
Lightweight Software Transactions for Games

Alexandro Baldassin
State University of Campinas, Brazil

alebal@ic.unicamp.br

Sebastian Burckhardt
Microsoft Research, Redmond

sburckha@microsoft.com

Abstract
To realize the performance potential of multiple cores, soft-
ware developers must architect their programs for concur-
rency. Unfortunately, for many applications, threads and
locks are difficult to use efficiently and correctly. Thus, re-
searchers have proposed transactional memory as a simpler
alternative.

To investigate if and how software transactional mem-
ory (STM) can help a programmer to parallelize applica-
tions, we perform a case study on a game application called
SpaceWars3D. After experiencing suboptimal performance,
we depart from classic STM designs and propose a program-
ming model that uses long-running, abort-free transactions
that rely on user specifications to avoid or resolve conflicts.
With this model we achieve the combined goal of competi-
tive performance and improved programmability.

1. Introduction
With the exponential growth in power dissipation and lim-
itations on the microarchitectural level, the semiconductor
industry has shifted its focus towards multicore architec-
tures. Unfortunately, many applications are not designed to
exploit true concurrency available on a multicore processor
and thus no longer get the benefit of steady performance
improvements with the succession of new chip generations.
The task of filling in the gap between hardware and software
and bringing concurrent programming to the mainstream is
being regarded as one of the greatest challenges in computer
science in the last 50 years [5], with companies such as Mi-
crosoft and Intel investing heavily in academic research in
this area.

The most common concurrent programming model today
is based on a shared memory architecture wherein a thread is
the unit of concurrency. Threads communicate through reads
and writes from/to shared memory and, to avoid conflicts,
they synchronize using locks. Often, locks are used to con-
struct so-called critical sections, areas of code that can not
be entered by more than one thread at a time. An alterna-
tive to lock-based synchronization is known as transactional
memory [4]. In this model programmers specify transac-
tions, blocks of code that appears to execute atomically and
in isolation. The underlying runtime system (implemented in

hardware, software or a mix of both) is responsible for de-
tecting conflicts and providing a consistent (serializable or
linearizable) execution of the transactions.

Transactional memory is an active research field and the
approach seems promising: benchmarks show that transac-
tional memory can improve the performance of some code,
such as scientific algorithms or concurrent data type im-
plementations. Nevertheless, how to successfully integrate
transactional memory into more mainstream applications re-
mains an open question [10]. We believe that programmers
will adopt TM only if it can deliver both a substantially
simplified programming experience and competitive perfor-
mance compared to traditional lock-based designs.

To address this general challenge, we conducted a par-
allelization case study on a full-featured game application,
SpaceWars3D [3]. We first restructured the sequential code
into cleanly separated modules dealing with the different
aspects of the game (Fig.1). Then we tried to parallelize
the tasks performed in each frame (such as rendering the
screen, updating positions of game objects, detecting col-
lisions, etc.). We quickly realized that traditional synchro-
nization (locks and critical sections) is cumbersome to use.
For more convenient programming, we tried to execute each
task as a transaction, provided by an STM. Unfortunately,
performance was poor because of (1) frequent conflicts and
rollbacks, and (2) the large overhead of transactional execu-
tion.

To resolve these problems, we departed from standard
STM designs and developed a novel programming model.
It replicates the shared data so that each task can access
its local replica without synchronization. The replicas are
reconciled by propagating updates between frames. The key
design decisions are (1) tasks never abort, and (2) data
consistency requirements are specified by the programmer
using object-oriented techniques.

The user plays an active role in controlling concurrency.
First, she may restrict concurrency by enforcing specific task
orderings using task barriers. Second, she may enable con-
current modifications of certain objects by specifying how to
reconcile conflicts (using priorities or a general merge func-
tion).



This final strategy performed well. Although we ask the
programmer to think quite a bit about data sharing and data
consistency, we feel that there is a substantial value to the
exercise as it leads to a more declarative and more concurrent
programming style than traditional approaches. Most of the
task conflicts found and reported during runtime were either
easily eliminated (some even helped us to find bugs in the
code), or revealed an important dependency between tasks
that we had not detected before.

1.1 Contributions
Our main contributions are (1) that we report on the chal-
lenges we encountered when parallelizing a game applica-
tion, and (2) that we propose a programming model (based
on long-running, abort-free transactions with user-specified
merge-based consistency) that achieves good programmabil-
ity and competitive performance.

1.2 Related Work
There are two main works reporting on experiences in us-
ing TM to parallelize large applications. Scott et al. [8] em-
ploy a mix of barriers and transactions to create a parallel
implementation of Delaunay triangulation. Watson et al. [9]
investigate how Lee’s routing algorithm can be made par-
allel by using transactions. Where our work differs from
theirs is in the application domain (we have a game appli-
cation) and in how we solved the performance problem im-
posed by long-running transactions. Blundell et al. [2] de-
vise unrestricted transactions as a mean of allowing transac-
tions to perform I/O. Aydonat and Abdelrahman [1] propose
conflict-serializability in order to reduce the abort rate of
long-running transactions. Our solution allows both I/O and
long-running transactions by completely avoiding aborts.
Rhalibi et al. [6] present a framework for modeling games
as cyclic-task-dependency graphs and a runtime scheduler.
However, their framework does not use replication; rather
it is based on the classic lock-based synchronization primi-
tives.

As in our work, Rinard and Diniz [7] use object repli-
cation for better concurrency. However, they apply it in a
different context (a parallelizing compiler).

2. The Game
Our starting point was a enhanced 3D Windows version
of the classic game Spacewars, as described in a tutorial
book [3] and with source code available on the web.1 In a
nutshell, the game consists of two starships shooting one an-
other in space. It is coded in C# and uses the ManagedDi-
rectX API. Developed to teach game programming, it fea-
tures many realistic details including 3D rendered graphics,
sound, and a network connection.

Because the original game lacked sufficiently heavy com-
putation to challenge our machine, we added moving as-

1 www.apress.com/book/downloadfile/1486

MODELController

View

View

Controller

View

Audio Network 

Screen

Controller

Physics

 Controller

Input

Controller

Figure 1. Our Model-View-Controller (MVC) design

teroids to the gameplay. Asteroids may collide with other
game objects. By varying the number of asteroids (we used
around 1500 in our experiments) we can conveniently adjust
the workload.

2.1 Model-View-Controller Design
As a first step we rearchitected the code following the
Model-View-Controller (MVC) design. MVC has been
widely used in many different environments. In our case,
its role is to express concurrency between the controllers,
and to separate shared data (the model) from controller-local
data (the views).

Our MVC architecture is shown in Fig. 1. It has a model
at the center, surrounded by several modules. Each module
handles one game aspect (sound, graphics, input, physics,
network). The model encapsulates the essential game state.
In our case, it consists of hierarchically organized game
objects (player ships, asteroids, projectiles). The model is
passive — it does not contain any threads, but its objects
may be read and updated by the modules.

The modules are the gateways between the model and the
external world; they respond to external events (incoming
network packets, user input) by updating the model, and they
in turn send information about the model to external entities
(such as the screen, or to remote players). A module con-
tains exactly one controller and may contain one or more
views. Controllers are active (they may contain one or more
threads). Views encapsulate data relating to a particular ex-
ternal interface. We now describe the modules in turn:

• The screen controller renders the game state once each
frame, using the DirectX interface to the graphics card.
Parameters and data related to this interface (such as
meshes or textures) are encapsulated in the screen view.

• The physics controller performs two tasks each frame.
One handles collisions between game objects; the other
updates the object positions based on their speed and the
elapsed time.



• The input controller processes mouse and keyboard in-
put, firing shots and changing the position and speed of
the player ship accordingly.

• The network controller processes incoming packets and
periodically sends packets to the remote player.

• The audio controller plays sounds each frame, in reaction
to events that occurred within this frame.

3. Challenges
We now describe the main challenges we encountered in
more detail.

3.1 Finding Concurrency
The original code is almost completely sequential: all tasks
(except the receipt of network packets) are performed by the
main thread, inside a game loop that repeats every frame. To
improve performance on a multicore, we need to find ways
to distribute the work for concurrent execution on multiple
processors.

In fact, there is plenty of opportunity for concurrency. We
distinguish three kinds. First, as visible in Fig. 1, there is nat-
ural concurrency among different controllers. Second, some
controllers (such as the physics controller) perform more
than one task in each frame, which can also be concurrent.
Finally, some (but not all) tasks lend themselves to paral-
lelization; for instance, we can split the collision handler into
concurrent subtasks.

All three kinds of concurrency are realized in our final
solution (see the experiments in Section 5).

3.2 Critical Sections Don’t Work
As can be seen from Fig. 1, an easy and safe way to provide
synchronization is to use a single lock to protect the entire
model, and run the entire task in a critical section. Unfortu-
nately, this scheme would imply that only one task runs at a
time, so we would perform no better (and likely worse) than
the sequential game.

The standard methodology to address this issue is to use
(1) fine-grained locking, and (2) shorter critical sections. We
ran into serious problems with this approach, however.

• With finer-grained locks, there is higher overhead. Also,
care has to be taken to organize acquires and releases in
a fashion that avoids deadlock.

• If a task accesses the same data repeatedly, but the ac-
cesses are not all contained in a single critical section,
the data may be inconsistent.2

2 For example, consider concurrent execution of the rendering task (which
draws all game objects on the screen) and the physics task (which moves
all objects individually, based on the elaped time). Fine grained locking
led to noticeable inconsistencies as some objects would appear in their old
position and others in their new position.

public class PhysicsController : Controller
{

public void Start()
{

runtime.AddTask(this.UpdateCollisions);
}
public void UpdateCollisions()
{

...

Figure 2. Controllers specify the periodic tasks. In each
frame, the runtime calls all tasks concurrently, and waits for
all of them to complete before proceeding to the next frame.

• To shorten critical sections, we may need to manually
copy shared data to local variables and vice versa. This
is cumbersome and hard to maintain.

• Changing the length or position of critical sections re-
quires nontrivial code changes. It is thus not easy to tune
the performance for different machines and for different
inputs.

3.3 Optimistic Concurrency Doesn’t Work
Next, we turned to software transactional memory (STM)
which uses optimistic concurrency control: a runtime sys-
tem monitors the memory accesses performed by a transac-
tion and rolls them back if there are any conflicts. Unfortu-
nately, we found that in our situation, standard STMs do not
perform as envisioned, for the following three reasons.

• STM relies on optimistic concurrency control to amortize
the cost of monitoring memory accesses and rollbacks
(conflicts are expected to be rare). However, we observed
that many of our game tasks were conflicting in every
frame, thrashing STM performance.

• Even without conflicts, the overhead of transactional ex-
ecution is discouragingly large, because we execute large
chunks of code within each transaction.

• I/O is not typically supported in a transaction (because it
can usually not be rolled back). We found that at least for
this game, we can work around this restriction.3

Note that all three of these problems could be addressed
by reducing the size of transactions; but then we would face
similar programmability issues as with critical sections.

4. Solution
Our solution combines the MVC programming model with
a classic trick from the concurrency playbook: replication.

First, each controller tells the runtime system the tasks
it needs to perform (Fig. 2). The runtime system then calls
these tasks concurrently in each frame, giving each task

3 We can restrict tasks to be either reader tasks (that do not update the model,
but may freely do I/O) or updater tasks (that may freely update the model,
but not perform I/O). We can use standard STM for updater tasks, and use
a special atomic snapshot mechanism for reader tasks.



class Ship
{

SharedValue <ShipState> state;
SharedObject <Position> position;
SharedList <Shot> shots;
...

Figure 3. We share data between tasks by using wrapper
templates provided by the runtime library, as shown in these
three examples.

void Shoot(Ship ship)
{

if (ship.state.get() != ShipState.Dead)
ship.shots.GetForWrite().Add(new Shot());

}

void Render(Ship ship)
{

DrawShip(ship.position.GetReadonly());
foreach(Shot shot in ship.shots.GetReadonly())

DrawShot(shot);
}

Figure 4. Two method examples that show how to read and
update the task-local replica.

its own replica of the world to work on. At the end of
each frame, any updates made to the task-local replicas are
propagated to all other replicas.

To share data between tasks, the user wraps it with tem-
plates provided by the runtime library (Fig. 3). The runtime
then creates task-local replicas automatically and propagates
updates at the end of each frame. We use different template
variations to wrap values, objects, and collections, respec-
tively.

Accessing the replicated data from within the tasks is
straightforward (Fig. 4). For shared values, we use simple
get() and set(value) methods to read or modify the task-
local replica. For shared objects and collections, we gain
access to the local replica by calling GetReadonly() or
GetForWrite(), depending on whether we plan to modify
the object.

By default, our runtime throws an exception if shared ob-
jects are modified by more than one task. To allow truly con-
current modification, our runtime currently supports three
kinds of specialized wrappers (Fig. 5).

• The SharedGrowingList allows each task to add elements
to the list, and merges all additions in the end. We used
this data type for the list of asteroids, which may grow as
a result of asteroids bursting into pieces.

• The SharedObjectWithPriority wrapper allows the user to
associate a priority with each update. Conflicts are then
resolved according to their priority. We used this wrap-
per template to express that incoming network packets

SharedObjectWithPriority <Position,Priority> pos;
SharedGrowingList <Asteroid> asteroids;
SharedObjectWithMerge <Sound> sound;

Figure 5. Specialized templates enable concurrent modifi-
cation of shared data, as shown in these three examples. Con-
flicting updates are automatically reconciled at the end of the
frame.

MakeBarrier("ProcessInput","UpdateWorld");
MakeBarrier("UpdateWorld", "PlaySounds");

Figure 6. The programmer can specify barriers to enforce
task order, as shown in these two examples.

update the opponent’s ship position with a higher prior-
ity than the local simulation.

• The SharedObjectWithMerge captures the general case
by supporting a user-specified merge. The wrapped data
type must implement a merge method that computes the
merged value given the initial value and two modified
values. We used this wrapper for the sound data type,
a bitmask whose bits may be set by various tasks. The
merge function is a simple bitwise or.

Clearly, we are asking our users to make many choices.
However, we believe that these choices are not boring and te-
dious, but represent important aspects of the implementation
that are well worth documenting. Forcing the programmer to
be explicit about intent does not only improve concurrency,
but facilitates code maintenance. It may even be worthwile
to adopt such techniques for purely sequential code. If there
are many tasks that share data in undocumented ways, main-
taining the correct semantics can be challenging even in a
sequential game loop.

In addition to wrapper templates, our library supports task
barriers (Fig. 6). If the user specifies a task barrier ordering
task A before task B, then task B does not start until task A
is finished, and all object updates performed by task A are
propagated to task B.

4.1 Implementation and Optimizations
The runtime implementation takes care of managing the
shared data (Fig. 7). It instantiates a fixed number of replicas
of each shared object, equal to the number of tasks. Each
task uses its (unique) task number to index into the array
and access its own replica. In each frame, we record the set
of shared objects each task has modified.

At the end of each frame, we process all the objects that
were modified by some task. If they were modified by just
one task, we simply propagate the updated version to all
other copies, either by direct assignment (for shared values)
or by calling an assignment method (for shared objects and
collections). If an object was modified by more than one
task, we pairwise reconcile the updates (using the priority, or



public class SharedValue<T>
{

private T[] value;
public T get()
{
return value[my_task_id];

}
public void set(T newvalue)
{
value[my_task_id] = newvalue;
Frame.MarkModified(this, my_task_id);

}
...

Figure 7. A simplified illustration of our implementation,
using a fixed-size array to contain the replicas. Modified
replicas are marked, and propagated at the end of the frame.

Experiment A B C
Frames per second 39 59 76
Speedup n/a 48% 92%
Total time per frame [ms] 25.2 17.0 13.1
Rendering (RefrWnd) [ms] 10.3 10.8 12.9
Collision handling [ms] 14.4 16.0 7.2/6.7/6.4
Position Update [ms] 0.42 0.91 2.0
Number of replicas 1 2 10
Total memory [MB] 85 93 125

Figure 8. Some measurements for the three experiments.
All were conducted on a 4-core processor (Intel Q9550) at
2.83 GHz with 2 GB of memory, running Windows Vista,
and using a NVidia Geforce 8600 graphics card.

using a merge function) before we propagate the final result
to all replicas.

To reduce the amount of copying, we perform several
optimizations. For one, all reader tasks (tasks that do not
update any shared objects) share the same “master” replica.
Second, we perform a copy-on-write optimization: rather
than propagating updates eagerly at the end of the frame,
we keep accessing the master read-only copy until the first
time a replica is modified, at which time we perform the
propagation.

5. Experimental Results
We measured the performance of the game in three ex-
periments on a 4-core machine, using increasing amounts
of replication and concurrency, and observing increasing
speedups. We show frames per second, speedup, total mem-
ory consumption, and the three most time-consuming tasks
in Fig. 8. To visualize the results, we instrumented our proto-
type to capture and display task schedules. We show typical
schedules in Fig. 9.

Experiment A (the sequential baseline) performs all tasks
sequentially, using no replication and no synchronization.

Experiment A: Single Replica (no concurrency)

Experiment B: Two Replicas (partial concurrency)

Experiment C: Multiple Replicas (full concurrency)

Figure 9. Typical task schedules for the three experiments
on our 4-core machine.

The corresponding schedule in Fig. 9 thus shows no overlap
between tasks.

Experiment B (partial concurrency) is similar to tradi-
tional double-buffering techniques. It creates two replicas
only. One replica is shared among all reader tasks (tasks that
do not modify the model). The other replica is used by up-
dater tasks (tasks that may modify the model), which are
scheduled sequentially (one updater at a time). The corre-
sponding schedule in Fig. 9 shows significant overlap be-
tween the RefrWnd reader task (which renders the screen)
and the UpdateCollisions updater task (which handles colli-
sion). The total time spent for each frame is thus shorter.

Experiment C (full concurrency) uses one replica per
task, as described in the previous section. Furthermore, it
breaks the collision detection task into three roughly equal
pieces. The corresponding schedule in Fig. 9 shows that on
our 4-core machine, we almost reach maximal concurrency



for this application and machine (the total frame length can
not be smaller than the largest sequential piece, RefrWnd,
which is limited by the graphics card).

The (comparatively modest) overhead incurred by our
runtime is visible in the form of slightly longer-running
tasks, and as two additional tasks (CopyBack and Recon-
cile).

6. Conclusion and Future Work
We propose a novel programming methodology based on
long-running, abort-free transactions with user-specified
object-wise consistency. Our experiments on a game appli-
cation confirm that our programming model can deliver an
attractive compromise between programming convenience
and multicore performance.

Future work will address how to simplify the programmer
experience further (for instance, by supporting events and
observer patterns), and to engineer a runtime prototype that
scales to larger games with many thousands of game objects.

Acknowledgments
We thank the many people that contributed insightful com-
ments and interesting discussions, including (but not lim-
ited to) Jim Larus, Tom Ball, Patrice Godefroid, and Trishul
Chilimbi.

References
[1] U. Aydonat and T. Abdelrahman. Serializability of trans-

actions in software transactional memory. In Workshop on
Transactional Computing, 2008.

[2] C. Blundell, E. Lewis, and M. Martin. Unrestricted
transactional memory: Supporting I/O and system calls
within transactions. Technical Report TR-CIS-06-09,
University of Pennsylvania, 2006.

[3] E. Hatton, A. S. Lobao, and D. Weller. Beginning .NET Game
Programming in C#. Apress, 2004.

[4] J. Larus and R. Rajwar. Transactional Memory. Morgan &
Claypool Publishers, 2007.

[5] C. O’Hanlon. A conversation with John Hennessy and David
Patterson. Queue, 4(10):14–22, 2007.

[6] A. El Rhalibi, M. Merabti, and Y Shen. Improving game
processing in multithreading and multiprocessor architecture.
Lecture Notes in Computer Science, 3942:669–679, 2006.

[7] M. Rinard and P. Diniz. Eliminating synchronization bottle-
necks in object-based programs using adaptive replication. In
International Conference on Supercomputing, 1999.

[8] M. Scott, M. Spear, L. Dalessandro, and V. Marathe. De-
launay triangulation with transactions and barriers. In IEEE
International Symposium on Workload Characterization,
pages 107–113, 2007.

[9] I. Watson, C. Kirkham, and M. Lujan. A study of a
transactional parallel routing algorithm. In International

Conference on Parallel Architectures and Compilation
Techniques, pages 388–398, 2007.

[10] Workshop on TM Workloads, http://freya.cs.uiuc.edu/WTW/,
2006.


