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0 INTRODUCTION

Perceptual evaluation and comparison between various
concert halls can be done by measuring or modeling bin-
aural impulse responses, convolving these with anechoic
signals, and making them audible through headphones or
near-field loudspeakers. The main shortcoming of this
auralization procedure (see Naylor [1]) is that it gives only
local information. Besides, sound reproduction through
headphones often leads to “in-head localization,” such that
a good assessment of spatial cues becomes impossible.

To solve these problems a new method for auralization,
based on the reproduction of multichannel impulse
responses using wave-field synthesis (WFS) [2], was pro-
posed by de Vries and Baan [3]. This method, when
implemented with all its potentials, enables the perceptual
assessment of the complete hall without the use of head-
phones, that is, including all temporal and spatial cues.

The method can be applied to both calculated impulse
responses for modeled halls and measured impulse
responses for existing halls. The impulse responses need
to be measured on an array of microphone positions [4] in
order to obtain sufficient spatial information for the cor-
rect reproduction of the physical sound field over a large

listening area. Three different array configurations will be
investigated—linear, cross, and circular arrays. Fig. 1
gives a sketch of the array configurations in a hall.

In order to auralize the measured impulse responses cor-
rectly, they need to be extrapolated from the recording array
positions to the loudspeaker positions of the WFS system.
The array recording could of course be done on microphone
positions that correspond to the positions of the loudspeak-
ers in the WFS system (holophony). No extrapolation
would be required in that case. However, if one wants to do
the auralization on a different WFS system with different
loudspeaker positions, extrapolation is required.

Fig. 2 presents a point source and a recording array of
microphones together with a WFS array of loudspeakers.
The sound waves coming from the point source have to be
extrapolated from the microphone array to the loud-
speaker array. Since half of the microphones are in front
of the loudspeaker array and half are behind the loud-
speaker array, both forward and inverse wave-field extrap-
olation is required in this case.

To stay as general as possible, both forward and
inversely extrapolated sound fields from the array configu-
rations are considered in this paper. Loudspeaker positions
of specific WFS systems can be specified afterward.

Since any sound field can be decomposed into plane
waves, the plane-wave response of the array configura-
tions will be considered first. The questions that are dealt
with in this paper are: How accurate does the extrapolation
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work from the given array configuration? How large is the
area over which the recorded sound field can be correctly
extrapolated/reproduced?

Kirchhoff–Helmholtz and Rayleigh integrals [5] are
used for the extrapolation from linear and cross arrays. For
the circular array these integrals also work but, as will be
shown, it is more convenient to extrapolate the sound field
using cylindrical harmonics. This will emphasize even
more strongly the connection between holophony and
ambisonics, as already mentioned by Nicol and Emerit
[6], and present a method for recording high-order
ambisonic terms using ordinary pressure and velocity
microphones. (See Bamford [7] for an explanation of

ambisonics.) The method used in this paper is closely
related to the approach described by Poletti [8]. The main
difference is that in the present paper both the incoming
and the outgoing cylindrical harmonic decompositions are
calculated by using both pressure and normal velocity
components on the circle instead of using only the pres-
sure. If only the pressure is used, the full cylindrical
decomposition cannot be calculated, since many spatial
frequency components are missing.

In this paper the circular microphone array is used for
auralization purposes only, but the same theory and tech-
niques can be applied when making live high-order
ambisonic recordings.
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Fig. 1. Array configurations for impulse response measurements in a hall.

Fig. 2. Forward and inverse wave-field extrapolation from microphone array to loudspeaker array.
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1 WAVE-FIELD EXTRAPOLATION

If a wave field is recorded on a linear array, it is pos-
sible to calculate the sound field at positions different
from the array. According to the Huygens principle, for-
mulated as early as 1690, each element of a wave front
may be regarded as the center of an individual spherical
wave. If at a later time all these individual waves are
combined, the wave front at that time can be con-
structed. A mathematical formulation of this principle is
given by the Kirchhoff–Helmholtz and Rayleigh integrals
(Berkhout [5]). In this paper two-dimensional extrapola-
tion techniques are used, since the extrapolation of sound
fields from line arrays can only be done properly and con-
sistently in two dimensions not in three. A solution for the
amplitude mismatch between two- and three-dimensional
sound fields will also be discussed.

1.1 Two-Dimensional Forward and Inverse
Kirchhoff–Helmholtz Integrals

If both pressure and normal velocity are measured on a
closed curve, the forward and inverse Kirchhoff–Helmholtz
integrals can be used to extrapolate the wave field to other posi-
tions. The two-dimensional forward Kirchhoff–Helmholtz
integral is given by
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and the two-dimensional inverse Kirchhoff–Helmholtz
integral by
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where Hn
(1) and Hn

(2) are the Hankel functions of the first
and second kind, respectively. Fig. 3 sketches the geome-
try (r, r′, φ, ∆r) for these integrals. p(1) and p(2) are the
inverse and forward extrapolated sound fields from the
array recording. The complete sound field as it can be
reconstructed from the array recording is equal to the sum

p(r, ω) � p(1)(r, ω) � p(2)(r, ω) . (3)

Note that the Kirchhoff–Helmholtz integrals apply to
closed curves C or to curves that extend to infinity at both
sides. (See Berkhout [5] for more details.)

1.2 Two-Dimensional Forward and Inverse
Rayleigh Integrals

If only the normal velocity component is measured on an
infinite straight-line array, the wave field can be extrapolated
using the two-dimensional forward Rayleigh I integral,
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and the two-dimensional inverse Rayleigh I integral,
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If only the pressure is measured, the wave field can be
extrapolated using the two-dimensional forward Rayleigh
II integral,
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and the two-dimensional inverse Rayleigh II integral,
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Note that these Rayleigh integrals only apply for infinitely
long straight-line arrays. (See Berkhout [5] for more details.)

2 PLANE-WAVE DECOMPOSITION

Suppose p(1) (r, θ, ω) and p(2) (r, θ, ω) are the inverse and
forward extrapolated sound fields from a given array con-
figuration to a large circle with radius r around the origin o
using the Kirchhoff–Helmholtz or Rayleigh integrals. θ is
the azimuth angle on the circle (see Fig. 4). Then the plane-
wave decompositions s(1) and s(2) can be calculated,
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The derivation of these equations can be found in Appendix
1. These plane-wave decompositions give a complete
description of the sound field, and not only in the origin,
since plane waves can easily be extrapolated to any position,
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Thus the plane-wave decomposition is a flexible format,
which can be used to calculate the sound field at any posi-
tion, and is therefore very suitable for auralization purposes.

3 LINEAR ARRAYS

Three types of linear arrays are considered—the linear
monopole array, the linear dipole array, and the linear
hypercardioid array.
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Fig. 3. Geometry for Kirchhoff–Helmholtz integral.
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3.1 Linear Monopole Array
The extrapolation for the linear monopole array, con-

sisting of pressure microphones, can be done using the
Rayleigh II integrals, Eqs. (6) and (7),
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Fig. 5 gives an explanation of r, θ, ∆r, φ, and x.
Using the far-field approximation of Eqs. (31) in

Appendix 1 together with

,cos cos sinφ θ ∆ θr r x�. . (11)

results in

From this extrapolation the plane-wave decomposition
can be calculated using Eqs. (11),
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Fig. 6(a) illustrates the reconstruction of a plane wave,
incident under a 30º angle on a 4-m-long linear monopole
array. As can be seen from the figure, the linear monopole
array is not able to discriminate between waves incident
from the front and waves incident under the corresponding
angle from the back. Both wave types are reconstructed, as
can be seen. Therefore the linear monopole array is not
suitable for auralization purposes. Also strong artifacts
from the endpoints of the array are visible. This is because

the array is finite whereas Rayleigh integral works only
for infinite arrays. These artifacts can be reduced to some
extent by smooth tapering of the endpoints of the array.

3.2 Linear Dipole Array
The extrapolation for the linear dipole array, which con-

sisted of velocity microphones, can be done using the
Rayleigh I integrals,

, , ,

, , , .

θ ω ω ∆

θ ω ω ∆

ρ

ρ

j
d

j
d

j

j

p r
k

cv x H k r x

p r
k

cv x H k r x

2

2

�
�

�
�

( ) ( )

( ) ( )

n
L

n
L

1
0
1

2
0
2

#

#

^ ^ ^

^ ^ ^

h h h

h h h

(14) 

Using the far-field approximations from Eqs. (11) and
(31) and substituting in the plane-wave decomposition

from Eqs. (8) results in
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Fig. 6(b) shows the reconstruction of a plane wave inci-
dent on a 4-m-long linear dipole array. As can be seen, the
linear dipole array is also not able to discriminate between
the waves incident from the front and those from the back.
Once again both wave types are reconstructed. Therefore
the linear dipole array too is not suitable for auralization
purposes. Furthermore, artifacts from the endpoints are
present.
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Fig. 4. r, θ. Fig. 5. r, θ, ∆r, φ, x.
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3.3 Linear Hypercardioid Array
If both pressure and normal velocity are recorded on a

line array, the sound field can be extrapolated using the
Kirchhoff–Helmholtz integrals,
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Using again the far-field approximations from Eqs. (11)
and (31), the plane-wave decompositions from Eqs. (8) for
the linear cardioid array become

.
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Fig. 6(c) shows the reconstruction of a plane wave inci-
dent on a 4-m-long linear hypercardioid array. Unlike the
previously discussed linear arrays, the combined pressure
and velocity array is capable of discriminating between
front and rear.

How this discrimination comes about can be seen by
looking at the term ρcvn � cos θ p in Eqs. (17). The first
term ρcvn is recorded with figure-of-eight microphone
whereas for the second term p an omnidirectional micro-
phone is used. By multiplying the omnidirectional micro-
phone signal with cos θ and combining it with the figure-
of-eight microphone, a θ-dependent hypercardioid
microphone is obtained. The directivity pattern of this
hypercardioid microphone is sketched in Fig. 7 for differ-
ent angles θ. Note that each hypercardioid has zero sensi-
tivity at the angle from which the rear event is coming that
needs to be eliminated. Due to finiteness the artifacts from
the endpoints still exist.

3.4 Reconstruction Area
The proper reconstruction area of the linear hypercar-

dioid array is considered next. In Fig. 6(c) it can already
be seen that the reconstruction area of the 30º incident
plane wave is limited by the aperture of the array. Fig. 8(a)
shows the reconstruction of plane-wave events under var-
ious angles. The plane wave incident under 90º has only a
very narrow strip around the array on which it is properly
reconstructed. This is due to the limited angular resolution
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Fig. 6. Reconstruction of plane wave by forward and inverse wave-field extrapolation. (a) Using monopole array. (b) Using dipole array.
(c) Using hypercardioid array.
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of a linear array in endfire configuration. This very narrow
reproduction strip makes the linear array unsuitable for
auralization purposes.

4 CROSS ARRAY

In order to compensate for the limited reconstruction area
of a linear hypercardioid array, two linear arrays can be
combined in a cross array. In this manner the limited angu-
lar resolution in the endfire configuration of one array can
be improved by using the other. This can be done by com-
bining the plane-wave decompositions of the two arrays,
where w and u are weighting functions, which should satisfy

θ θw u 1� �^ ^h h (19)

for all θ. Furthermore they should be chosen such that
when θ comes closer to the endfire configuration for one
array, the other array takes over smoothly. A suitable
choice for these weighting functions would be

.cos sinθ θ θ θandw u� �2 2
^ ^h h (20)

Fig. 8(b) shows the reconstructions of plane waves with
different angles of incidence using a cross array with these
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Fig. 8. Reconstruction of plane waves under various angles.  (a) Using hypercardioid linear array. (b) Using hypercardioid cross array.
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Fig. 7. θ-dependent directivity patterns of hypercardioid microphone.
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weighting functions. Note that the reconstruction area has
become much larger, but the reconstruction still is not per-
fect. Diffraction effects are visible from the endpoints of
the arrays, and the amplitude of the plane wave is not con-
stant over the entire reproduction area.

5 CIRCULAR ARRAY

In this section a circular microphone array is considered.
If both pressure and normal particle velocity are recorded
on a circle, the complete sound field within the circle can
be reconstructed using the Kirchhoff–Helmholtz integrals.
Suppose the circle has a radius R. If p (θ, ω) and vn(θ, ω)
represent the pressure and particle velocity on the circular
array, where θ is the azimuth angle, the two-dimensional
Kirchhoff–Helmholtz integrals become
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Fig. 9 shows the reconstruction of a circular recording for
p and vn of a plane wave at t � 0. Notice that the
Kirchhoff–Helmholtz integrals are only capable of recon-
structing the sound field within the circle. Outside the cir-
cle the field becomes zero. For this reason it is impossible
to calculate the plane-wave decomposition using Eqs. (8).
However, in the next section the circular recording is
extrapolated using cylindrical harmonics. In that case the
sound field is no longer limited to the interior of the circle
and the plane-wave decomposition becomes possible.

5.1 Cylindrical Harmonics

The next approach is to decompose the sound field, as
it is recorded on a circular array, into cylindrical harmon-
ics. Cylindrical harmonics are the two-dimensional vari-
ant of spherical harmonics. (See [7] and [9] for an expla-
nation of spherical and cylindrical harmonics.) The sound
field of monopole and dipole sound sources can be seen as

zero- and first-order spherical or cylindrical harmonics. In
two dimensions the sound fields of these and higher order
cylindrical harmonics are given by
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which represent the pressure fields of the incoming and
outgoing cylindrical harmonics, respectively. Outgoing
cylindrical harmonics can be thought of as the sound field
caused by multipole sources at the origin and ingoing
cylindrical harmonics as the sound field caused by multi-
pole wells. kθ is the order of the harmonic and can be any
positive or negative integer number. The sound field of a
monopole corresponds to the case kθ � 0 and the dipole
field can be obtained by taking an appropriate linear com-
bination of P�1

(2) and P 1
(2).

In Appendix 2 a derivation is given for the decomposi-
tion of a recorded sound field on a circular array in terms
of cylindrical harmonics. This decomposition is given by
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where M (1) and M (2) are the expansion coefficients of the
sound field in terms of cylindrical harmonics [see Eqs. (39),
Appendix 2]. Bamford [7] describes the decomposition and
reproduction of sound fields in terms of spherical and cylin-
drical harmonics, which is called ambisonics. Therefore
M (1) and M (2) will denote the incoming and outgoing
ambisonic representations of the sound field. Notice that
with the circular array it is possible to record ambisonic
terms of all orders, whereas until now ambisonic recordings
have been using Soundfield microphone [10], [12], which is
limited to first order (kθ � �1, 0, 1). 
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Fig. 9. Reconstruction of circular recording using Kirchhoff– Helmholtz integral.
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In principle the sound field at any point in space can be
reconstructed from M (1) and M (2) using
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In practice this only goes well for r > R, since for r < R the
Hankel functions in Pkθ

(1,2) and V kθ
(1,2) become very large

for large kθ. The sum of these extremely large numbers
with opposite signs for different kθ is finite and results in
the correct solution. However, the calculation is not possi-
ble using normal precision floating-point numbers. The
extrapolation to larger circles than the array is no problem,
however. A plane-wave decomposition of the ambisonic
sound field given by Eqs. (24) is derived next, from which
the reconstruction is much easier.

5.2 PIane-Wave Decomposition
For the incoming and outgoing parts of the wave field

the pressure can be calculated on any circle,
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where r is the radius and θ the azimuth angle. If we sub-
stitute these equations into the plane-wave decomposition
given by Eqs. (8), the plane-wave decomposition of the
sound field in terms of the cylindrical harmonics becomes

,
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If the far-field approximations of Eqs. (31) are used for the
Hankel functions, this becomes
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This is a very remarkable result, which states that the
plane-wave decomposition of the complex ambisonic
sound field is up to a factor equal to the inverse Fourier
transform of the ambisonic representation. It is important
to notice that the � signs in these equations are exact,
since the far-field approximations made to derive the
plane-wave decomposition become exact in infinity.
Using Eqs. (9) the complete sound field can be recon-
structed easily from the plane waves, and the instability
from the Hankel functions when using Eqs. (24) for the
reconstruction can be avoided. Fig. 10(a) shows the recon-
struction of a plane wave, recorded using a circular array,
decomposed into complex cylindrical harmonics using
Eqs. (23), and converted into a plane-wave decomposition
using Eqs. (27). Within the circle the reconstruction is
very good. There are no artifacts.

The question may now arise how the circular array will
respond to wave events other than plane waves. Therefore
a number of circular recordings of point sources are used,
and both incoming and outgoing wave fields are recon-
structed [Fig. 10(b), (c)]. Note that all sound fields are
reconstructed within the circle without any artifacts. Also
note that for plane waves and point sources outside the cir-
cular array the reconstruction of the incoming part is equal
to the outgoing part. However, sound waves of sources
inside the circle are present only in the outgoing part and
are absent in the incoming part. This way it is possible to
eliminate such sources in the reproduction by reproducing
only the incoming part of the sound field.

6 USING TWO-DIMENSIONAL TECHNIQUES FOR
THREE-DIMENSIONAL HALLS

In this paper two-dimensional techniques are used for
reconstructing sound fields. However, if the sound field
recordings are done in three-dimensional rooms using line
arrays of microphones, the extrapolation of such a record-
ing is not correct. 

6.1 Amplitude Errors
First of all, in three dimensions the decay of a point

source is 1/r, whereas in two dimensions the (far-field)
decay is / r1 . The two-dimensional extrapolated field
also had a / r1 decay, which does not match the real
decay. If arbitrary sound fields are recorded, such as live
music registration through a circular array, these ampli-
tude errors cannot be corrected. However, when impulse
responses are measured, which is the case for auralization,
the events in measured impulse responses that have a
three-dimensional amplitude decay can be converted to
two dimensions since for each of these events the travel
time (which is equal to the arrival time), and thus the
travel distance, is known.

Suppose p(3D)(x, t) is a measured impulse response. Then
a spherical event arriving at time t will have traveled a dis-
tance r � t and in three-dimensional space will have an
amplitude attenuation of 1/r � 1/ct. In two-dimensional
space this event would have an amplitude gain of / r1 �
/ ct1 . To convert the three-dimensional spherical event to

a two-dimensional one, the former needs to be multiplied
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by r � ct. Thus for the whole impulse response this
becomes

, , .p x t ct p x t�D D2 3_ ^ _ ^i h i h (28)

After the extrapolation process the two-dimensional sound
field can be converted back to three dimensions by

,
,

.p x t
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p x t
�D

D
3

2
_ ^

_ ^
i h

i h
(29)

The singularity of / ct1 at t � 0 poses no real problem
since all sound events in an impulse response arrive at a
later time than t � 0. Note that this amplitude scaling for
recordings in a hall only works properly for spherical

events (direct sound, mirror reflections) and thus may not
be correct for other events (diffractions).

6.2 Elevation Angles
A second inaccuracy encountered when using line array

configurations in three-dimensional space is the recon-
struction of elevated sound sources. For example, a sound
source coming from right above the center of a circular
array will give the same response at the array as the com-
bination of two sources, one outgoing sound source and
one incoming sound well at the center of the circle. The
reconstruction will therefore be incorrect. Thus if a line
array is used for auralization purposes of a hall, one needs
to be aware of the fact that ceiling reflections are not prop-
erly reproduced.
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Fig. 10. Incoming and outgoing plane-wave reconstruction.  (a) Plane wave. (b) Point source outside circle. (c) Point source inside circle.
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7 CONCLUSIONS

Three types of recording arrays for auralization pur-
poses have been investigated.

For linear arrays both pressure and normal velocity can
be recorded to eliminate front–back crosstalk. However,
due to a limited resolution of the linear array in endfire
configurations, the reconstruction area of such an array is
very limited. Linear arrays are therefore not suitable for
state-of-the-art auralization using WFS.

The linear array can be expanded to a cross array to
enlarge the reconstruction area. The reconstruction is still
not perfect. Diffractions from the endpoints of the arrays
are still present, and the amplitude of the reconstructed
sound field is not perfect either.

The circular array performs much better. It has a homo-
geneous resolution and a circular reconstruction area in
which no artifacts are present. The circular recording can
easily be converted into incoming and outgoing cylindri-
cal harmonics (high-order ambisonics), which in turn can
easily be converted into a plane-wave decomposition. The
latter two representations are equivalent. This makes each
representation a very useful format for auralization and
spatial sound reproduction purposes.

In this paper the circular microphone array is used for
auralization purposes only, but the same theory and tech-
niques can be applied for making live high-order
ambisonic (B-format) recordings.

If one deals with a circular array recording of an
impulse response in a three-dimensional hall, the three-
dimensional 1/r amplitude decays of the recording can be
converted to two dimensions, extrapolated to the proper
reproduction positions in two-dimensional space using the
methods described in this paper, and scaled back to three
dimensions afterward. A circular array, however, is not
capable of properly reconstructing sound sources at ele-
vated angles. For that purpose a surface of microphones is
required instead of a line array.
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APPENDIX 1
KIRCHHOFF–HELMHOLTZ-BASED PLANE-
WAVE DECOMPOSITION 

In this appendix a general formula for the plane-wave
decomposition is derived in terms of the Kirch-
hoff–Helmholtz extrapolation of a sound field. Suppose
p(1) (r, θ, ω) and p(2)(r, θ, ω) are the inverse and forward
extrapolated sound fields from a given array configura-
tion to a large circle with radius r around the origin o,
using the Kirchhoff–Helmholtz or Rayleigh integrals. θ
is the azimuth angle on the circle (see Fig. 4). If these
inverse and forward extrapolated sound fields are forward
and inversely extrapolated. respectively, to the center of
the circle o using the Kirchhoff–Helmholtz integrals,
they become
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If we assume kr �� 1, the following far-field approxima-
tions are valid:
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and the integrals can be written as
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These equations write the pressure at the center of
the circle as an integral of contributions from the
points on the circle. If the circle becomes larger, these
contributions increasingly approximate plane-wave
contributions. Therefore the plane-wave decomposi-
tions s(1) and s(2) are equal to the r → ∞ limit of these
contributions,
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APPENDIX 2
DECOMPOSITION OF CIRCULAR RECORDINGS
INTO CYLINDRICAL HARMONICS 

In two dimensions the sound fields of these and higher
order cylindrical harmonics are given by
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representing the pressure fields of the incoming and
outgoing cylindrical harmonics, respectively. In order
to calculate the decomposition of recorded pressure and
normal particle velocity in terms of cylindrical harmon-
ics, first the radial velocity component of these cylin-
drical harmonics is calculated using Newton’s second
law,

.d ωρjp v� � (35)

If this equation is transformed into cylindrical coordinates
and only the inwardly directed radial component of the
velocity is considered, it becomes
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Using this together with the formula for the derivative of
the Hankel functions [12],
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the radial velocity components of the cylindrical harmon-

ics can be calculated,
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To decompose the circular recording into cylindrical har-
monics, M (1)(kθ, ω) and M (2)(kθ, ω) have to be chosen
such that
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To solve these equations it is convenient to take the
Fourier transforms of p and v with respect to θ,
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The Fourier series can now be written as
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If the left-hand terms of Eqs. (30) are replaced by these
Fourier series, they become
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This set can now be solved, term by term, for M (1) and
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M (2) in terms P(kθ, ω), and Vn(kθ, ω),
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M (1) and M (2) are the expansion coefficients of the sound
field in terms of cylindrical harmonics [see Eqs. (39)].
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