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Generalized Encoding and Decoding Functions for a
Cylindrical Ambisonic Sound System

Seung-Rae Lee and Koeng-Mo Sung, Member, IEEE

Abstract—In this letter, we present generalized encoding and
decoding functions for an ambisonic system. Our approach pro-
vides matrix representations for optimum encoding and decoding
for both odd and even number of loudspeakers. Particularly,
we present ambisonic components (signals or channels) for even

and a parameterized decoding equation for the optimum local-
ization.

Index Terms—Ambisonic surround system, explicit encoding
functions for even number of loudspeakers, generalized encoding
and decoding functions for an ambisonic system, optimum local-
ization for surround systems.

I. INTRODUCTION

A MBISONIC SYSTEMS will be evaluated for their ability
to reproduce a single sound source by means of a loud-

speaker layout. Using a set of loudspeakers it is a key to de-
termine their optimal feeding, which minimizes the difference
between the reconstructed wave field and an ideal plane wave
in the listening area [2], [3]. An accurate reproduction of sound
field is dependent on the encoding functions. Recently, Poletti
presented a design of the optimum encoding functions for an
ambisonic system, where the angular sinc functions consisting
of the circular sinc functions for the optimum localization was
proposed as follows (see also [3]).

A family of angular sinc functions will be described that pro-
duce the optimum localization for surround systems of all orders

and , where and denote ambisonic order and number
of loudspeakers, respectively.

This letter is concerned with only sounds in a 360horizontal
plane. Assume that the plane wave is arriving at an angle, and
the listening position is at a radial distanceat an angle , both
counterclockwise with respect to theaxis. Then, the original
plane wave is expressed as

(1.1)

where is the wavenumber, and is the pressure of the plane
wave. The aim of the ambisonic system is to be able to reproduce
this plane wave in the center of the listening area.

In [3], it was presented that the encoding functions that pro-
duce optimum matching of the first-order spherical harmonics
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of an ideal plane wave and the signal synthesized by the am-
bisonic system are

(1.2)

where is the angle of the th loudspeaker; is
the system-order; and the term is the constant of propor-
tionality. The sinc function is defined as

sinc (1.3)

The sinc function occurs in a number of applications such as re-
construction of a continuous signal from its uniformly sampled
values. The circular sinc function is defined as

csinc (1.4)

For odd this can be written as

csinc

(1.5)

In order to preserve the periodicity of 360, the even function
with respect to the criterion for optimality is expressed as

for even (1.6)

Hence, a set of angular sinc functions that have 360periodicity
for integers can be defined as

asinc
csinc for odd

for even .
(1.7)

It was mentioned in [3] that the asinc functions for oddare
equal to those derived in [5] and [1]. There are also well-de-
fined encoding functions for even . However, any explicit
encoding functions for even have not been shown clearly.
To solve the odd–even number problem, Poletti proposed an-
other encoding function; however, the associated encoding ma-
trix-equation has no unique solution, since this encoding matrix
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is overdetermined [4]. Therefore, we present explicitly optimum
encoding functions and corresponding decoding functions for
both odd and even . Especially, we will present a parameter-
ized decoding equation for the optimum localization.

II. M AIN RESULTS

Sound sources are assumed to be in a distance from the lis-
tener, namely in the far field, so that the wave fronts produced
can be considered as a plane near the listening point. The re-
produced plane wave is characterized by its incidence angle

according to the axis and its pressure signal at the
center-point ( , ). Similarly, plane waves asso-
ciated with the loudspeakers are defined by anglesand
pressure signals . Unitary vectors and

are also used (see [1] and [2]).
Pressure signals measured at point (with

) are then defined in frequency domain by

(2.8)

(2.9)

where is the wavenumber associated with the fre-
quency . Considering horizontal encoding of a single source
( , ), ambisonic components of order and for odd are
defined by

...

(2.10)

For convenience, let , , , and using
matrix representation for encoding and decoding functions, we
express the encoding matrix for the second-order ambisonic
system

...

(2.11)

The encoding matrix for the second-order ambisonic system can
be expressed as

...

(2.12)

if the encoding matrix has full row rank. Note that
if the loudspeaker layout is a regular polygon. Poletti

proposed the following encoding functions.
For example, 1) for four loudspeakers with second-order and

five channels and 2) for six loudspeakers with third-order and
seven channels, the associated encoding functions asincare
presented, respectively, as follows:

(2.13)

and

(2.14)

From (2.12), we infer that the right-inverse of the matrix
does not exist, since the matrix does not have full row rank.
Therefore, a generalized inverse of is not unique [4].

Now, we will present explicitly encoding functions and cor-
responding decoding functions for both odd and even. From
the angular sinc function (1.7), we will derive an encoding func-
tion as follows (e.g., ):

asinc

The corresponding encoding function is expressed as (2.15),
shown at at the top of the next page. Then, the associated de-
coding function is

(2.16)

where denotes the th row of .
Therefore, the decoding equation yields:

(2.17)

Analogously, we obtain the encoding and decoding functions of
higher orders. Note that can be expressed by the product
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(2.15)

for odd

for even
(2.18)

for odd

for even
(2.20)

of the coefficients of and the th column of the encoding
matrix. By virtue of the asinc functions, the general form of the
optimal encoding function are proposed as follows.

For , it holds (2.18), found at the top of
the page. Hence, ambisonic components of orderfor even

are defined by

...

(2.19)

for where and are not defined.

A. Generalized Decoding Equation

The generalized decoding equation, for all, holds (2.20),
found at the top of the page. In order to ensure the optimum
localization for surround systems of all orders and from
the (2.10), (2.19), (2.15), (2.18), and (2.20), we infer that

and , .

III. CONCLUSION

Using matrix representations, we have proposed generalized
encoding and decoding functions for an ambisonic system. The
ambisonic order (especially, for even) is always reduced.
However, the last term of the ambisonic components includes
the component of the usual order (one order higher). For the
optimum localization, the parameterization of the decoding
equations are also proposed. Moreover, we have presented
the ambisonic components for even. Our approach is
unique, whereas the approach presented in [3] is not unique. In
general, these functions depend on an odd or even number of
loudspeakers.
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