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Abstract

Developing applications is becoming increasingly dif-
ficult due to recent growth in machine complexity along
many dimensions, especially that of parallelism. We
are studying data types that can be used to repre-
sent data parallel operations. Developing parallel pro-
grams with these data types have numerous advantages
and such a strategy should facilitate parallel program-
ming and enable portability across machine classes and
machine generations without significant performance
degradation.

In this paper, we discuss our vision of data parallel
programming with powerful abstractions. We first dis-
cuss earlier work on data parallel programming and list
some of its limitations. Then, we introduce several di-
mensions along which is possible to develop more pow-
erful data parallel programming abstractions. Finally,
we present two simple examples of data parallel pro-
grams that make use of operators developed as part of
our studies.

1 Introduction

The extensive research in parallel computing of the
last several decades produced important results, but
there is still much room, and much need, for advances
in parallel programming including language develop-
ment. New programming notations and tools are sorely
needed to facilitate the control of parallelism, locality,
processor load, and communication costs.

In this paper, we present preliminary ideas on data
types (data structures and operators) that can be used
to facilitate the representation of data parallel compu-
tations. A data parallel operation acts on the elements
of a collection of objects. With these operations, it
is possible to represent parallel computations as con-
ventional programs with the parallelism encapsulated
within the operations. This is of course an old idea,

but we believe it is also an idea with much room for
advances. We have chosen to study data parallel no-
tations because most parallel programs of importance
can be represented as a sequence of data parallel oper-
ations. Furthermore, scalable programs, which are the
ones that will drive the evolution of machines, must
be data parallel. The strategy of representing parallel
computations as a sequence of data parallel operations
has several advantages:

• Conventional notation. Data parallel programs writ-
ten as sequences of data parallel operations can be un-
derstood as conventional programs by ignoring paral-
lelism. Although understanding how the parallelism is
exploited is necessary to analyze performance, in this
paradigm it is not necessary to understand the se-
mantics of the program. We believe that using a con-
ventional notation reduces the likelihood of errors, fa-
cilitates maintenance, and shortens the learning pro-
cess. These benefits of a conventional notation were
the main motivation behind the work on autoparal-
lelization [23].

• Higher level of abstraction. A judicious selection
of operators should lead to very readable programs
where powerful operators encapsulate parallelism.

• Control of determinacy. Whenever the data paral-
lel operators are implemented as pure functions, the
programs will be guaranteed to be determinate, al-
though this comes at the cost of having an implicit
barrier after each data parallel operator. Avoiding
these barriers may require compiler transformations.
If non-determinacy is desired, it can be encapsulated
inside the parallel operators by allowing interaction
with a global state.

• Portability. Data parallel programs written as a se-
quence of operations can be ported across classes of
parallel machines just by implementing the operators



in different ways. Thus, the same program could be
executed on shared-memory and distributed-memory
multiprocessors as well as on SIMD machines. In the
same way that parallelism is encapsulated by the op-
erations, so can be the nature of the target machine.
Programmers would of course need to consider porta-
bility when developing a program and must choose
algorithms that perform well across machine classes.

• Good performance abstractions. By understanding
the performance of each operation it is possible to
determine the overall performance of the program.

The rest of this paper is organized as follows. In
Section 2, we discuss the data parallel operators of the
past. Possible directions of evolution for data parallel
operators are discussed in Section 3 and two examples
of data parallel codes built with some of the data types
we have developed are presented in Section 4. Conclu-
sions are presented in Section 5.

2 Data Parallel Programming

There is an extensive collection of data parallel oper-
ators developed during the last several decades. This
collection arises from several sources. First, many of
today’s data parallel operators were initially conceived
as operators on collections. Parallelism seems to have
been an afterthought. Examples include the map [21]
and reduce [26] functions of LISP, the operation on
sets of SETL [25], and the array, set, and tree opera-
tors of APL [17]. The reason why these operators can
be used to represent parallel computation is that many
parallel computation patterns can be represented as
element-by-element operations on arrays or other col-
lections or as reduction operations. Furthermore, par-
allel communication patterns found in message passing
(e.g. MPI) parallel programs correspond to operations
found in APL, and more recently Fortran 90, such as
transposition or circular shifts. Most of these opera-
tions were part of the languages just mentioned.

The vector instructions of SIMD machines such as
the early array and vector processors, including Illiac
IV [3], TI ASC [27], and CDC Star [14] are a second
source of data parallel operators. Array instructions
are still found today in modern machines including vec-
tor supercomputers and as extensions to the instruction
set of conventional microprocessors (SSE [16] and Al-
tivec [9]) and as GPU hardware accelerators [20], with
their hundreds of processors specialized in performing
repetitive operations on large arrays of data.

The the data parallel operators of high-level lan-
guages and the libraries developed to encapsulate par-
allel computations are a third source of data parallel
operators. Early examples of data parallel languages

include the vector languages of Illiac IV such as Il-
liac IV Fortran and IVTRAN [22]. Recent examples
include High Performance Fortran [19, 12] that rep-
resented distributed memory data parallel operations
with array operations [1] and data distribution direc-
tives. The functional data parallel language NESL [5]
made use of dynamic partitioning of collections and
nested parallelism. Data parallel extensions of Lisp
(*Lisp) were developed by Thinking Machines. Data
parallel operations on sets was presented as an ex-
tension to SETL [15] and discussed in the context of
the Connection Machine [13], but it seems there is
not much more about the use of data parallel oper-
ation on sets in the literature. The recent design of
a MapReduce [8] data parallel operation combining the
map and reduce operators of Lisp has received much
attention.

In the numerically oriented high-level languages,
data parallel programming often took the form of arith-
metic operations on linear arrays perhaps controlled
by a mask. Most often, the operations performed
where either element-by-element operations or reduc-
tions across arrays. An example from Illiac IV Fortran
is A(*) = B(*) + C(*) which adds, making use of the
parallelism of the machine, vectors B and C and assigns
the result to vector A. In Fortran 90 and MATLAB the
same expression is represented by replacing * with :. In
IVTRAN, the range of subscripts was controlled with
the do for all statement (the predecessor of today’s
forall). Reductions were represented with intrinsic
functions such as sum, prod, any, and first.

Two important characteristics of the operations on
collection and data parallel constructs of the languages
described above are:

• Flat data types. In practically all cases, there is no in-
ternal hierarchy of the data structures. Arrays, sets,
sequences are typically flat data structures. An ex-
ception is NESL which makes use of sequences of se-
quences for nested parallelism. HPF accepted dec-
larations specifying data partitioning and alignment,
but these were instructions to the compiler and not
reflected directly in the executable instructions.

• Fully independent parallelism. In all cases, paral-
lelism is either fully independent or, if there is interac-
tion, takes the form of a reduction or scan operations.

Despite the great advantages mentioned in Sec-
tion 1, there is much less experience with the expression
of parallelism using operators on collections than with
other forms of parallelism. Parallel programming in
recent times has mostly targeted MIMD machines and
relied on SPMD notation, task spawning operations
and parallel loops. Even for the popular GPUs, the
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notation of choice today, CUDA, is SPMD. The most
significant experience with data parallel operators has
been in the context of vector machines and vector ex-
tensions (SSE/Altivec) where data parallel operators
are limited by the target machine, like in the Illiac
IV days, to element-by-element simple arithmetic or
boolean vector operations.

3 Extending the Data Parallel Model

Advances in the design of data parallel operators
should build on earlier work, some of which was de-
scribed in Section 2. However, to move forward it is
also necessary to consider parallel programming pat-
terns that demonstrate their value for programmability
or performance. An example is tiling which occurs fre-
quently in all forms of parallel programs for data distri-
bution in distributed memory machines, to control loop
scheduling in shared-memory machines, or to organize
the computation in GPU programs. Another example
is the dynamic partitioning of data for linear algebra
computations or sorting operations. A third example
is data parallel operations in which operations on dif-
ferent elements of a collection interact with each other
or must be executed in a particular order. Interac-
tions and ordering between operations on elements of a
collection have traditionally been associated with task
parallelism, but they can also be implemented within
data parallel operations.

In our experience, specific evolution directions for
the functionality of data parallel operators include:

• New classes of collections. Although there have been
proposals and a few experimental systems that ap-
ply data parallelism to general collections of objects,
most of the implementations and hence of the experi-
ence has targeted dense arrays. However, sparse com-
putations and operations on sets (and perhaps other
objects such as graphs) must be considered if data
parallel operators are to become universally useful.

• Static and dynamic partitioning or tiling. To enable
the direct control of data distribution and scheduling,
it must be possible to partition, dynamically and stat-
ically, the collections that the data parallel operators
manipulate. It must also be possible to directly op-
erate on these partitions. In the case of arrays, the
simplest and most useful partitions are tiles. In fact,
the numerous algorithms developed using static and
dynamic tiling seems to indicate that tiling is a fun-
damental operation on collections [10]. Tiling can be
applied at one or multiple levels. When tiling at mul-
tiple levels, the outermost levels of tiling can be used
to distribute the work between the threads in a par-
allel program, while the innermost levels are used to

enhance locality. When the target is a distributed-
memory system, tiles can make communication ex-
plicit, because computations involving elements from
different tiles result in data movement.

We have studied partitioned collections including tiled
dense and sparse arrays and partitioned sets. To
operate on arrays, we developed the Hierarchically
Tiled Array (HTA) data type. We programmed sev-
eral codes including the NAS benchmarks and some
well known numerical algorithms such as LU and
found that the programs written using HTAs resulted
in shorter and more readable codes than their MPI
counterparts, while obtaining similar performance re-
sults [4, 11]. We have obtained similar results when
comparing HTAs to SMP APIs such as TBB [2, 7].
We are currently investigating how to add partitions
or tiles to data parallel operation on sets, to obtain a
tiled (or hierarchically tiled) set. A tiled set is similar
to an HTA, with the only difference that in this case
the programmer needs to define a, potentially com-
plex, mapping function to determine the tile to which
an element of the set belongs. In the case of arrays,
tiling can be defined by hyperplanes along each di-
mension.

Tile size can be used to control how the load is
distributed among processors. While partitioning a
dense array in equal chunks is easy, the partition of
a sparse array or a set into equal-size chunks is not
trivial. In the case of tiled sparse array, the program-
mer may choose different tiling strategies depending
on the structure of the sparse arrays. In the case
of the tiled sets, different mapping functions can re-
sult in different distributions. When a good tile size
cannot be determined a priori, a possible solution to
ameliorate the problem of load imbalance is to create
more tiles than threads and let the runtime system
map the tiles to the threads, following a task stealing
strategy similar to the one implemented in Cilk [6] or
Intel Thread Building Blocks [24] or Charm++ [18].

• Parallel operations with interactions. Another exam-
ple of patterns that have not been traditionally pro-
grammed using data parallel operators are operations
on collections with interactions between the compu-
tations on different elements, thus requiring the us-
age of locks or other forms of synchronization for cor-
rectness. As an example, consider A(I) += V where
A, I and V are vectors. This expression means that
for every i, 1≤i≤n, where n is the length of I and
V, A(I(i)) must be updated adding to it the value
of V(i). As mentioned in the previous section, tra-
ditional data parallel operators require the compu-
tation to be fully parallel, so vector I cannot have
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two elements with the same value. However, in many
situations, collections of two or more elements of I
may have the same value, so that some elements of A
could be augmented repetitively with elements from
V. Thus, to obtain a correct result, the elements of A
must be atomically updated. Otherwise, a mechanism
to impose an order of execution would be needed.

In principle, assuming that the potential rounding er-
rors of floating-point operations can be disregarded,
updates to an element of A could be reordered. In
this case, we will have a non-determinate computation
with the results varying, perhaps only slightly, de-
pending on the order of updates. There are of course
numerous other cases where non-determinacy could
arise. The difference between results could be signifi-
cant without affecting correctness. However, in these
cases, non-determinacy could be encapsulated within
the data parallel operation, facilitating analysis.

In other cases, the order of operation is relevant. For
example, assume A represents the balances of bank
accounts, and V a sequence of amounts to be drawn
from (negative) or credited to (positive) the accounts
indicated by the corresponding index in I, with the
transactions in V sorted chronologically. If the bank
imposes a penalty for negative balances, the transac-
tions associated to each individual account cannot be
reordered. Imposing an order of execution of the ele-
ment operations within a collective operation is an im-
portant strategy that can enable the implementation
of classes of parallel computations typically associated
with task parallel implementations. An example are
pipelined computations which can be represented with
a doacross schedule within a data parallel operation.

• Implementation. The implementation of data types
for data parallelism is also an important considera-
tion. While it may seem natural to design the data
types and their operators as part of a programming
language, in our work we have chosen to use class li-
braries initially. Creating a new language requires a
compiler for each target machine on which the pro-
grams are run. Libraries only require a regular host
compiler and therefore libraries are easier to develop,
enabling fast testing of the usability and performance
limitations of new operators. However, compilers are
likely to be needed for a production system. Build-
ing semantic information into a compiler would allow
optimizations that are difficult or impossible with a
library, such as eliminating unnecessary copying or
temporaries. Furthermore, the high level notation
typical of data parallel operators presents the oppor-
tunity for advanced optimizations such as data struc-
ture selection, static autotuning, and data-dependent

dynamic optimizations. Object-oriented languages
are the natural implementation language for a library,
since what we are designing are new data types. Use-
ful language features are polymorphism and operator
overloading, as they allow the representation of oper-
ations in a more convenient notation.

• Portability. Judiciously designed data parallel data
types can be implemented for all classes of paral-
lel machines: distributed-memory clusters, shared-
memory multiprocessors, SIMD machines, and ma-
chines with hybrid architectures such as distributed
memory machines with SMP nodes and array exten-
sions. The performance optimality of an implementa-
tion will likely differ across machine classes, but the
code will at least be portable across machine classes.
The desired degree of portability should be taken into
account when selecting the algorithms during pro-
gram development.

• Performance abstractions. Determining efficiency of
execution or approximate running times by inspecting
a program is useful for manual tuning and obtaining
guarantees on the execution time of the codes. Esti-
mating execution time is a difficult task even for con-
ventional programs. However, the encapsulation of
computations inside operations on collections could
contribute to facilitate performance prediction. It
would certainly be useful to associate with data par-
allel operators an execution model for each class of
target machines. Although performance abstractions
would be complicated by the application of the ad-
vanced optimizations just mentioned, it should be
possible to either give lower bounds on performance
or give formulas that specify behavior as a function
of parameters representing different execution condi-
tions including characteristics of the data and data
placement at the beginning of the execution of an op-
erator.

4 Examples of Data Parallel Programs

In this Section we show two code examples with data
parallel operators on tiled data structures. Section 4.1
describes merge sort using tiled arrays. Section 4.2
describes a graph breadth-first search algorithm that
uses tiled sets.

4.1 Merge Sort

Merge sort is used to illustrate the use of tiled ar-
rays and nested parallelism. For tiled arrays we used
the HTA data type described in [4, 11]. HTAs are ar-
rays whose components are tiles which can be either
lower level HTAs or conventional arrays. Nested par-
allelism could proceed recursively across the different
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Merge(HTA output, HTA input1, HTA input2)
if (output.size() < THRESHOLD)

SerialMerge(output, input1, input2)
else

i = input1.size() / 2
input1.addPartition(i)
j = h2.location_first_gt(input1[i])
input2.addPartition(j)
output.addPartition(i+j)
hmap(Merge(), output, input1, input2)

Figure 1. Parallel Merge

levels of the tile hierarchy. This hierarchy can be speci-
fied statically or dynamically when the tiling structure
depends on the input characteristics.

Figure 1 illustrates the use of a dynamic partition-
ing operator (addPartition) to produce nested par-
allelism on merge sort. As the Figure shows, HTA
input1 is first split in half. Then, the location of the
element greater than the midpoint element of input1 is
found in input2 and used to partition it. Then output
is partitioned such that its tiles can accommodate the
respective tiles from the two input tiles that are going
to be merged. Finally, an hmap recursively calls the
Merge operation on the newly created left tiles of the
two input arrays as well as the right tiles.

hmap takes as arguments a function, a tiled struc-
ture (array or set), and optionally, additional struc-
tures with the same arrangement of tiles. The function
is applied to corresponding tiles and this application
can take place in parallel across corresponding tiles.
hmap can perform basic element-by-element operations,
but it can also be used to perform more complex user-
defined actions upon elements or tiles. More examples
of HTAs can be found in [4, 11].

4.2 Bread-First Search

Bread-First Search (BFS) illustrates the use of sets
to implement a graph search algorithm that traverses
the neighboring nodes starting at the root node. For
each node, it traverses their unvisited neighbor nodes.
It continues this process until it finds the goal node.
Our example, shown in Figure 2, uses a BFS strategy
to label the nodes in the graph by level, where level is
the shortest path length from the initial node.

Our data parallel implementation uses tiled sets,
meaning that sets of nodes are partitioned into tiles
and a mapping function is used to determine to which
tile a node belongs. A tiled set is similar to an HTA in
functionality, the only difference being that the under-
lying primitive data type is a set instead of an array.

This algorithm uses the following data structures:

• work list - a set of nodes partitioned into tiles.
Tiles can be processed in parallel with each other.

TiledSet work_list[# of Tiles]
TiledSet neighbors[# of Tiles]
TiledSet adj[# of Tiles]
TiledSet rearranged_neighbors[# of Tiles]

BFS(TiledSet work_list, TiledSet neighbors)
work_list[0].add(0)
level = 0

while (work_list[:] not empty)
hmap(find_neighbors(), work_list, neighbors)
rearranged_neighbors =

hmap_reduce(mapping_function(), Union(), neighbors)
hmap(mark_neighbors(), rearranged_neighbors,

work_list, level)
level++

find_neighbors(TiledSet work_list_tile,
TiledSet neighbors_tile)
foreach element e in work_list_tile

Set ns = adj(e)
foreach element s in ns

neighbors_tile.add(s)

mark_neighbors(TiledSet rearranged_neighbors_tile,
TiledSet work_list_tile, int level)
foreach element e in rearranged_neighbors_tile

if (unmarked(e))
mark(e, level + 1)
work_list_tile.add(e)

Figure 2. Breadth-First Search

Mapping function(e) computes the tile, i, of
work list to which node e belongs.

• neighbors - a tiled set that represents the neigh-
bors of the the nodes in work list in each itera-
tion of the while loop. Tile i of neighbors con-
tains the neighbors of tile i of work list. How-
ever, nodes in tile i of neighbors do not necessar-
ily belong to tile i of work list.

• rearranged neighbors - a tiled set that consists
of the elements of neighbors rearranged using
mapping function used to control tiling within
the work list set.

• adj - a tiled set that holds the adjacency informa-
tion of the graph on which the search is performed.
Each element is a pair consisting of a node and a
set of neighbors that can be reached from that
node. Given a node e, adj(e) is the set of its
neighbors. Pairs are mapped by applying to the
first element of adj the same mapping function
used for the work list set.

5 Conclusions

Although numerous parallel programming
paradigms have been developed during the past
several decades, there is consensus that a notation
with the most desirable characteristics is yet to be
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developed. Problems of modularity, structure and
portability remain to be solved.

Data types for data parallel programming have the
potential of addressing these problems. Well designed
data types should enable the development of highly
structured, modular programs that resemble their se-
quential counterparts in quality of their structure and
at the same time enable portability across classes of
parallel machines while maintaining efficiency. Al-
though experience with data parallel programming
models has been limited in scope and quantity, our
own experience with this approach has convinced us
that it is promising. We are yet to see a computa-
tional problem that does not succumb to the data par-
allel programming paradigm. Much remains to be done
for programmability and performance. New data types
and powerful methods for old data types need to be de-
signed and tools for optimization must be developed,
but there is no question that significant advances are
coming and that data parallel programming will have
a significant role in the future of computing.
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