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Linear time-invariant 4—2--4 matrix recording systems are defined mathematically. Mono
and stereo compatibility objectives are stated; the class of compatible encoders is then
synthesized that meets these objectives. To each of these encoders there corresponds a decoder
that yields the smallest possible mean-square error in its quadraphonic outputs. An explicit
formula for this minimum-error decoder is derived, which shows that the minimum-error
decoder is time varying (uses “‘logic” to track the cosrelations of the quadraphonic signals).
The optimal time-invariant (no logic) decoder, which minimizes the mean-square error for
worst case inputs, is then synthesized, and several of its most important properties are
discussed. The conditions for optimum time-invariant decoding are then combined with the
conditions for compatible encoding; this yields the class of optimized compatible recording
systems, which is termed the SQ family. Two well-known members of this family are basic SQ

and forward-oriented SQ.

INTRODUCTION: For the purpose of this papera4-2-4
matrix recording system is defined as alinear time-invariant
system with four input signals (LF, RF, RB, LB) and three
sets of outputs, termed quadraphonic, stereo, and mono.
There are four quadraphonic output signats (LF’, RF', RB’,
LB’), two stereo output signals (LT, RT), and one mono
signal (I.T+RT). The system is shown in Fig. 1. For
convenience, werepresent the set of inputs by the matrix x:

LE X
A |RF A | X2
LB X4

where A means “‘equal be definition”’.

In similar manner, we also define the output matrices x’
andy as shown in Fig. 1. The elements of these matrices are
complex functions of time, called analytic signals [1]. For
harmonic signals these functions are simply phasors with
exp (jwt) factors included. More information about analy-
tic signals may be found in the Appendix.
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The encoder is a linear time-invariant system with the
transfer-function matrix E, which is a 2Xx4 array of com-~
plex numbers. The stereo output is therefore given as

I3

y = Ex. 2)

Note that y is the matrix of recorded signals.
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Fig. 1. Structure of a 4—2—-4 matrix recording system.
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The decoder is also a linear time-invariant system. Its
transfer-function matrix D is a 4 x2 array of complex num-
bers, and the quadraphonic output x’ is given as

x' = Dy, @

The problem of mathematical synthesis of 4~2—4 matrix
systems may be stated as follows: Given a class of impor-
tant input signals and a set of performance objectives for the
resulting outputs, determine analytically the set of all pairs
of encoders and decoders (E, D) that meet the objectives.

REVIEW OF THE LITERATURE

Cooper and Shiga [2] were the first to describe a
mathematical procedure for synthesizing matrix recording
systems to meet specified performance objectives. Their
formulation of the synthesis problem differs from ours in
the following ways. They place no restrictions on the
number of input signals, recorded signals, or output sig-
nals, whereas our synthesis is specialized to 4—2~4 sys-
tems. They place no mono or stereo compatibility require-
ments on their synthesis (although they consider compati-
bility when they interpret their results) whereas we pre-
scribe four compatibility requirements and use these as the
starting poiat in our synthesis. They stipulate that their
recording systems should be azimuthally nonoriented,
whereas the front sound stage is given a special status in our
formulation, which yields systems with azimuthal oriesnta-
tion. They synthesize their systems so that the mean-square
error in the output signals is minimized, provided the input
signals to the encoder meet certain conditions regarding
spatial harmonic content. In contrast, we synthesize sys-
tems so that the mean-square error in the quadraphonic
output signals is minimized, provided compatibility re-
quirements are met by the encoder, and the input signals
meet certain correlation conditions.

Gerzon’s paper [3] on the synthesis of periphonic sys-
tems generalizes the approach of Cooper and Shiga to
signals distributed on the™sphere. Many other papers have
been pubiished that analyze the mathematical and acousti-
cal properties of matrix systems, but none of these papers
describe true synthesis procedures, in which specific per-
formance objectives are prescribed, and then mathematical
analysis is used to deduce the structures of all systems that
meet these objectives.

PLAN

In this paper we use the following plan to synthesize a
class of time-invariant matrices that meet specific stereo
and mono compatibility requirements. We start by defining
a large class of important input signals for commercial
recording. We then impose performance objectives on the
stereo and mono outputs produced by these inputs. The
class of all encoders that meet these objectives is identified;
this is the class of compatible encoders. Next, a quadra-
phonic performance objective is imposed on the system: the

decoder is to be chosen to maximize the mean-square

accuracy of the quadraphonic outputs, The decoder that
does this is shown to use ““logic,”” which means that the
minimum-error decoder utilizes information about the cor-
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relations in the signals to modify its structure and thereby
minimize decoding errors. (Logic decoders are time-
varying systems that track the changing correlations in the
signals.) We then impose the condition that the decoder be
time invariant (ne logic} and derive the equations for opti-
mal time-invariant decoders.

OVERVIEW OF ASSUMPTIONS AND RESULTS

Every synthesis is based on a set of prescribed perform-
ance objectives. These prescriptions should accurately de-
seribe as many of the important engineering objectives as
possible. This means that secondary details should be omit-
ted, lest the mathematics become intractible. It also means
that questionable prescriptions that have no clear physical
significance should also be omitted, lest the conclusions
reached be inconclusive to experienced engineers. In other
words, the prescriptions should be clean and lean,

With this in mind, we prescribe a set of four performance
objectives that we believe a compatible matrix system
should satisfy. These are considered important necessary
performance objectives that meet the ‘*clean-lean’ criter-
ion. A precise statement of these prescriptions requires
mathematics, which is reserved for a later section in this
paper. For the purposes of giving a general overview, the
gist of these assumptions is described below.

Cne mono capability objective is prescribed for the en-
coder.

1} The mone output power should equal the total four-
channel input power for arbitrary uncorrefated inputs.

Three stereo compatibility objectives are prescribed for
the encoder.

1) The front sound stage of the four-channel input
should be reproduced in stereo without errors of any kind.

2) The sterec output power should equal the total four-
channel input power for arbitrary uncorrelated inputs.

3) The total stereo output power should be divided
equally between the left and right channels when the four
input signals are uncorrelated and of equal power.

All encaders that satisfy these performance objectives
are identified in this paper; they form the class of compati-
ble encoders. For these encoders there are optimum decod-
ers, and the final step in our synthesis is 1o identify these.
For this purpose, we must define what we mean by “‘op-
timum,” i.e., we must prescribe a set of guadraphonic
performance objectives for the decoders. In keeping with
our desire to keep things “‘clean and lean’’ the following
two prescriptions are used to define optimal time-invariant
decoders.

1) The decoder should be as accurate as possible for
worst-case inputs in the sense that the decoding errors
should contain the smallest possible total power. (Worst-
case inputs are assumed to consist of four uncorrelated
signals of equal power.)

2} The decoder shpu]d be robust in the sense that its
performance should be as insensitive as possible to small
errors in its gains.

The analysis in this paper proves that all the above
performance objectives will be met if and only if the en-
coder E and its optirnum time-invariant decoder D have the
following forms:
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1 0 A B
E =
[0 { pcA —-pB/ci] @)
1 0
1o 1
D=1 gx  —pe,a )
B*  pB¥c;

where A and B are any complex numbers such that 4 2+
B = 1,p = =, ¢; = [BJ|4], and the asterisks denote
complex conjugates. The *‘if and only if*’ part of this result
means that the prescribed objectives for compatibility and
optimality are met by any matrices with the forms givenin
Egs. (4) and (5), but only by matrices with these forms.

This set of compatible optimam matrices is termed the
SQ! family. Two members of this family are well known,
These are basic SQ [9]—{11] (which corresponds top = +/,
A = 0.707, and B = —0.707)j) and forward-oriented SQ
[10] (which corresponds to p = -j and the reversed as-
signment A = -0.707j and B = 0.707).

INPUTS

The first step in our synthesis procedure is to describe
accurately the kinds of inputs that are mentioned in the
performance objectives. We will start with a specific exam-
ple: the class of uncorrelated unit-power input signals. This
class contains signals in which there are equal amounts of
power in each of the four input channels, and these four
signals are uncorrelated with respect to each other. An
example of such an input is

LF exp (o, 2)

A |RF A exp (w.t)
¥ = IRB - exp (fowst}] )

LB exp (fwqt)

Each input channel is driven with unit power at a differ-
ent frequency (w; = @y, 1 # j). This is only one example;
there are an infinite number of other signals that are also
uncorrelated and of unit power. A compact way of describ-
ing the entire class of such signals is to use the correlation
matrix K, which is defined as

K & 5 %)

The overbar denotes a time average, which does not need to
be defined explicitly for this analysis, and x* denotes the
adjoint of x, which is the complex conjugate transpose
matrix.

The correlation matrix for x in Eq. (6) is therefore the
time average of the following matrix product:

exp (Jwyr)
exp (Jwe?)
exp {fwst) %
exp (fwst)
[exp{—jw,1) exp(—jwsl) exp(—jwgt) exp( —jewgt)].

' §( is a trademark of CBS, Inc.
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The element in the ith row and kth column of this time
average is

= (1, i=k
Ky = exp(jo; thexp(~jort) = {0, i#k (8)
Thus
1 0 0 0
_jo 1 00 A
K= |50 1 0f - ' ©)
0 0 0 1

This states that K is the 4 X4 identity matrix [4.

Correlation matrices have a physical inferpretation?® that
will now be described. K is a 4 x4 array of complex num-
bers; the element of K in the ith row and jth columnis Ky =
x:x;%, where x; is the ith element of x, and the asterisk
denotes the complex conjugate. The diagonal element Ky
equals the average power in Xy while the off-diagonal
element K ;; equals the complex correlation between x; and
x;. The real part, Re(K ), is the real correlation; this number
is equal to the time average of the product of the physical
signals in channels i and j. The imaginary past, Im(K ), is
the quadrature correlation; this number is equal to the time
average of the product of the physical signals in channels i
and j after the ith signal has been lagged 90° in phase with
respect to the jth signal.

With this compact notation established, we now give
precise definitions of the classes of inputs needed for our
synthesis procedure. The class of uncorrelated unit-power
input signals is defined as the class for which X is the 4 x4
identity matrix. Another important class of inputs is the
class of uncorrelated inputs, with no restriction placed on
the power in each x;. This is the class for which K is any
diagonal matrix with nonnegative elements. The last class
of signals we need is called the class of inputs with zero
power in the back. This is the class for whichxg =x,=0.

PERFORMANCE OBJECTIVES FOR STEREO
COMPATIBILITY

The next step in the synthesis is to state the prescribed
stereo performance objectives in mathematical form.

1) Accurate Reproduction of Front Sounds. For the class
of inputs with zero power in the back, the stereo outputs
must correctly reproduce the left and right front inputs, i.e.,
LT = LF apd RT = RF. In terms of matrix elements this
objective states that y, =X, and y, = x, for any input x such
that x, = x4 = 0.

2) Conservation of Power. For the ciass of uncorrelated
inputs, the sterec output power must equal the input power,
ic., LTF + [RTE = [LFF + REF + [RBJ + [LB{*. This
may be written mose compactly asy’y = x*x for any inputx
such that K is diagonal.

3) Left—Right Symmetry. For the class of uncorrelated
unit-power inputs, the Jeft-channe] and right-channel pow-
ers must be equal in the stereo output, ie., |y = [yefffor
any input x such that X is the identity matrix.

2 This interpretation is rigorous only for “‘sufficiently long”’
time averaging. :
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CONSEQUENCES OF THE STEREO-COMPATIBIL-
ITY OBJECTIVES

In the Appendix we prove that the equations for the three
stereo performance objectives are satisfied if and only if the
encoder matrix has the form

_[1 0 A B
E‘[01CDJ

_IBI = |C], (11)

There is no constraint on the phase angles of the complex
numbers 4, B, C, and D.

(10)

where

(4] = D], AP+ [BfF = 1.

PERFORMANCE OBJECTIVE FOR MONO COM-
PATIBILITY :

Next we state the mono performance objective in
mathematical form.,

Conservation of Power, For the class of uncorrelated
inputs, the power in the mono output must equal the power
in the input, i.e., iy, +y,/* =x%x for all inputs.x such that K
is diagonal.

CONSEQUENCES OF THE COMPATIBILITY OB-
JECTIVES

In the Appendix we prove that the equations for all four
mono and stereo compatibility objectives are satisfied if and
only if Egs. (10) and (11) are satisfied for stereo compatibil-
ity along with the following additional equations needed for
mono compatibility:

C =pcd (12)
D =p'Blc, (13)
A ;A

where p 2 %), p' = =j, andc, = |Bf/j4].

The synthesis up to this point has identified the family of
compatible encoders that satisfy our mono and stereo per-
formance objectives. The next step is to identify the decod-
ers that satisfy our definition of optimality.

PERFORMANCE OBJECTIVES FOR QUAD-
RAPHONIC OUTPUTS

To begin we must state the prescribed performance ob-
Jectives for optimum decoders in mathematical form. For
this purpose the error ¢ in the quadraphonic output matrixx’
is defined as the difference between it and the input matrix
x:

(14)

e éx’ - X.

The mean power P, in this error (the error power) is the surn
of the mean error powers in each channel:

P, A ILF —[FF + RF “RFF + RB’ ~RB} + L5 ~LB[
(15)

which may be written compactly as

p A

e =

e’e.
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The first performance objective for the decoder is that
this quadraphonic error power must be as small as possible,
Such decoders yield minimum error in the mean-square
sense. We are therefore led to the following synthesis
problem for minimum-error decoders: Given a compatible
encoder matrix E, and given a class of important inputs
described by the correlation matrix K, find the set of all
decoder matrices D such that the error power P, is
minimized.

This problem is analyzed in the Appendix where it is
shown that the decoder D yields minimum error if D = D,
where

Dy = KEY(EKE*+)* . (17)

(EKE*)* denotes the pseudo inverse {4]--[6] of EKE*.

This decoder is a function of the input correlation matrix
K, so that as the input correlations change, so does the
decoder structure. A decoder that changes its structure to
suit the input correlations is said to have logic. Eq. (17)
describes the minimum-error logic decoder that has the
smallest possible norm. The significance of * ‘smallest pos-
sible norm'” is discussed in the next paragraph.

In the Appendix it is proven that if the correlation matrix
K has a special mathematical property, then there exist
additional decoders that yield exactly the same decoding
errors as D, These additional decoders all have larger
norms than D, which means that their gains are larger than
absolutely necessary to minimize the error power.

We now impose the condition that the decoder be time
invariant (no logic). We must therefore choose a specific K
for which our decoder is to yield minimum error. For this
purpose we use the class of uncorrelated unit-power inputs;
K is then the identity matrix. This class appears to include
the set of ““worst case’’ inputs and therefore yields the
decoder that minimizes the maximum error power. For this
class of inputs Eg. (17) simplifies to

D, = EXEE*)*, (18)

and the resulting minimized error power is shown in the
Appendix to be

P, =4 - rank (E). (19)

Eq. (19) is interesting; it states that the total error power
produced with the minimum-error decoder depends only on
the rank of the encoder matrix [rank (E) = number of
linearly independent rows in E]. This means that the
minimized quadraphonic error power is independent of the
detailed structure of the encoder for the class of uncorre-
lated unit-power inputs; the larger the rank of E, the smaller
the minimized error power.

The maximum possible rank of E is two in 4 —~2 ~4 matrix
systems. All of the compatible encoders identified eatlier in
this paper have this maximum rank, and they therefore all
yield the same error power when decoder D, is used. (It can
be proven that D, is the only decoder that minimizes the
error power when K = [, and rank (E} = 2.) For these
encoders FE™ is nonsingular. It then follows that (EE™) * =
(EE*)~1, and sc Eq. (18) may be written:

Dy = EYEE*)"L 20)
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Any decoder (without logic) that satisfies Eq. (20) is said
to be matched to the encoder for uncorrelated unit-power
inputs. It can be shown that anather way of writing Eq. (20)
isDy = E *, which states that matched decoders (for uncor-
related unit-power inputs) are pseudo inverses of their ¢n-
coders.

PERFORMANCE OBJECTIVE FOR ROBUST DE-
CODERS

The only remaining performance objective for optimal
decoding is the second one regarding robustness. A decoder
is said to be robust if its performance is relatively insensi-
tive to small errors in its element values. The matched
decoder in Eq. (20) cannot be robust if EE* is ill-condi-
tioned {7], [12], i.e., if the eigenvalues of EE™ are greatly
different from each other. The most robust decoder is the
one for which the eigenvalues of EE™ are equal to each
other, which happens if and only if EE *+ is proportional to
the identity matrix. We therefore want 10 choose our en-
coder so that

EE+ =C12 (25)

where I, is the 22 identity matrix, and ¢ is a positive
number. Any encoder that satisfies Eq. (21) is termed an
orthonormal encoder, because the rows of E are then ortho-
gonal to each other and normalized. (In the Appendix we
prove that exactly half of all compatible encoders are ortho-
normal.) Putting Eq. (21) in Eq. (20) yields the following
prescription for the optimai (robust and matched) decoder:

D, = E*le. 22)

This states that the optimal decoder is proportional 10 the
adjoint of the (orthonormal) encoder.

SOME PROPERTIES OF OPTIMAL DECODING

1) From Egs. (21) and (22) it foliows that D™D = Iofc,
which shows that the optimal decoder is orthonormal, ie.,
the columns of D, are orthogonal to each other and nor-
malized.

2) If the decoder is orthonormal, then the total quadra-
phonic output power Pq is proportional to the total stereo
output power P, i.e., for any input x

PQ = Psl"C (23)
where
p, A LFF + REF + RBP + [LB'F = (x')" C4)
pe & TOTE + RTP = 5% (25)

This is proved in the Appendix.

3) Matched decoders yield projective recording sys-
tems. To explain this we let Q denote the 4 x4 transfer-
function matrix that maps the inputx into the quadraphonic
output x*. Then

x' = Ox (26}

¢ = DE. (27)
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For matched decoding we must set D = Dy [see Eq. (2031,
and then

Q = EYEEY)TE. (28)

This Q has the remarkable properiy of being an orthogonal
projector, which means that it satisfies the following two
reguirements:

@ is a projector,

Q0 = 0. (29)
Q is self-adjoint,
Q=0 (30)

The fact that @ is a projector has a dramatic engineering
significance. Eq. (29) implies that two matrix systems
connected in cascade, with the quadraphonic output of the
first driving the input of the second, behave the same as a
single system. In other words, the quadraphonic outputs are
all the same in a cascade of matched systems; this is shown
in Fig. 2. Note that the stereo output y is also invariant
under cascading.

The fact that Q is self-adjoint is useful in checking the
validity of calculations. In combination with Eq. (29) itaiso
guarantees that for any inputx the following identity holds
between the total input power P, A x*x, the total quadra-
phonic error power P, and the total quadraphonic output
power Py '

P,=P,+P, (31)
This is proved in the Appendix.

OPTIMAL COMPATIBLE MATRICES

In the first part of this paper we determined a set of
necessary and sufficient conditions for meeting stereo and
mono compatibility objectives; this identified the set of
compatible encoders. Then another set of necessary and
sufficient conditions was derived for optimum time-
invariant decoding. These two sets of conditions will now
be combined to establish the family of matrices that meets
the compatibility and optimality objectives simultaneously.
To this end we first impose the optimality condition in Eq.
(21} on the compatibility conditions dictated by Eqgs. (9)-
(13}. In the Appendix we prove that the only encoder

! i
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t

Fig. 2. Identical quadraphonic systerns with matched decoders,
D, = EY(EE*)™%, can be cascaded without changing either the
quadraphanic autput x' or the stereo output y.
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matrices that meet all these conditions simultanecusly are
of the form

1 0 4 B
£= {0 1 pc A —pB/cl] (32)

where 4 and B are any two complex numbers such that |4 |2
+|BiF=1t,p= =%} andc, = [B}]4]. It tums out that the
orthonormalization constant ¢ = 2. Eq. (22) then uniquely
specifies the following optimal decoder corresponding to
any E that satisfles Eq. (32):

I 0
_ 10 I
D=l e peas|0S (33)
B*  pB¥c,
IMPLEMENTATION

Eqs. (32) and (33) are the necessary and sufficient condi-
tions for compatibility and time-invariant optimality; these
conditions define a family of matrix recording systems
termed the SQ family. Detailed descriptions of two well-
known members may be found in the literature: these are
basic SQ [9]-[11] (which corresponds top =, 4 = 0.707,
and B = —0.707j), and forward-oriented SQ [107 (which
corresponds top = j, A = —0.707j, and B = 0.707).

SUMMARY

The key features of this paper are summarized below.

1) Linear time-invariant 4-2—4 matrix recording sys-
temns are defined mathematically,

2) Compatible encoding is defined in terms of four mono
and stereo performance objectives.

3) Optimal time-invariant decoding is defined in ferms
of two quadraphonic performance objectives.

4) All compatible encoders and their optimal time-
invariant decoders (no logic) are identified; they form the
SQ family of matrix systems.

5) Optimal time-invariant decoding is shown to possess
three interesting properties:

a} The total quadraphonic output power is always
proportional to the total stereo output power.

b) The total input power is always equal to the sum of
the quadraphonic output power and the quadraphonic error
powet,

¢) The overall transformation from quadraphonic
input to quadraphonic output is an orthogonal projection,

6) The most accurate possible decoder (in the mean-
square sense of minimizing the power in the decoding
errors) is derived and shown to be a logic decoder with a
specific structure that depends on the correlation matrix of
the input signals.

APPENDIX
MATHEMATICAL DETAILS
Anaiytic Signals

Let 5(1) denote a real zero-mean function of time with
Hilbert transform §(t), which is defined as
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5 4 f{z —t)=is(e) di'tr (34)

where the Cauchy principle value is intended. The analytic
signal representation for s(t) is defined here as

2ty & 2705051y + 501, (35)

This definition differs from the usual one for analytic sig-
nals [1], {8] because of the scale factor 2-%5, which is
included here so that zft) and s(t) have identical average
powers (Jz[F = 5%, where the overbar denotes time average).

An equivalent definition for the analytic signal is stated
below in terms of the Fourier transforms of s(f):

4022“faﬁemabw)ﬁ (36)
Q

where the transform

Sméfwamﬂme (37

Eq. (36} states that the analytic signal is the inverse Fourier
transform of S(f) restricted to positive frequencies and
scaled by the square root of two.

For an example, suppose that s(t) = cos wr, then 3(1) =
sin wf and z(1) = 27%% exp( jor). Note that z(7} is the phasor
representation of s(7) with the exp{jor} factor included;
also, the average power of z(1) and (1) are identical ([z]F =
52 = 1),

STEREQ COMPATIBILITY

Let the encoder £ and input x be partitioned:

E&w 1

1]

where W and T are 2x2 matrices and a and b are 21
matrices of complex numbers. It then follows that the stereo
output y is

(38)

(39)

y = Ex = Wa + Th. (40}

The first stereo compatibility objective requires that if & =
0, theny = a foranya. This objective is satisfied if and only
IfW = I, where I, is the 2 X2 identity matrix. Thus £ must
have the form
_f1 0 4 B
E= [ 01 C D } 1)

where 4, B, C, and D are complex numbers,

The second stereo compatibility objective states that the
stereo output power (P g 11:\ y*y) and the input power (P, é
x*x} must be equal for any input x such that the correlation
matrix (K 8 ) is diagonal (x;x;* = 0, i & j). Direct
calculation shows that P = P in this case if and only if

Al +|Cf =1 {42)
IBP + ;DP = ], (43)
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The third stereo compatibility objective states that lyq[?

= {y,|* for any x such that K = /.. Direct calculation shows
that this objective is satisfied if and only if

AP + {B]P = ICR -+ DI (44)

The general solution of Egs. (42)~(44) is any complex
A, B, C, D such that |4|=|D}, [B] = |C|, and |4 [+ B =
1.

MONO COMPATIBILITY

The mono compatibility objective states that|y i y.ff =
**x for any x such that K is diagonal with nonnegative
elements. Direct calculation shows that this objective is
satisfied if and only if

A4 +Cl=1

B + D=1

(45)
(46)

The previous analysis implies that necessary and
sufficient conditions for stereo compatibility are that 4, B,
¢, D have the form

A = ¢ exp(ja) 47
B =c¢' exp(jB) (48}
C =c' exp(jy) 49)
d = ¢ exp(j8) (50)

where ¢ A [4i=1,¢' A1 -c»s,ande,B,y, 0= real
numbers. Eqs. (45), @47), and (49) imply that 1 = |c
exp(ja) + ¢’ exp(jy)| = lc exp(jla-y)) + ¢'|, which
implies that

la — | = 72 (51)

because ¢ + (¢')* = 1.
Similar arguments based on Egs. (46), (48), and (50}
imply that

I8 — 8| = wl2. (52)

Conversely, Eqs. (47)-(50) together with Eqgs. (51} and
(52) 1imply Egs. {45) and (46}. Therefore the encoder E
satisfies the four compatibility objectives for both stereo
and mono if and only if Egs. 41) and @7 -(52) are
satisfied. These conditions may be written ¢ = pcy 4,
D = p'Blc,, where p A+ p 4 xj ¢ B =
|BJ/{A!, and |4 + B = 1.

DECODER SYNTHESIS

Statement of the problem of minimizing the decoding
errors: Given any 2 x4 encoder matrix E and 4 X4 input
correlation matrix K = xx*, find the decoder matrix D such
that the error power P, = e e is minimized, where the error
matrix ¢ 2 x' —x = (DE-I)x.

Solution: P, is a quadratic smooth function of D. It
follows from variational calculus that P is minimized by
setting D = D, if and only if the first variation of P, with
respect to D, vanishes (8P, = 0), and the second variation
s, = 0.

The following notation and facts are used in deriving the
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minimum-error decoder. The trace® of the square matrix M,
denoted by trfM}, and the adjoint, denoted by M*, have the
following useful properties, where M and N are any suitably
dimensioned matrices over the field of complex numbers:

(MN)* =N*M* (53)
tr(M + N) = tri(M) + tr(N). (54)

For any number ¢,
tr{cM) = ¢ wM) (55)
te(MN) = r(NM) (56)
tr(M*) = (tr(M))*. (57)

For any M,

(M ™M) = 0. (58)

If Re[tr(MN)] = O for every suitably dimensioned N, then
M =0 (52

We are now prepared to begin calculating the
minimum-error decoder Do This will be done by first
calculating an expression for P in terms of I and then
taking the variations of this expression,

In view of Bg. (55, we may write

P, =tr(P,). (60)
By definition P, Q eTe,_ thus
P, =tr (o). 61)
By Eg. (57) this may be written
P, = tr{eet). (62)
By definition e & (DE — I,) x, thus
p, =t (DE — I} xx™ (DE = 1,)7} (63)

By definition K & T, so in view of Eqgs. (53) and (54), we
may multiply out the terms and write

P, = w(DEKE*D*) ~ w(DEK) — w(KE*D™) + tr(K).
(64)

We now calculate the variations of P, with respect to Dy.
These variations are defined as follows. InEq. (64)setD =
D, + 8D, where 8D is an arbitrary 4 X2 matrix called the
variation of Dy Set P, Ap, + 8P, + 8%, where 8P, is
called the first variation of P, and 8P is called the second
variation of P,. The first variation 8P, is defined as that
part of P, that depends linearly on 8D, while the second
variation 2P, is defined as that part of P, that depends
quadratically on 8D.

The first variation of P, with respect to D, is therefore
(we use the fact that K = K™

6P, = w(SDEKE*Dy*)* + t(DoEKE*8D")
— (8D EK) — wKE*8D™). (65)

By using Egs. (53) and (57), Eq. (65) may be simplified:
5P, = 2 Reftr(D EKE*8D*) — tr(KET80 )], (66)

3 Trace = sum of diagonal elements.
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Finally, Egs. (54) and (55) may be used to write .
8P, = 2 Reltr{{D EKE* — KE*)8D*1}. 67

In view of Egs. (55) and (59), it follows from Eq. (67} that
5P, = 0 for any complex 8D if and only if

D EKE* ~ KE* = 0. (68)

The general solution to this equation [4], [6] is
Dy = KEYEKE*}*+ F (69)
F = Z(I, — EKEYEKE")*) (70)

where Z is any 4X2 matrix. It is known that [4], [6] that
D, has its minimum norm when Z = 0, and that F = 0
whenever rank (EKE™) = 2.

To prove that this prescription for Dy minimizes P, we
must show that the second variation 2P, = 0. To calculate
this second variation, we use Eg. {(67) and take the first
variation of 6P, which yields 8P, = 2tr(SDEKE 8D ).
Now K = K'*; therefore there exists a matrix S such thatk =
8S*. Thus

&P, = 2r[(8DES) (8DES)*] (713
&P, = 2u[(BDES)*(BDES}]. (72)

In view of Eq. (58), it follows from Eq, (72) that 8%Pe =
0 for any 8D. The necessary and sufficient conditions for
minimum error are now established.

We have just proven that D minimizes P, if and only if
Eqgs. (69) and (70) are satisfied for some 4 X2 matrix Z. The
minimum P, [calculated by using Eq. (69) for D] is found,
after some algebra, to be

P, =tfK) ~ wEK¥E*T (EKE*}1¥). (73)

Note that the minimum P, does not depend on the arbitrary
matrix Z. In fact, the F term in Eq. (69) makes no contribu-
tion to the quadraphonic output x’ A Dy Ex because FEx =
0. This assertion is equivalent to asserting that the power in
FEx is zero, i.e., that (FEx) *FEx = tr{FEKEF*) = 0 for
any correlation K. This last equation is easily verified by
direct calculation because of the following two identities
forpseudo inverses: NMM*M =M, 2)(M*)* =(M*)*.

For the special case of uncorrelated unit-power inputs,
which are used to synthesize optimal time-invariant decod-
ers, the correlation matrix K =1, and Eq. (73) reduces to
P, =4 « tr(EEY(EE*)*). The pseado inverse has the
property [4), [6] that for any E, tr(EE+(EE*)* } = the rank
of E. Thus for uncorrelated unit-power inputs,

P, =4 — rank(E). (74)

PROPERTIES OF MINIMUM-ERROR AND OPTI-
MAL DECODING

1) LetQ é DE denote the transfer-function matrix for
the quadraphonic output (x’ = Qx). LetD = D, where D,
is the minimum-error decoder in Eq. (69). Then the
transfer-function matrix 0 = D E is a projector [6] because
QQ = Q. This is easily proven by direct calculation with the
fact that FE = Q. If in addition X = I,then @ =@*, and @
is therefore an orthogonal prejector [6],

2) M Q is an orthogonal projector, then the input power

MAY 1876, VOLUME 24, NUMBER 4

SYNTHESIS OF 4-2-4 MATRIX RECORDING SYSTEMS

is identical to the sum of the quadraphonic error power and
the quadraphonic output power:

P,=P,+ P, {5)
To prove this we note that the input power P, At =
tr (K). The error power P, 8 e% =t (Q — 1,) o~
(Q —1)"=u(0KO* —KQ" — QK +K) = tr (KQ*Q —
KQ* —KQ +K) = tr (KQQ ~ 280 + K) = tt (K)
tr (KQ) = P, — tr (KQ). Finaily the quadraphonic power
Py B x')hx7 = r (QxxtQ*) = tr (QKQ*) = tr (KO+Q)
=u(KQQ)=uw(KQ) =P, - P,
3} If the decoder is orthonormal (D™D, = [/e, ¢ > (),
then the stereo output power is identically proportional to
the quadraphonic power:

Pg=cP, (76)

To prove this, we note that Py QW = tr (Exx*E*)
= ir (EKE"). The quadraphonic power P, A G =
tr{(Qx)*(Qx}) = tr (Oxx*Q*) = tr (Dy EKE*D, ) =
tr (ERE*D*D¢} = (lc) tr (EKE*) = (1lc) Py,
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