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École Nationale Supérieure des Télécommunications
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ABSTRACT

Sound field analysis is performed from data recorded by a micro-
phone array in order to extract some spatial information about the
sound field. In this article, the assets of the multidimensional Fourier
transform are emphasized in order to perform this analysis step. In-
deed, the finite number of microphones inevitably introduces spa-
tial aliasing, which is linked to the spectral broadening due to the
discrete and finite nature of the analysis window. First, given the
geometry of the array, the hypothesis that sound fields satisfie the
dispersion relation, obtained from the wave equation, is used to de-
sign an optimal analysis window, which minimizes spatial aliasing
according to a criterion inspired by prolate spheroidal spectral anal-
ysis. Then, several array configurations are compared to analyze
sound fields with large frequency bandwidth.

1. INTRODUCTION

Several models are used to describe accurately a sound field inside a
given domain: in Wave Field Synthesis, the sound field is described
by the Kirchhoff-Helmholtz integral equation [1], whereasit is de-
scribed as an expansion onto an orthogonal basis, such as thespher-
ical harmonics, in Ambisonics [2] or in modal reconstruction [3]. In
practice, estimating the parameters of the model by the meanof a
microphone array during a recording session is a great challenge to
be solved. Often, this challenge is circumvented by doing several
dry sound recordings of the sound scene, where the microphones are
located in the nearfield of the instruments, and then considering them
as point sources with variable directivity. In this case, the real instru-
ments and the room are replaced by physical models, which lieupon
virtual acoustics. Reverberation is treated separately. Nevertheless,
some sound reproduction systems exist, which aim at recreating a
sound field by using its property of reciprocity [4], and there is a
vast litterature on array processing, of whom some dedicated appli-
cations to sound field analysis and synthesis [5].

In this article, the sound field is modelled as an expansion onto
the plane wave basis. The analysis operator is the multidimensional
Fourier transform, giving the parameters of the expansion,and re-
quiring the ideal knowledge of the sound field on the domain ofin-
terest. The synthesis operator is the inverse Fourier transform, giving
the value of the sound field at any time instant, and at any location,
and requiring the ideal knowledge of the parameters. For practi-
cal purposes, an exact estimation of the parameters is impossible,
mainly because of the finite number of microphones. Thus, a per-
fect analysis of the sound field is impossible. Nevertheless, some
processing could be made to perform an approximated sound field
analysis, which is the topic of this paper.
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In the first part of this article, the multidimensional Fourier trans-
form and the physical background concerning the propagation of
sound fields are introduced. In the second part, it is explained why
a perfect analysis is unfeasible in practice, due to the spatial aliasing
introduced by the discreteness and finiteness of the microphone ar-
ray. It is also explained that the sampled version of the sound field
is linked to its original version by convolution with a finitediscrete
analysis window, and a method is given to design this analysis win-
dow in order to achieve a good tradeoff between resolution and good
focalisation of the energy inside the main lobe of the window. In the
next part, the demonstration of the efficiency of this approach is em-
phasized, and several array geometries are compared. Finally, some
concluding remarks and perspectives of this research are made.

2. SOUND FIELD MODEL

2.1. Multidimensional Fourier transform

Consider a well-behaved four-dimensionnal fieldp(r, t), for which
the Fourier transform exists, which is defined by:

P (k, ω) =

ZZZZ

(r,t)∈R4

p(r, t) e−i(k·r+ωt)d3
r dt (1)

It can be viewed as ananalysis operator, which decomposes
the sound field into plane waves. The associatedsynthesis operator,
used to reconstruct the sound field from its analysis parameters, is
nothing else than the inverse Fourier transform:

p (r, t) =
1

(2π)4

ZZZZ

(k,ω)∈R4

P (k, ω) e+i(k·r+ωt)d3
k dω (2)

2.2. Physical background

The ear is sentitive to acoustic pressure variations by the mean of
the ear drum, so that the analysis of the acoustic pressure field seems
relevant in the domain of accurate sound field reproduction over an
extended area. The acoustic pressure field obeys the wave equation,
which takes the following form in a domain empty of sources [6]:

∇2p(r, t) −
1

c2

∂2p(r, t)

∂t2
= 0 (3)

The Fourier transform of the above equation (3) yields:
„

|k|2 −
ω2

c2

«

P (k, ω) = 0 (4)

Nontrivial solutions to the homogeneous wave equation are ob-
tained only if thedispersion relation ω2 = c2|k|2 is verified. This



means that only a subset of the analysis parametersP (k, ω), verify-
ing the dispersion relation, is required to correctly represent a given
sound field. The assumption that audio signals are bandlimited to
|ω| < Ω further restricted the set of analysis parameters.

3. PARAMETER ESTIMATION

3.1. Spatial aliasing

The sound field is observed only on a set ofN measure points lo-
cated byrn, which are the positions of ideal omnidirectional micro-
phones. The spatial analysis of the sound field is only possible by
means of its sampled weighted version:

pana(r, t) =
N

X

n=1

wnδ(r − rn) p(r, t) = W (r, t) .p(r, t) (5)

The time sampling of signals is not problematic, because the
number of samples is usually sufficient to avoid aliasing in the time
domain, so that it will be ignored for the rest of this document.

The product of two fields is transformed into a convolution prod-
uct in the dual domain by the Fourier transform, so that the sampled
weighted sound field is linked to the initial one by the relation:

Pana(k, ω) = W (k, ω) ∗ P (k, ω) (6)

where∗ denotes the convolution product symbol. The analysis win-
dow is discrete and finite in space so that its Fourier transform has a
main lobe, limiting the resolution of the analysis, and alsoan infinity
of secondary lobes in thek−space.

The more convenient way to study the sampled sound field is to
use the following discrete inner product:

< f |g >=

Z +∞

t=−∞

"

N
X

n=1

wnf (rn, t)wng (rn, t)

#

dt (7)

where the subscript denotes complex conjugation.
Nevertheless, the plane wavesei(k·r+ωt) no longer form an or-

thogonal set for this discrete inner product (7), whereas the orthog-
onality property was satisfied with the continuous inner product —
Fourier transform theorem. The consequence is that spatialaliasing
inevitably occurs.

In this paper, we are interested by two-dimensional arrays in the
plane(Oxy), so that the Fourier transform of the analysis window
is independent of thekz component of the vectork. This means that
any spectral information of the continuous sound field located at a
specific value ofkz is copied to all values ofkz due to equation (6).
The initial spectrum at pulsationω was supposed to be non null only
on a sphere of radius|k| = ω/c. For two-dimensional projection
of sound fields, this statement becomes that the spectrum is non null
only inside a circle of radius|kr| = |kxux + kyuy| = ω/c. Nev-
ertheless, the location of spectral peaks gives direction of incidence
of sources up to the ambiguity between up and down, so that a tri-
dimensional spatial analysis is nearly achieved by two-dimensional
arrays.

An example of Fourier transform of a two-dimensionnal sam-
pled plane wave, withkx = ky = 0, is plotted on the top of figure 2,
which is to be compared toδ (k), the Fourier transform of the con-
tinuous plane wave. A multitude of high-level side lobes is visible,
which is to be avoided for the purpose of sound field analysis.

3.2. Optimal analysis window

Granted that the vectork of a plane wave is linked to the incidence
direction, the broadening of the spectrum due to the convolution by
the Fourier transform of the analysis window has two effects: the
first one is that two plane waves with too near wavevectorskr1 and
kr2 can not be separated by this analysis because of the lack of res-
olution, and the second one is that the presence of too high-level
side lobes in the analysis window can hide some other spectral in-
formation or be wrongly interpretated as the presence of newspec-
tral peaks in the Fourier transform. This observation motivates the
choice of an analysis window which focus the power mainly in its
main lobe, which spread indicates the resolution of the analysis. It is
a well-known problem in the field of spectral analysis, particularly
the one based on prolate spheroidal windows [7].

According to these observations, the criterion used to optimize
the performance of the spatial analysis at pulsationω is the maxi-
mization of the following rate [8]:

λ =

ZZ

kr∈Ckres(ω)

|W (kr) |
2d2

kr

ZZ

kr∈Cktot(ω)

|W (kr) |
2d2

kr

(8)

whereCkres (respectivelyCktot ) is the circle of radius|kr| = kres(ω)
(respectively|kr| = ktot(ω)). The choice ofkres(ω) andktot(ω) is
discussed further below.

The expression ofλ can be reformulated into a matrix form:

λ =
w

H
T resw

w
HT totw

with : w = [w1, . . . , wN ]T

T res (m, n) =
2πkres

rmn
J1 (kresrmn)

T tot (m, n) =
2πktot

rmn
J1 (ktotrmn)

rmn =
ˆ

(xm − xn)2 + (ym − yn)2
˜1/2

(9)

whereJ1 (x) is the Bessel function of first order.
The maximization ofλ is equivalent to the resolution of the gen-

eralized eigenvalue problem [8]:

T resw i = λiT totw i (10)

There areN generalized eigenvectorsw i, but only the one cor-
responding to the maximum eigenvalue is retained: this is the opti-
mal analysis window for a given pulsationω and for a fixed array
geometry.

The thinner the resolution imposed is, the lower the correspond-
ing eigenvaluesλi are. The antenna dimensions condition the best
resolution achievable. In the same way, the bigger the radius ktot is
chosen, the lower the corresponding eigenvalues are. So there is a
tradeoff between resolution and efficiency of the weightingfor the
choice ofktot(ω) andkres(ω).

At pulsationω, the spectral information of the continuous sound
field is contained inside the circle of radiusklim(ω) = ω/c. Assum-
ing that all spectral information is contained in the main lobe of the
analysis window, the region of interest for the sampled sound field in
thek−space is a circle of radiusklim+kres. To avoid spatial aliasing
in these conditions, the conditionktot > 2klim +kres has to be veri-
fied, from equation (6). A good choice for the resolution is todivide
the global area in thek−domain intoN equal parts, corresponding
each ideally to the information brougth by one microphone:

k2
tot = Nk2

res (11)



4. ARRAY GEOMETRY

In the previous section, the analysis window was optimized whereas
the geometry has been fixed. In the present section, several geome-
tries are compared, such as linear or logarithmic cross arrays, circu-
lar arrays, and logarithmically-spaced circular arrays. These geome-
tries are compared in analogous conditions: the arrays havethe same
characterisctic dimensionsLx = Ly = 0.5m, and the same number
of elementsN equal to49. The array geometries are represented
on figure 2. At the top left corner is the linearly-spaced cross array,
which elements are uniformly spaced by4cm. At the top right cor-
ner is the logaritmically-spaced cross array, for which each branch
contains12 sensors logarithmically spaced between1cm to 50cm,
plus a sensor at the center of the array. At the bottom left is the cir-
cular array, containing sensors angularly spaced by2π/49 radians.
And at the bottom right is the logarithmically-spaced circular array,
which is constituted of6 circular arrays of8 sensors each, and which
radii are logarithmically spaced from1cm to 50cm, plus a sensor at
the center. Random arrays have also been tested, with a radial distri-
bution following a normal distribution, and the angular distribution
following a uniform distribution between0 and2π.

Fig. 1. Array geometries used for performance tests. Linear and
logarithmic cross arrays at the top, circular array at the left bottom,
and logarithmically-spaced radii circular array at the right bottom.

4.1. Comparison between uniform and optimal analysis windows

In this part, the uniform analysis window and the discrete general-
ized prolate sequence window (DGPSW) are compared, in the case
of the logarithmically-spaced circular array, for a frequency f =
3862Hz. for this frequency,ktot = 4πf/c + kres = 166m−1,
with kres = 23.8m−1, from equation (11). The two-dimensional
Fourier transforms of the analysis windows were computed and are
displayed on figure 2. It is seen than the uniform analysis window
has a better resolution than the prolate one. On the other hand, only
9.3 percent of power is focused inside the circle of radiuskres(ω)
compared to the entire energy comprised into the displayed circle.
The generalized discrete prolate spheroidal window focuses 41 per-
cent of the power at the frequency of study in the circle. Globally, it

is seen than the DGPSW is more localized in the wavevector domain
than the uniform window. These conclusions hold for all frequencies
of interest, and it is the purpose of the next paragraph to study the
frequency performance of the different types of array introduced at
part 4.

Fig. 2. 2D- spectrum of a sampled plane wave withkx = ky = 0
using a uniform analysis window at the top, and an optimal analysis
window, maximizing the energy inside the circle, at the bottom.

4.2. Comparison of performance between arrays

The geometries presented in the beginning of this part were com-
pared using optimal analysis windows, which design has beenpre-
sented in section 3.2. The results are represented on figure 3, where
the values of the maximum eigenvalueλmax from equations (8)
and (10) have been plotted along frequency. It is seen that the regular-
ly-spaced arrays have efficient performance only in a restricted do-
main of frequencies, namely the low frequencies. At high frequen-
cies, the sensors are too spaced, compared to the wavelengthν =
c/f , so that none spatial information could be efficiently retrieved.
The critical value,3400Hz for the linearly-spaced cross array, is to
be linked to the spacing between sensors. Indeed, the corresponding
wavelength isν = 340/3400 = 0.1m which is nearly the Shan-
non limit —two points per wavelength at critical sampling— which
would have occured in the case of a uniform two-dimensional sam-
pling. The “typical” performance of a random array is also good
at low frequency and decreases with frequency. On the other hand,
logarithmically-spaced arrays achieve good performance on the en-
tire band of frequencies being studied. Indeed, sensors being located
at the center of the array are very near, thus enabling analysis of the
high wavenumbers. To study the spatial spectrum at low frequen-
cies, one needs to further space the sensors, because all thesignals
would be quasi-identical if the sensors were too near, comparing to
the wavelength being studied.

4.3. Examples

Some examples of sound fields are now analyzed. In the first one, the
sound field considered is the sum of two plane waves of wavenum-
ber k = 96m−1 corresponding to a frequency of5.2kHz, with
equal amplitudes. The plane waves are described by their wavevec-
tor k = [k, φ, θ], in spherical coordinates, wherek is the wavenum-
ber,φ the azimuth angle, andθ the elevation angle. The first plane
wave has a wavevectork1 = [k, π/4, π/8], and the second one
k2 = [k,−π/2,−π/8]. Note that the plane waves are tridimen-
sionnal, with a non null elevation angle. Their projection on the
two-dimensional plane of observation isk′ = [k cos θ, φ] in cylin-
drical coordinates, yieldingk′

1 = [89, π/4] andk
′
2 = [89,−π/2].

These two peaks are seen on the two-dimensional spectrum of the



Fig. 3. performance of optimal ponderarions for several array ge-
ometries versus frequency

sampled plane waves, represented on figure 4. At the top left is the
spectrum of the two sampled plane waves weighted by the optimal
DGPSW, and at the top right is the spectrum weighted by a uniform
window. It is seen that the two plane waves are resolved in either
two cases, but the spectrum is more localized in the case of DGPSW
than in the case of uniform analysis window.

In the second example, two monochromatic points sources are
simulated, at the same frequency as above, with equal amplitudes.
The first one is located atr1 = [1.5, 0, 0] and the second one atr2 =
[1, π/6, 0], still in spherical coordinates. It is seen at the bottom
of figure 4 that the wavevector spectrum region excited is broader
than with plane waves: this is due to the nearfield effect. Moreover,
the component of the spectrum due to the second source is more
energetic because the source is nearer than the first source.With the
uniform analysis window, it is possible to resolve the two sources,
but the spectrum of the two sampled points sources is largelymore
localized in the wavevector domain by using DGPSW, as seen atthe
bottom left of figure 4.

5. CONCLUSION

In this paper, a method to perform an approximated analysis of sound
fields has been investigated. It is based upon the fact that the sampled
version of the sound field is linked to its original version bythe inter-
mediary of the convolution of a discrete analysis window. Two pa-
rameters condition the performance of this analysis: the choice of the
analysis window and the choice of the array geometry. In thisarticle,
the analysis window has been designed so that it focuses the maxi-
mum of energy inside the main lobe of the window in the wavevector
domain, a criterion inspired by the spectral analysis basedon pro-
late spheroidal wave functions. Several geometries have been tested,
and it seems that circular arrays with logarithmically-spaced radii
achieve the best performance in a large band of frequencies.It is im-
portant to emphasize that this approach overcomes the deficiencies
of Ambisonics, Wave Field Synthesis or modal reconstruction which
require a very rapidly increasing number of microphones when the
frequency band becomes larger. It is the best spatial analysis achiev-
able, given the number of microphones of the array. Moreover, this
approach enables the analysis of sound recordings performed with
real arrays. Some further studies remained to be done about the
behaviour of the window design concerning noise influence onthe

Fig. 4. Examples of Fourier transforms of sampled sound fields. At
the top, two plane waves, and at the bottom, two close point sources.
On the left using DGPSW, on the right using uniform analysis win-
dow

sensors, and also about the influence of sensor location errors on the
performance of the method but it is clear that this way is promising.
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