
Offloading AI for Peer-to-Peer Games with Dead Reckoning

Jiaqiang Bai, Daryl Seah, James Yong and Ben Leong
National University of Singapore

Abstract

In this paper, we study the performance of an offloaded
AI agent with increasing network latencies and demon-
strate thatdead reckoning is effective in mitigating the
observed degradation. Dead reckoning refers to a class
of algorithms typically employed to predict the state of
objects in existing games to mitigate the effects of game
lag and improve player experience. For a deployed real-
time tank game, we found that increasing latencies will
cause gradual degradation to the performance of an AI
agent and the performance is severely degraded when la-
tencies reach about 300 ms. We show that a simple im-
plementation of dead reckoning is able to delay the onset
of performance degradation for round-trip latencies up
to 250 ms and is relatively robust to network jitter and
packet loss. Since the observed average latency within
the continental North America is approximately 55 ms
and inter-continental latencies are in the vicinity of 250
ms, our results demonstrate that it is feasible to offload
AI to client machines. Most importantly, our method
is practical because it does not require much additional
code and it allows offloaded AI agents to be developed in
a network-oblivious manner similar to what is presently
done for server-based AI.

1 Introduction

There have been many proposals for peer-to-peer (p2p)
games [9, 2, 3, 4]. While the traditional server-client
architecture is expected to continue to be the dominant
player for “heavy-weight” games like the World of War-
craft, multiplayer versions of the genre typically referred
to as “casual games” are becoming increasingly com-
monplace. A p2p architecture is an attractive option for
such games because by electing one of the client peers
to act as the server, instead of relying on a traditional
standalone server, we can reduce the need for centrally-
provisioned hardware, and thereby reduce costs.

Our work is motivated by our experience in develop-
ing and deploying Facebook Tankie [13], a p2p multi-
player third-person shooter tank game on Facebook. The
game is implemented as apseudo-server-based architec-
ture [4], where one node is elected to manage the syn-
chronization of game state and a backup node takes over
if the pseudo-server node should fail. Our experience
shows that this approach works well in practice.

We observed however that in scenarios which involved
a large number of AI agents, the pseudo-server node
tends to get overloaded and suffer performance degra-
dation. We therefore decided to explore the possibility
of the offloading of AI to peer nodes, in order to make
the pseudo-server process morelight-weight. Because
a light-weight pseudo-server maintains less game state,
it is easier and faster to recover when it fails. With the
availability of additional computational resources from
peers, it is conceivable that we can support more com-
plex AI behaviours [6].

The offloading of an AI agent to peer nodes is unfor-
tunately not without complications. There are two key
challenges: (i) the state of the game world as perceived
by the client is slightly behind the actual state of the sim-
ulation at the server; and (ii) there is a delay between the
time when a command is issued by the AI agent running
on the client and the time when the command is executed
on the server. If the person writing the AI agent has to
take into account varying network latencies, his job will
be significantly more complex, perhaps even intractable.
Ideally, we would like to be able to offload an AI agent
that was written to run on the server to a client with no
or minimal modification.

In this paper, we study the performance of an AI agent
as network latencies increase and evaluate the effective-
ness ofdead reckoning in mitigating the observed degra-
dation. Our goal is to allow AI agents to be developed in
a network-oblivious manner, similar to what is presently
done for server-based AI, and also to understand the lim-
its of performance that can be achieved for offloaded AI.
Our key idea is to employ dead reckoning to predict the
state of the simulation when a command is expected to
be executed, and to present this state of the game world
to the AI agent. The AI agent will then make its deci-
sions based on this augmented state instead of the local
state perceived by the client.

In our experiments, we verified that large network la-
tencies can indeed wreak havoc when commands are is-
sued by an AI agent across the network. In the context
of Facebook Tankie, we found that increasing latencies
will cause gradual degradation to the performance of the
AI agent and the performance is severely degraded when
latencies reach about 300 ms. We showed that a sim-
ple implementation of dead reckoning can delay the on-

set of performance degradation for network latencies up
to 250 ms. From the data obtained in our Facebook
deployment, we found that latencies within the conti-
nental North America are about 55 ms on average and
inter-continental latencies are about 250 ms on average.
Hence, our results suggest that it is practical to offload
AI to client machines, at least within a continent, and
possibly Internet-wide with further optimization.

In summary, our paper has two key contributions: (i)
to the best of our knowledge, ours is the first experimen-
tal study of how network latencies can affect AI agents
that are completely offloaded from a server; and (ii) we
show that a simple implementation of dead reckoning
can effectively delay the onset of performance degrada-
tion. But more importantly, not only is our method ef-
fective, it is simple and practical. Our implementation of
dead reckoning involves less than 200 lines of Java code
and it allowed an AI agent that was developed to be run
on a server to be offloaded with minimal modifications.

The remainder of this paper is organized as follows:
in Section 2, we provide a review of existing and re-
lated work. In Section 3, we describe our experimen-
tal methodology. Our evaluation results are presented in
Section 4. Finally, we discuss our work in Section 5 and
conclude in Section 6.

2 Related Work

To the best of our knowledge, the offloading of AI to
clients was first proposed by Douceur et al. [6]. The con-
text of their problem was however quite different. Their
goal was to partially offload some AI computations in
order to support increasingly complex AI in the con-
text of massively multiplayer online games (MMOGs).
Douceur et al. proposed the splitting of AI into two com-
ponents and offloading the more computationally expen-
sive component to clients. They also showed that their
approach is able to tolerate latencies of up to 1 second.
In our work, we offload an AI agent completely from the
pseudo-server so as to reduce its complexity and simplify
the recovery process in the event of node failures. Given
the context of our work, Douceur et al.’s solution is not
feasible. The splitting of an AI into two parts will make
the recovery process for a p2p setup even more compli-
cated. From our experience with game AI, we believe
that it might not always be feasible in the general case to
split AI into two components in a straightforward way.
In particular, we could not come up with a natural way to
split the AI agent for our game.

2.1 Dead reckoning
Dead reckoning refers to a class of algorithms that are
typically employed to predict the state of objects and
mitigate the effects of network latencies for clients in
a networked game to improve player experience. With
this technique, update packets are issued to notify clients

of a change in game state only when a prescribed error
threshold has been exceeded. The client then attempts to
predict the current state of the game objects between sta-
tus update messages. The prediction of future state based
on past states received from the server typically occurs
at every simulation step. The predicted state is updated
with the last received state from the server when the two
differs by more than a pre-determined threshold. When
this happens, players may observe the “teleportation” of
mobile objects [14].

Numerous improvements to the standard algorithm
have been proposed [10, 8]. These improvements focus
on prediction modeling, adjusting the threshold that trig-
gers the generation of entity state update packets, and
achieving smoother rendering. Machine learning has
also been successfully applied to dead reckoning [11].

2.2 Effect of Network Latency on Games
The effect of network latency on offloaded AI is a rela-
tively unexplored area. The effect of latency on human
players is however a well-studied subject. For human
players, the threshold of tolerance in general depends on
the genre of the game and the methods employed to min-
imize the effects of latency. First-Person Shooter (FPS)
games have a network latency tolerance in the 100 to 150
ms range [5]; third-person games like RPG and sports
games can tolerate up to 500 ms of network latency [5];
RTS games can tolerate slightly higher network laten-
cies of about 500 to 1,000 ms [1]; finally, MMORPGs
are most forgiving and can tolerate up to 1,250 ms of
network latency [7]. Facebook Tankie is a third-person
shooter game that falls in the region between a FPS game
and a RTS game.

Unlike humans, an AI agent does not get upset about
lag and we are concerned mainly with the empirical
degradation arising from network latencies for offloaded
AI. We found that the degradation of AI performance is
significantly more pronounced than what would be sug-
gested by the above figures.

3 Methodology

In this section, we describe our network model, our im-
plementation of dead reckoning and our experimental
setup.

3.1 Simulation and Network Model
A networked game is essentially a simulation that col-
lates and processes the inputs from a group of players.
The game that we used for our experiments is Facebook
Tankie [13], a multi-scenario third-person shooter tank
game that was written in Java and deployed on Face-
book. The game consists of objects like tanks, mines,
obstacles and AI agents. It is built overHydra, a p2p ar-
chitecture for networked games, that uses an augmented
server-client programming model [4]. Like other games,

it runs on an event-driven simulator that processes in-
coming messages (commands) in batches according to a
discrete timestamp, that we call atick.

Our network model is as follows: when a command
is issued at timet, the command will reach the server at
time t + tc, wheretc is the network delay from the client
to the server. The command is executed at the tick im-
mediately followingt + tc at the server and the update
arising is sent to the client. Suppose the update arrives at
time t + ts, we refer to the quantityts as thecommand
response time. The command response time is slightly
longer than the round trip time (RTT) because there is
a queuing delay at the server before a command is exe-
cuted.

In the game, each player controls a tank from a top-
down view and can execute commands like move for-
ward/backward, turn, rotate tank’s turret and fire projec-
tiles. In our experiments, each tank has 100 hitpoints.
When a projectile hits a tank, the tank suffers 10 points
of damage. The tank is destroyed when its hit points
reaches 0. While our Facebook game supports a variety
of game scenario and victory conditions, we worked with
a stripped-down AI agent that simply attempts to elimi-
nate opposing tanks in our experiments.

3.2 Implementation of Dead Reckoning
In this section, we describe how we implemented dead
reckoning to predict the state of the game world at the
point where an issued command is expected to be exe-
cuted. The only mobile objects in Tankie are the tanks
and projectiles. Since projectiles move significantly
faster than tanks and it is hard to write an AI agent that
can avoid projectiles, we focus on the prediction of the
positions of tank objects and ignore the projectiles. Our
technique is however general enough to be applied to any
mobile object.

First, we estimate the command response timets.
This is a quantity that can change over time due to net-
work conditions, so we keep a running estimate with a
exponentially-weighted moving average (EWMA), i.e.

t̂s = αt̂′
s
+ (1 − α)t (1)

wheret̂′
s

is the current estimate andt is the instantaneous
value. In our experiments, we setα = 0.5. From the es-
timatet̂s, we can predict the number of game stepss for
which we need to predict the states in advance for enemy
tanks by dividing the estimated command response time
t̂s by p, the tick period.

Suppose a client observes the stateWc for the game
world. We note thatWc is slightly outdated since there
is a delay before the state of the game world at the server
Ws is received at the client asWc as illustrated in Fig-
ure 1. If a command is issued by the client when the
game world is in stateWc, the command will reach the

Agent
AI

commands
issued

command

ServerClient

commands
apply

Wc

W ′

c

Ws

W ′

s

s ticks

Figure 1: Implementation of dead reckoning.

server and be executed when the state isW ′

s
. Our goal is

therefore to compute an estimate ofW ′

s
, which we refer

to asW ′

c
, and pass this view of the game world to the AI

agent for it to make its decision on the next move.
We know thatWc is equivalent toWs andW ′

s
is Ws

some ticks later. It is not possible for the client to de-
termine the number of ticks that would have elapsed
betweenW ′

s
and Ws exactly and this number might

vary when there are fluctuations in network latencies or
queueing delay. We hence approximate this delay with
s, the number of game steps that corresponds to the es-
timated command latencŷts. To estimateW ′

s
from Ws,

we observe that in addition to the evolution of the game
world, there are also commands that would have arrived
at the server and executed betweenWs andW ′

s
.

In Ws, there is a tank object that is controlled by the
AI agent and other objects that are either static or con-
trolled by other players or agents. We know exactly what
commands were issued in the past by the AI agent, but
we do not know what commands were issued by other
players or agents. Thus, we record the commands that
were issued by the AI agent for the pasts ticks and as-
sume that a command issued by the client would takes

2

ticks to reach the server.W ′

c
is therefore estimated by

simulatingWc for s ticks and applying the appropriate
commands issued by the AI agent at their estimated ar-
rival times betweenWs andW ′

s
.

It is possible that commands might be received by the
server from other agents betweenW ′

s
andWs, but we

do not take this into account because the client does not
have access to this information. In addition, the com-
mands issued by a client can sometimes be dropped be-
cause of packet losses in the network and there is also
some uncertainty in the times when issued commands
reach the server. We hence update our local estimates
as and when state updates on the controlled tank object
is received from the server.

It is important to note that when predicting the world
state, we can safely ignore any states over which the
client has authoritative control. For example, in Tankie,
the client has authoritative control over when a tank can

Server

AI Client

AI Client

Machine A Machine B

Netem

Figure 2: Experimental setup.

fire and over the direction of the turret. Such states
are not predicted and we simply use the latest available
value maintained at the client. Typical FPS games like
Counter-Strike or Half-Life also allow clients to have au-
thoritative control over some game states but retain con-
trol over whether shots hit at the server. This approach of
allowing clients to have authoritative control over some
game states is reasonable only for low latencies because
a lagging client’s avatar will otherwise appear to tele-
port on other players’ screens. Unfairness can also arise
when a client has such control if the latency to the server
is high.

3.3 Experiment Setup
We ran our lab experiments on two Intel Core2 Duo ma-
chines running Linux kernel 2.6.24.4. One machine has
Netem [12] installed to control the upstream and down-
stream network latency for connected machines. Netem
helps the testing of protocols by emulating network vari-
ables like delay, loss, duplication and re-ordering.

In each experiment, two tanks controlled by identical
AI agents were deployed against each other. One agent
was run on the same machine as the server with no net-
work latency while the other AI agent was run remotely
on another machine connected through Netem config-
ured with specific network latencies as shown in Fig-
ure 2. The AI agent attempts to encircle the enemy tank
and fire at it. Because both tanks are in constant mo-
tion, they have to constantly adjust their turrets in order
to score hits. We adopted this strategy because network
latencies will have little or no effect on the stationary
objects since no updates from the server would be re-
quired. By using identical AI agents, we ensure fairness
and that neither tank would have an advantage arising
from having a better AI agent. Furthermore, the layout
of the game world and the spawn points for the tanks
are symmetric to eliminate any bias due to strategic po-
sitioning. The size of the game world was small enough
for both AI agents to always see each other.

An experiment consists of a series of 100 games. Each
game ends when one tank successfully destroys its oppo-
nent. For each game, we record statistics like the winning
agent, the ratio of successful hits versus total shots fired,
the number of remaining hit points for the winning agent
and the time taken for each game to complete. We re-
peated the experiments at various network latencies from
0 to 375 ms with a tick period of 50 ms.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

w dead reckoning
w/o dead reckoning

P
ro

p
o

rt
io

n
o

fw
in

s

Latency (ms)

Figure 3: Plot of proportion of wins by the remote AI
agent against network latency.

4 Results

In this section, we present the results for our experi-
ments. We will refer to the AI agent that runs on the
machine with the server as thelocal agent and the other
agent as theremote agent. Error bars in the graphs indi-
cate the 95% confidence intervals.

4.1 Proportion of wins
First, we measured the performance of the remote agent
in terms of the proportion of wins. This is shown in Fig-
ure 3. When the latency is zero and dead reckoning is
not enabled, the local and the remote agents are effec-
tively equivalent and the proportion of wins by the re-
mote agent is approximately 0.5, as expected.

The proportion of wins decreases rapidly after the la-
tency reached approximately 100 ms and the remote AI
agent is rendered completely ineffective by about 200
ms. In Figure 3, we observe that with dead reckoning,
the performance of the AI agent starts degrading (i.e. the
proportion of wins falls below 50%) only after about 250
ms. Thereafter, the performance of the remote AI agent
degrades sharply.

Separately, we performed a simple test and had some
human players play against the local AI agent on the re-
mote client, and varied the latency. The human players
concluded that the latencies were tolerable up till about
500 ms. Thereafter, the game became unresponsive and
frustrating to play. This demonstrates that human play-
ers have a higher tolerance for network latency than AI
agents. Note that the AI agent we employed was rel-
atively good and it was difficult for an average human
player to beat the AI when there is no network latency.

One interesting observation is that with dead reckon-
ing, the performance of the remote agent surpasses that
of the local agent even when the network latency is zero.
While this may not seem intuitive, there is a good rea-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 50 100 150 200 250 300 350 400

remote agent w DR
local agent w DR

local agent w/o DR
remote agent w/o DR

H
it

ra
te

Latency (ms)

Figure 4: Plot of hit rate against network latency.

son. Because the server and the local agent are run as
separate processes on the same machine, the simulation
on the server is not synchronized with the local agent and
a command issued by the local agent is buffered before
execution. While the local agent makes a decision based
on the current tick, the command is effectively only ex-
ecuted one tick later. It was interesting to see that dead
reckoning naturally corrected for this phenomenon.

4.2 Firing accuracy
We found that the proportion of wins is a relatively
coarse measure since two agents could conceivably be
evenly matched until the last shot. Hence, we also com-
pared the accuracy of the local and remote agents as
shown in Figure 4. Hit rate refers to the ratio of hits
scored on the opponent tank over the total number of
shots fired. We see that the hit rate of the local AI agent
is approximately 50 to 60% and relatively constant, as
expected. It is not 100% because both tanks are in con-
stant motion, resulting in occasional misses. We observe
that the degradation of performance for the remote agent
in terms of its firing accuracy is somewhat more gradual
than what is suggested by the proportion of wins. We
also see that dead reckoning seems to be able to improve
the accuracy of the remote agent by about 10 to 15%
when latency is below 200 ms.

The accuracy of the local AI agent was also observed
to degrade at higher network latencies. We found that
this was because at such latencies, the tank controlled
by the remote AI agent tended to drift away, leading to
more misses by the local-agent-controlled tank. This is a
minor artifact of the experimental setup.

4.3 Packet Loss & Network Jitter
It is natural to expect the remote agent to perform worse
when there are packet losses. When we first plotted the
hit rate for the tank agents with emulated packet loss, we
were surprised that we did not observe any significant

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

0% packet loss
5% packet loss

10% packet loss

P
ro

p
o

rt
io

n
o

fw
in

s

Latency (ms)

Figure 5: Plot of proportion of wins by the remote AI
agent with dead reckoning against network latency with
packet loss.

differences in hit rates. We later discovered that packet
losses simply caused the firing commands from the re-
mote agent to be lost. These did not affect accuracy since
it would be as if the shots were never fired at all. It turns
out that the loss of state update packets from the server
did not have a significant effect because these are sent at
a much higher rate than firing commands.

As shown in Figure 5, with dead reckoning, the AI
agent can tolerate up to about 5% packet loss. How-
ever, at 10% packet loss, the effectiveness of dead reck-
oning is reduced and the proportion of wins by the re-
mote agent falls below 50%. Packet losses caused the
remote-agent-controlled tank to fire fewer shots, which
gave the local-agent-controlled tank an edge. The main
lesson here is that the effect of packet losses depends on
the implementation of the game. Because the observed
packet loss rates in our Facebook deployment are typi-
cally below 5%, our results suggest that dead reckoning
would be sufficiently robust in a practical deployment.

We also ran experiments at different levels of network
jitter ranging from 0 to 10% and found that the AI agent
with dead reckoning is able to tolerate network jitter up
to 10% with little noticeable effect. To some extent, this
is not surprising. The tick interval is 50 ms while the
maximum network jitter in the experiment (at 370 ms
delay) is about 37 ms. This means that most packets will
still reach their destination within their expected arrival
tick.

5 Discussion & Future Work

One drawback of offloading AI using dead reckoning is
that it requires more memory and processing power to
maintain additional copies of the game world and to com-
pute the predictions of future state. We believe that this is
not likely a problem since client machines tend to have
more than enough processing capabilities to handle the

additional computations needed.
Of greater interest is perhaps the additional bandwidth

that would be required for the offloaded AI. From our
experience, we have seen that the increased throughput
from the client hosting the offloaded AI to the pseudo-
server machine is not a concern because the bottleneck
lies instead in the outgoing bandwidth from the pseudo-
server. Also, since clients already obtain updates of game
state from the pseudo-server for the human player, the
same state can be shared with an offloaded AI agent and
so no additional outgoing bandwidth from the pseudo-
server is required.

One possible criticism of dead reckoning is that code
must be specially written to compute the predictions and
this code is specific to a game. It would be much more
convenient to have a technique that is oblivious to the
game. Unfortunately, we have not been able to come
up with a good approach to do so. There are however
two observations in favour of dead reckoning: (i) many
games already implement dead reckoning in order to im-
prove the user experience of the human players; and (ii)
we have found that a relatively simple implementation of
dead reckoning is already effective. In particular, our im-
plementation of dead reckoning for Tankie involved only
200 additional lines of Java code.

A final, but significant drawback to offloading AI to
clients is that it exposes the AI to abuse by hackers
since the AI code is now accessible on the client ma-
chines. Douceur et al. suggested running a deterministic
AI agent and have multiple clients executing the same
AI code [6]. The results returned by each agent are then
compared and the decision is taken by quorum. This is
an approach that we might explore as future work.

We recognize that our evaluation results are not en-
tirely conclusive since we have only evaluated an AI
agent for Tankie. While we cannot make any general
claims, our results demonstrate that it is likely feasible to
offload AI to clients for some games when latencies are
within a reasonable limit. Furthermore, our predictions
do not take into account the likely commands issued by
the opposing AI agents. We believe that a more sophis-
ticated dead reckoning algorithm [10, 8] will likely yield
better results.

Our preliminary attempts to offload AI in Facebook
Tankie have been promising. It is however somewhat
complicated to set up controlled experiments in a de-
ployed game with human players. A complete evaluation
of the effectiveness of dead reckoning for offloaded AI in
our real-world deployment remains work in progress.

6 Conclusion

We have shown that network latencies can significantly
degrade the performance of an offloaded AI agent. Also,
the extent of degradation is significantly more pro-

nounced than what one would expect from previous stud-
ies of the latencies that can be tolerated by human play-
ers [1, 7, 5]. We demonstrated that a simple implementa-
tion of dead reckoning is effective at delaying the onset
of performance degradation for round-trip latencies up
to 250 ms. This observation is significant because it im-
plies that the offloading of AI agents is feasible and use-
ful, given that observed latencies for Facebook Tankie
are within the 50 to 250 ms range. We believe that our
approach is practical because it does not introduce signif-
icant complexity in the programming of the AI agents.
Our work advances the current state of the art for the
implementation and performance of AI in a peer-to-peer
setting.

References

[1] BETTNER, P.,AND TERRANO, M. 1500 archers on a 28.8: Net-
work programming in age of empires and beyond. InProceedings
of the 2001 Game Developers’ Conference (March 2001).

[2] BHARAMBE , A., AGRAWAL , M., AND SESHAN, S. Mercury:
Supporting scalable multi-attribute range queries. InProceedings
of SIGCOMM 2004 (August 2004).

[3] BHARAMBE , A., PANG, J.,AND SESHAN, S. Colyseus: A dis-
tributed architecture for multiplayer games. InProceedings of
NSDI 2006 (2006).

[4] CHAN , L., YONG, J., BAI , J., LEONG, B., AND TAN , R. Hydra
- a massively-multiplayer peer-to-peer architecture for the game
developer. InProceedings of NetGames ’07 (September 2007).

[5] CLAYPOOL, M., AND CLAYPOOL, K. Latency and player ac-
tions in online games.Commun. ACM 49, 11 (2006), 40–45.

[6] DOUCEUR, J. R., LORCH, J. R., UYEDA , F., AND WOOD,
R. C. Enhancing game-server AI with distributed client com-
putation. InProceedings of NOSSDAV ’07 (2007).

[7] FRITSCH, T., RITTER, H., AND SCHILLER, J. The effect of
latency and network limitations on MMORPGs: a field study of
everquest2. InProceedings of NetGames ’05 (New York, NY,
USA, 2005), ACM, pp. 1–9.

[8] HANAWA , D., AND YONEKURA, T. A proposal of dead reckon-
ing protocol in distributed virtual environment based on the taylor
expansion. InProceedings of CW ’06 (2006).

[9] K NUTSSON, B., LU, H., XU, W., AND HOPKINS, B. Peer-to-
peer support for massively multiplayer games. InProceedings of
IEEE INFOCOM’04 (March 2004).

[10] KRUMM -HELLER, A., AND TAYLOR , S. Using determinism to
improve the accuracy of dead-reckoning algorithms. InProceed-
ings of SimTecT ’00 (2000).

[11] MCCOY, A., WARD, T., MCLOONE, S., AND DELANEY, D.
Multistep-ahead neural-network predictors for network traffic re-
duction in distributed interactive applications. InProceedings of
TOMACS ’07 (2007).

[12] NETEM. http://www.linuxfoundation.org/en/net:netem.

[13] YONG, J., BAI , J., SEAH, D., RAZEEN, A., NGUYEN, H.,
L IEW, J., KOH, Z. H., AND LEONG, B. Facebook Tankie, 2008.
http://apps.facebook.com/tankgame/.

[14] ZHANG, X., GRACANIN , D., AND DUNCAN, T. P. Evaluation
of a pre-reckoning algorithm for distributed virtual environments.
In Proceedings of ICPADS ’04 (Washington, DC, USA, 2004),
IEEE Computer Society, p. 445.

