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ABSTRACT

Sound field analysis is performed from data recorded by aamicr
phone array in order to extract some spatial informatioruglioe
sound field. In this article, the assets of the multidimemai¢-ourier
transform are emphasized in order to perform this analysis $n-
deed, the finite number of microphones inevitably introduspa-
tial aliasing, which is linked to the spectral broadening da the
discrete and finite nature of the analysis window. Firstegithe
geometry of the array, the hypothesis that sound fieldsfigattse
dispersion relation, obtained from the wave equation, éxlus de-
sign an optimal analysis window, which minimizes spatigsihg
according to a criterion inspired by prolate spheroidatctpé anal-
ysis. Then, several array configurations are compared tlyzna
sound fields with large frequency bandwidth.

1. INTRODUCTION

Several models are used to describe accurately a soundrfsdie: ia
given domain: in Wave Field Synthesis, the sound field is milesd
by the Kirchhoff-Helmholtz integral equatiohl[1], whereass de-
scribed as an expansion onto an orthogonal basis, such sgihbe
ical harmonics, in Ambisonic§]2] or in modal reconstrunt[d]. In
practice, estimating the parameters of the model by the méan
microphone array during a recording session is a greatesigdl to
be solved. Often, this challenge is circumvented by doingisé
dry sound recordings of the sound scene, where the micrestene
located in the nearfield of the instruments, and then corisiglthem
as point sources with variable directivity. In this case, al instru-
ments and the room are replaced by physical models, whicipbea
virtual acoustics. Reverberation is treated separateteNheless,
some sound reproduction systems exist, which aim at réegeat
sound field by using its property of reciprocifyl [4], and thés a
vast litterature on array processing, of whom some dedicapgli-
cations to sound field analysis and synthesis [5].

In this article, the sound field is modelled as an expansida on
the plane wave basis. The analysis operator is the multitéioaal
Fourier transform, giving the parameters of the expansim, re-
quiring the ideal knowledge of the sound field on the domaimeof
terest. The synthesis operator is the inverse Fourierfoansgiving
the value of the sound field at any time instant, and at anyilmta
and requiring the ideal knowledge of the parameters. Foctipra
cal purposes, an exact estimation of the parameters is sifjjes

mainly because of the finite number of microphones. Thus,ra pe

fect analysis of the sound field is impossible. Neverthelesme

processing could be made to perform an approximated souidd fie

analysis, which is the topic of this paper.
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In the first part of this article, the multidimensional Fartrans-
form and the physical background concerning the propagatifo
sound fields are introduced. In the second part, it is expthimhy
a perfect analysis is unfeasible in practice, due to theéapiasing
introduced by the discreteness and finiteness of the mioraplar-
ray. Itis also explained that the sampled version of the ddigid
is linked to its original version by convolution with a finitiscrete
analysis window, and a method is given to design this aralysi-
dow in order to achieve a good tradeoff between resolutioihgmod
focalisation of the energy inside the main lobe of the windbowvthe
next part, the demonstration of the efficiency of this apphda em-
phasized, and several array geometries are comparedlyFgtahe
concluding remarks and perspectives of this research ade.ma

2. SOUND FIELD MODEL

2.1. Multidimensional Fourier transform

Consider a well-behaved four-dimensionnal figla, ¢), for which
the Fourier transform exists, which is defined by:

paco) = [[[[  pepetriata @
(r,t)eR4

It can be viewed as aanalysis operator, which decomposes
the sound field into plane waves. The associayathesis operator,
used to reconstruct the sound field from its analysis paenseis
nothing else than the inverse Fourier transform:

2.2. Physical background

The ear is sentitive to acoustic pressure variations by thanmof
the ear drum, so that the analysis of the acoustic pressidséems
relevant in the domain of accurate sound field reproducti@r an
extended area. The acoustic pressure field obeys the was@@qu
which takes the following form in a domain empty of sourdcels [6
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The Fourier transform of the above equatith (3) yields:
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Nontrivial solutions to the homogeneous wave equation bre o
tained only if thedispersion relation w? = ¢?|k|? is verified. This



means that only a subset of the analysis paramétéksw), verify-

ing the dispersion relation, is required to correctly repré a given
sound field. The assumption that audio signals are banélihti
|w| < € further restricted the set of analysis parameters.

3. PARAMETER ESTIMATION

3.1. Spatial aliasing

The sound field is observed only on a set™fmeasure points lo-
cated byr,,, which are the positions of ideal omnidirectional micro-
phones. The spatial analysis of the sound field is only plessip
means of its sampled weighted version:

pana(r7 t) = Z wné(r - I‘n)p(l‘7 t) = W(I‘, t) .p(I‘7 t) (5)

n=1

The time sampling of signals is not problematic, because the

number of samples is usually sufficient to avoid aliasinghimtime
domain, so that it will be ignored for the rest of this documen
The product of two fields is transformed into a convolutioodsr
uct in the dual domain by the Fourier transform, so that timeptad
weighted sound field is linked to the initial one by the relati

Pana(k,w) = W(k,w) * P(k,w) (6)

wherex denotes the convolution product symbol. The analysis win-

dow is discrete and finite in space so that its Fourier transfwas a
main lobe, limiting the resolution of the analysis, and a@sadnfinity
of secondary lobes in thHe—space.

The more convenient way to study the sampled sound field is to

use the following discrete inner product:

wng (rp,t) | dt  (7)
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where the subscript denotes complex conjugation.
Nevertheless, the plane wave&<**+~* no longer form an or-
thogonal set for this discrete inner produUdt (7), whereasottthog-
onality property was satisfied with the continuous innerdpict —
Fourier transform theorem. The consequence is that spditiaing
inevitably occurs.
In this paper, we are interested by two-dimensional arnayise

plane(Ozy), so that the Fourier transform of the analysis window

is independent of the, component of the vectdt. This means that
any spectral information of the continuous sound field ledat a
specific value ok, is copied to all values of. due to equatior[{6).
The initial spectrum at pulsatian was supposed to be non null only
on a sphere of radiuk| = w/c. For two-dimensional projection
of sound fields, this statement becomes that the spectruamiauil
only inside a circle of radiugk,| = |kzux + kyuy| = w/c. Nev-
ertheless, the location of spectral peaks gives directioncidence

3.2. Optimal analysiswindow

Granted that the vectdt of a plane wave is linked to the incidence
direction, the broadening of the spectrum due to the cotiewiby
the Fourier transform of the analysis window has two effeth®
first one is that two plane waves with too near wavevedt@rsand
k:, can not be separated by this analysis because of the lack-of re
olution, and the second one is that the presence of too kigh-I
side lobes in the analysis window can hide some other spéaira
formation or be wrongly interpretated as the presence of spe-
tral peaks in the Fourier transform. This observation naoés the
choice of an analysis window which focus the power mainlytén i
main lobe, which spread indicates the resolution of theyail It is
a well-known problem in the field of spectral analysis, matrly
the one based on prolate spheroidal winddw/s [7].

According to these observations, the criterion used tontipé
the performance of the spatial analysis at pulsatiois the maxi-
mization of the following rate[18]:
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whereCy,.. (respectivel\Cx,.. ) is the circle of radiugk, | = kres(w)
(respectivelyky| = ktot (w)). The choice Ofyes (w) andkeot (w) is
discussed further below.

The expression af can be reformulated into a matrix form:
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with: w = [wy, ... T
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wherelJ; (z) is the Bessel function of first order.
The maximization of\ is equivalent to the resolution of the gen-
eralized eigenvalue probleinl [8]:

Tmn

Trcsﬁi = AiTtotEi

(10)

There areV generalized eigenvectogs,, but only the one cor-
responding to the maximum eigenvalue is retained: thisésothti-
mal analysis window for a given pulsatian and for a fixed array
geometry.

The thinner the resolution imposed is, the lower the cooedp
ing eigenvalues\; are. The antenna dimensions condition the best
resolution achievable. In the same way, the bigger the sddiy is
chosen, the lower the corresponding eigenvalues are. $®itha
tradeoff between resolution and efficiency of the weighfimgthe
choice ofkot (w) andkres (w).

At pulsationw, the spectral information of the continuous sound
field is contained inside the circle of radikig,, (w) = w/c. Assum-
ing that all spectral information is contained in the maibd®f the

of sources up to the ambiguity between up and down, so that a tranalysis window, the region of interest for the sampled ddigid in

dimensional spatial analysis is nearly achieved by twoedisional
arrays.

thek—space is a circle of radius;,,, +kres. TO avoid spatial aliasing
in these conditions, the conditidRo:, > 2kiim + kres has to be veri-

An example of Fourier transform of a two-dimensionnal sam-fied, from equation[{6). A good choice for the resolution iglidde
pled plane wave, with, = k, = 0, is plotted on the top of figuld 2, the global area in thk—domain into/N equal parts, corresponding
which is to be compared #(k), the Fourier transform of the con- €ach ideally to the information brougth by one microphone:
tinuous plane wave. A multitude of high-level side lobesisshle,

which is to be avoided for the purpose of sound field analysis. Koy = Nhie (11)



4. ARRAY GEOMETRY is seen than the DGPSW is more localized in the wavevectoadom
than the uniform window. These conclusions hold for all trexcies

In the previous section, the analysis window was optimizbdneas  of interest, and it is the purpose of the next paragraph tdystie
the geometry has been fixed. In the present section, sevewaley  frequency performance of the different types of array ithiced at
tries are compared, such as linear or logarithmic crosysrcircu-  part(4.
lar arrays, and logarithmically-spaced circular arraysese geome-
tries are compared in analogous conditions: the arraysthaveame Uniform analyss window for { - 3853 He. Performance = 3% Optimalanalysis wincow or{ = 3863 He. Performance = 41.7 %
characterisctic dimensiods, = L, = 0.5m, and the same number i
of elementsN equal to49. The array geometries are represented
on figurel®. At the top left corner is the linearly-spaced srasay,
which elements are uniformly spaced &ym. At the top right cor- -
ner is the logaritmically-spaced cross array, for whichhelikanch 5
contains12 sensors logarithmically spaced betweeim to 50cm, 50
plus a sensor at the center of the array. At the bottom leftdscir- o
cular array, containing sensors angularly space@ii9 radians.
And at the bottom right is the logarithmically-spaced clacarray, R T T
which is constituted of circular arrays o8 sensors each, and which ki tocin !
radii are logarithmically spaced frofiem to 50cm, plus a sensor at
the center. Random arrays have also been tested, with & dedia
bution following a normal distribution, and the angulartdisution
following a uniform distribution betwee® and2x.

Fig. 2. 2D- spectrum of a sampled plane wave with= k, = 0
using a uniform analysis window at the top, and an optimalyais
window, maximizing the energy inside the circle, at the it

Lingarly-spaced cross array with 43 elements  Logarithmically-spaced cross array with 43 elements
06 06

4.2. Comparison of performance between arrays

o4 o4 The geometries presented in the beginning of this part wene ¢

g 0 g 0 : pared using optimal analysis windows, which design has lpeen
E 0 E 0. - BT SRR sented in sectiof3.2. The results are represented on [ijurieede
02 : Sz . the values of the maximum eigenvalug,.. from equations[{8)
04 04 : and [ID) have been plotted along frequency. Itis seen thaegular-
. . ly-spaced arrays have efficient performance only in a @sttido-

-05 0 05 -05 0 05 . . . .
*(in meters) *(in meters) main of frequencies, namely the low frequencies. At higlojdien-

cies, the sensors are too spaced, compared to the wavelength
¢/ f, so that none spatial information could be efficiently eated.

06 Circular array with 49 elements Lugariéhﬁmica\\yrspaced radius array with 43 elements

~~~~~~~

o4 L L . The critical value 3400Hz for the linearly-spaced cross array, is to
o2 s " 7 02 R be linked to the spacing between sensors. Indeed, the ponéing
i g Eoale .w . wavelength isv = 340/3400 = 0.1m which is nearly the Shan-
s oz £ 02 co non limit —two points per wavelength at critical sampling—hish
Py R e . would have occured in the case of a uniform two-dimensioaal-s
Treenee . pling. The “typical” performance of a random array is als@do
05 v 05 5 0 05 at low frequency and decreases with frequency. On the otadt,h

x (in meters) x (in meters)

logarithmically-spaced arrays achieve good performamcthe en-
tire band of frequencies being studied. Indeed, sensong batated
t the center of the array are very near, thus enabling dealf/the
igh wavenumbers. To study the spatial spectrum at low &egqu
cies, one needs to further space the sensors, because siljtiaés
would be quasi-identical if the sensors were too near, coimgpo
the wavelength being studied.

Fig. 1. Array geometries used for performance tests. Linear an
logarithmic cross arrays at the top, circular array at tfieblettom,
and logarithmically-spaced radii circular array at thétigottom.

4.1. Comparison between uniform and optimal analysiswindows 4.3, Examples

In this part, the uniform analysis window and the discreteegal-  Some examples of sound fields are now analyzed. In the firstlome
ized prolate sequence window (DGPSW) are compared, in #e casound field considered is the sum of two plane waves of wavenum
of the logarithmically-spaced circular array, for a freqog f = berk = 96m~! corresponding to a frequency 6f2kHz, with
3862Hz. for this frequencykiot = 47f/c + kres = 166m™*, equal amplitudes. The plane waves are described by theawsav
with kres = 23.8m™*, from equation[[Tl1). The two-dimensional tork = [k, ¢, ], in spherical coordinates, whekds the wavenum-
Fourier transforms of the analysis windows were computetleaa  ber, ¢ the azimuth angle, an@ithe elevation angle. The first plane
displayed on figurgl2. It is seen than the uniform analysigiain ~ wave has a wavevectdt; = [k, /4,7 /8], and the second one
has a better resolution than the prolate one. On the othek baly k2 = [k, —7w/2, —7/8]. Note that the plane waves are tridimen-
9.3 percent of power is focused inside the circle of radiug (w) sionnal, with a non null elevation angle. Their projectiam the
compared to the entire energy comprised into the displajetec  two-dimensional plane of observationk$ = [k cos 8, ¢] in cylin-
The generalized discrete prolate spheroidal window foedseer-  drical coordinates, yielding; = [89, w/4] andk; = [89, —m/2].
cent of the power at the frequency of study in the circle. @lighit These two peaks are seen on the two-dimensional spectruhe of t



Comparison of performance for several array geometries
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Fig. 3. performance of optimal ponderarions for several array ge

ometries versus frequency

sampled plane waves, represented on fifflire 4. At the torsléfei

spectrum of the two sampled plane waves weighted by the aptim

DGPSW, and at the top right is the spectrum weighted by a imifo
window. It is seen that the two plane waves are resolved heeit
two cases, but the spectrum is more localized in the case &fS¥&
than in the case of uniform analysis window.

simulated, at the same frequency as above, with equal amdett
The firstone is located & = [1.5, 0, 0] and the second onent =

[1,7/6,0], still in spherical coordinates. It is seen at the bottom

of figure[@ that the wavevector spectrum region excited isdheo
than with plane waves: this is due to the nearfield effect. ddwer,

the component of the spectrum due to the second source is more

energetic because the source is nearer than the first stMittethe
uniform analysis window, it is possible to resolve the twaorses,
but the spectrum of the two sampled points sources is largelg

bottom left of figurd.
5. CONCLUSION

In this paper, a method to perform an approximated analysisund
fields has been investigated. It is based upon the fact taattimpled
version of the sound field is linked to its original versionthg inter-
mediary of the convolution of a discrete analysis window.oTya-
rameters condition the performance of this analysis: tloéetof the
analysis window and the choice of the array geometry. Indttisle,
the analysis window has been designed so that it focusesdike m
mum of energy inside the main lobe of the window in the wavewec
domain, a criterion inspired by the spectral analysis basegro-
late spheroidal wave functions. Several geometries hawe tasted,
and it seems that circular arrays with logarithmically<szh radii
achieve the best performance in a large band of frequeritiesm-
portant to emphasize that this approach overcomes the etefies
of Ambisonics, Wave Field Synthesis or modal reconstrmctibich
require a very rapidly increasing number of microphonesmihe
frequency band becomes larger. It is the best spatial deaghiev-
able, given the number of microphones of the array. Moredtés
approach enables the analysis of sound recordings perdowith

real arrays. Some further studies remained to be done abeut t

behaviour of the window design concerning noise influenc¢hen
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Fig. 4. Examples of Fourier transforms of sampled sound fields. At
the top, two plane waves, and at the bottom, two close pointss.
On the left using DGPSW, on the right using uniform analysis-w

dow

sensors, and also about the influence of sensor locatiors emahe

) ) performance of the method but it is clear that this way is psarg.
In the second example, two monochromatic points sources are
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