dsBP̂mn(sB)P̂m′n(sO)hm′(rO), (21)

with r = k implicit. Clearly this is defined only for n < m and n < m′.
This means for a given source the number of filters increases only linearly
with B-format order required. The new filter coefficients are given in terms
of one parameter, k. The actual filter acting in (20) is scaled in frequency by
the radius r and there is a distance factor 1/r. Putting this together with
(13) gives Bmn(k) in terms of Omn(k),
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Bmn(k) =
∑

n′

Rmnn′(θ, φ)
∑

m′

1

r
Mmn′m′(kr)

∑

n′′

Rm′n′n′′(θ,−φ) Om′n′′(k)

(22)
Note that an orientation rotation could be incorporated into the first

rotation acting on Omn.

3.3 Validation and properties

To provide an immediate confidence test that the derived formulas are cor-
rect, a random test 5th order multipole was constructed, shown in Figure 9,
and compared with the 13th order freefield expansion calculated using the
matrix (22), shown in Figure 10. The error contours in Figure 10 at 10% and
1% levels are for deviations from the original multipole shown in Figure 9.
The region of agreement extends as far as the center of the original multipole,
as expected, and indicates that the calculations described in this section are
correct.

−3 −2 −1 0 1 2 3
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0
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−2

O

z axis

kz/2π

kx/2π

Figure 9: Cross-section of a field plot for a 5th order multipole, center at O.
The cross-section is θ = 0. x, z are cartesian coordinates in length units.
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Figure 10: Cross-section of a field plot for a 13th order freefield expansion,
center at B, of a multipole, center O. Error contours are shown at the 1%
and 10% levels. The cross-section is θ = 0. x, z are cartesian coordinates in
length units.

Next we examine Mmnm′(kr) by checking that it is consistent with previ-
ous results for the monopole case,[5], in which the encoded signal is given by
Bmn = S(k)Fm(kr)Ymn(θ, δ), where Fm(kr) = i−mhm(kr)/h0(kr). To match
the alignment used to define Mmnm′(kr), θ = δ = π/2. We first note that the
source term S(k) includes the delay and distance attenuation so that S(k) =
eikr

r
O00(k). In order to isolate the part matching Fm(kr), we look at the ad-

justed value, Mm00(kr)/(e−ikr/r)/Ym0(0, π/2). With r = 1, this produces the
plots shown in Figure 11, matching previous results, [5]. Further plots reveal
how M extends to encode higher multipoles. The general picture is that with
the e−ikr/r piece factored out, the response is always minimum phase. For
small k the order of the filter becomes m + m′, while for large k it is n. The
transition occurs around k = 2 corresponding to ≈ 0.3 wavelength separa-
tion from the source. Mmnm′(kr) has symmetries which reduce the compu-
tational cost of using it; Mmnm′(kr) = Mm′nm(kr)(−1)m+m′

= Mm−nm′(kr).
The first of these is useful for cross checking the accuracy of value, since
the integrals are quite different. Figure 12 is an example showing the am-
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Figure 11: Amplitude response for Mm00(kr)/(e−ikr/r)/Ym0(0, π/2), m =
1, 2, 3, 4

plitude response for M211(kr)/(e−ikr/r) along with kM211(kr)/(e−ikr/r) to
make clear the large k behaviour clear. Figure 13 shows the corresponding
phase response. Another example, with n = 2, is shown in Figures 14 and
15.

In [5] filters were commuted from the decoding stage to control the large
amplitudes at low values of k. The situation at first appears worse here be-
cause filters encoding high multipoles can have much higher order for the
same order m of the B-format encoding. However, at the values of k where
the filters grow large, the size of the source object in wavelengths becomes
small, and a lower source order suffices to approximate it well, according to
the discussion in Section 2 where a regular source is considered. This means
that low frequencies can be filtered out progressively from the higher orders
of object encoding, so avoiding excessive gains. The filtering should be per-
formed dynamically according to distance. The highest order retained, mmax

is determined by the highest frequency, fmax, that is required to be accurately
reconstructed, as described in Section 2. For an accurately constructed field
of sufficiently low frequency, a monopole suffices.

We do not investigate the implementation of the filter matrix in detail
here, but note that in general it will take a similar form to that described
for the monopole case, [5]. Because the filters are evaluated numerically,
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Figure 12: Amplitude response for M211(kr)/(e−ikr/r) and
kM211(kr)/(e−ikr/r)
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Figure 13: Phase response for M211(kr)/(e−ikr/r)
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Figure 14: Amplitude response for M223(kr)/(e−ikr/r) and
k2M223(kr)/(e−ikr/r)
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Figure 15: Phase response for M223(kr)/(e−ikr/r)
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they must be converted to IIR form by pole/zero fitting. Filter modifica-
tion according to radius can then achieved by scaling the poles and zeros in
frequency.

4 Reverberation encoding and transformation

This article has focused on the synthesis of the direct signal from complex
objects in the nearfield. Related techniques can be applied to the synthesis
of a reverberant signal originating from a complex source.

4.1 Encoding source directivity in reverberation

Conventional room responses are mono to mono, or mono to multichannel,
where multichannel could include B-format. This means that the reverberant
sound from a source is the same no matter how it is oriented, where as real
reverberation can vary considerably. Using a harmonic matrix of the form
Eq. (12) it is possible, because of linear supposition, to fully encode the
reverberant response to source directivity, for a given pair of source and
listener positions. For a source described by Om′n′(k) and a listening field by
Bmn(k),

Bmn(k) =
∑

m′,n′

M rev
mnm′n′(k, xB, xO)Om′n′(k) , (23)

where xB and xO are the position vectors of the listener and source.
The M rev

mnm′n′ could be measured in a real space using directional sources
and directional microphones, measuring the response on each microphone
component for each source component. There are many ways this could be
achieved, but in any case the directional components must be able to cover
the desired order of spherical harmonic resolution. The order of the source
components is not so important compared to the order of the microphones,
since the latter must support the spatial resolution in the listener’s hearing.
A small source order increase is expected to deliver a considerable advantage
over the conventional zero order source. The encoding of source directivity
could be particularly valuable in an interactive application where the listener
controls the orientation of a sound source, and so can probe the surrounding
acoustic. M rev

mnm′n′ could also be calculated offline by applying the source-
microphone technique to simulations using ray-tracing or other models.
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4.2 Transforming reverberation with listening position

A modified matrix technique can be used to transform reverberation accord-
ing to a change of listening position. This allows a single M rev

mnm′n′ to be
used for a range of listener positions, by transforming Bmn from Eq. (23) to
the reverberant signal at the new position, B′

mn(k). In [15] there is a partial
description of this method. The first pressure or zero-order component of the
reverberant signal is found everywhere in a room using a single expansion.
Here we reproduce the full high-order directional qualities of reverberation
about any point. Reworking the previous calculations leading to Eq. (21)
produces the following result in terms of a new matrix MBB

mnm′ ,

B′
mn(k) =

∑

n′

Rmnn′(θ, φ)
∑

m′

1

r
MBB

mn′m′(kr)
∑

n′′

Rm′n′n′′(θ,−φ) Bm′n′′(k) ,

(24)
where

MBB
mnm′(k) =

kim
′−m

2jm(r′B)

∫ +1

−1

dsBP̂mn(s′B)P̂m′n(sB)jm′(rB) , (25)

with r′B, s′B, rB and sB replacing rB, sB, rO and sO respectively. To verify
this, a random 12th order field Bmn has been synthesized, shown in Figure
16, and transformed using Eq. (24) to an 18th order field B′

mn centered
at a distance 2λ from Bmn, shown in Figure 17. The error contours show
clear agreement which extends beyond the center of Bmn to a radius r where
kr ≈ mmax = 18, as expected. As noted previously, when transforming a
multipole source it is not possible to extend beyond the original center in
this way.

This technique can reproduce high definition spatialized reverberation
more efficiently than by direct simulation with ray tracing and similar meth-
ods, since the computational complexity is limited by the reconstruction
order and not the complexity of the simulation.

5 Conclusion

A method has been presented for encoding a general acoustic source, and
transcoding it to a high-order Ambisonic signal, dependent on source orien-
tation, and position relative to the listener. The method also lends itself to

20



−3 −2 −1 0 1 2 3

2

1

0

−1

−2

z axis

kz/2π

kx/2π

B

Figure 16: Cross-section of a field plot for a 12th order freefield harmonic
expansion, center at B. The cross-section is θ = 0. x, z are cartesian coordi-
nates in length units.

the direct measurement of real sources using an array of surrounding micro-
phones. The approach is considerably more elaborate and costly than plane
wave or monopole synthesis, however it is expected that in the context of
complex sources displayed with a high-quality rendering system, the efforts
are worthwhile. Related results have been presented for the generation and
transformation of reverberation. Future realizations will investigate further.
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