
Notes on Basic Ideas of Spherical Harmonics 

In the representation of wavefields (solutions of the wave equation) one of the 

natural considerations that arise along the lines of Huygens Principle is the 

representation of a wavefield inside a (large) sphere in terms of sources on the 

boundary—the concept usually associated with the names Helmholtz and Kirchoff 

(the H-K integral) for general boundary surfaces, too. In this context and in 

many others, it is useful to have a way of expanding functions on the sphere in 

series in a way analogous to the expansion of functions on the circle (functions 

of an angle) in Fourier series. 

Approximation by Polynomials and Spherical Harmonics Defined 

It is a familiar basic fact of analysis that every (continuous) function on the unit 

sphere around the origin in Euclidean three-dimensional space can be 

approximated by a polynomial in the x, y and z coordinates on Euclidean three–

dimensional space. The unit sphere in question is exactly the set of points (x,y,z) 

where  the sum of the squares of x ,y and z is equal to 1. Thus, the functions x, 

y, and z themselves are not independent on the sphere. And if one approximates 

a continuous function on the sphere by a polynomial in x, y and z-- then the 

same polynomial can assume many different forms in terms of x, y and z-- just 

because of this lack of independence. You can see the same thing on the circle in 

the (x,y) plane defined by 2 2 1x y+ =    : the polynomial 4 4 22 2x y x+ + y
2

 

has the same values on the unit circle as the polynomial 2x y+  , both of them 

being everywhere equal to 1!   

Similarly, on the unit sphere 2 2 2 1x y z+ + = ,  the polynomials 

4 4 4 2 2 2 2 22 2 2 2x y z x y x z y z+ + + + + and  2 2 2x y z+ +  are the same 

functions since they are both equal to 1 everywhere ( on the unit sphere) . 

 - 1 -



To make some order in this chaos of polynomials, one needs to find , for each 

degree of polynomial, a set of polynomials of that degree such  that taken 

together all the chosen polynomials up to and including a  certain degree 

generate all the polynomials of that degree or less. 

Let us illustrate first how this works for the circle. For degree 0, we choose of 

course 1. For degree one, x and y are independent and suffice. But when we get 

to degree 2, we have to throw away one of the obvious monomial candidates 

2x , 2y  or xy -- because they are not independent in the collection of 

themselves and the lower degree things we already have: 2 2 1x y+ = ,  and 1 is 

something we have already in the lower degree things.  A basic observation of 

Fourier series is that the two polynomials corresponding to the sine and cosine of 

the doubled angle are a generating set in degree 2 if you throw in the relation 

that   . 2 2 1x y+ =

For example, the sine and cosine of twice the angle are 2xy  and 2 2x y−    

respectively  (using that x= cos {of the angle} and y =sin {of the angle} and 

that for a given angle α , sin 2 2sin cosα α α=  and 

2cos2 cos sin2α α= − α ) .  And these two, together with the functions: 

1,cos ,sinx yα α= = , do generate all the second degree polynomials on the 

unit circle.   For instance, 

2 2 2 2 2 21 1( ) ( ) (1) (
2 2

21 )
2

x x y x y x y⎡ ⎤= + − − = − −⎣ ⎦ . 
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Carrying this further, one can see that the linear combinations (with constant 

coefficients) of 1,cos ,sin ,cos2 ,sin 2 ,...,cos ,sinn nα α α α α α  written in 

terms of x and y by using trigonometry formulas , give exactly the same set of 

functions on the unit circle as the polynomials in x and y with terms of degree up 

to and including degree n.  Since the constant 1 and the sines and cosines are all 

linearly independent, this is a good way to approximate functions on the unit 

circle. 

In these terms, one can understand what we want from spherical harmonics: 

they should be , for each degree {0,1,2,3,….} , a set of homogeneous 

polynomials (all terms having the given degree) in x y and z with the properties 

that if you take all the spherical harmonics up to and including degree n, then 

they are linearly independent and  every polynomial in x y and z  of degree n 

(not necessarily homogeneous: just all terms of degree less than or equal to n) is 

a linear combination (with constant coefficients)  of  these spherical harmonics. 

An additional  condition is usually added, that the degree-n harmonics should be 

"perpendicular" to the harmonics of degree ≤  n-1 in a sense that we shall 

explain later.  This makes the process more orderly and more nearly unique. 

 In a given degree n, you need 2n+1 spherical harmonics; that is , to go from 

the set of degree n-1 or less harmonics to the degree n or less harmonics, you 

need to adjoin  exactly 2n+1 new harmonics of degree n.   This contrasts with 

the circle case where one needs one for degree 0 and only two for all higher 

degrees, namely the sine and cosine of n times the angle, where n=the degree.  
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Examples for low degrees may help: 

Degree 0 One harmonic:  the constant 1 

Degree 1 Three harmonics: x, y and z 

Degree 2 Five harmonics: 2 2x y− , 2 2x z− , xy , xz ,  yz

Notice that the five degree 2 harmonics , though we picked a set that looks nice 

and are  homogeneous of degree 2, are in fact equal on the sphere to functions 

which have no power of x greater than 1. For instance, 2 2x y−  is equal on the 

sphere to 21 2 2y z− −   since 2 21 2x y z= − − .  This observation will help us 

to understand the general situation! 

You can figure out  why you need 2n +1 additional harmonics to go from degree 

n-1 to degree n as follows: If, in a degree n term,  there is a power of x that is 

two or higher, it can be reduced, using the 2 2 2 1x y z+ + =  relation, to a term 

of lower  degree together with two terms still of total degree n but of degree in x 

lowered  by 2 compared to the original term, i.e., by noting that 

2 2 2(1 )k l m k l mx y z y z x y z−= − − . So everything of degree n will be taken 

care of provided one adjoins to the degree n-1 or less polynomials enough things 

to take care of terms of the form l n ly z − and of the form  1l n lxy z − −  .  There are 

2n +1 of these terms, so in terms of dimension we increase the dimension of the 

polynomial functions on the sphere by  no more than 2n +1  as we go from 

degree n-1 to degree n.  It turns out that we need at least 2n+1 so that this is in 

fact the exact number we have to have. This is because the 2n +1 functions of 

degree n discussed together with the corresponding ones of lower degree really 

are an  independent set on the sphere.(The details of this and the proof will be 

given later, to avoid interrupting the continuity). 
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Expansion in Spherical Harmonics: An Example 

We have set things up so that spherical harmonics up to and including degree n 

generate as linear combinations all the polynomial functions in x, y and z as far 

as values on the sphere goes. It is worth trying this out in a low degree case just 

to see it in action: If you take a second degree arbitrary polynomial, you can 

check using algebra and the fact that 2 2 2 1x y z+ + =  on the sphere that the 

second degree polynomial is a linear combination of the degree 0, degree 1 and 

degree 2 spherical harmonics AS FAR AS VALUES ON THE SPHERE ARE 

CONCERNED.  

The point is that a lot of items that are not zero on the space as a whole actually 

are zero on the unit sphere! E.g., 2 2 2 1x y z+ + − .  So you need fewer 

polynomials on the sphere to generate everything than you do if you look at the 

polynomials over all of space. 

 For instance, the function 2x on the sphere seems not to be a linear 

combination, and indeed is not a linear combination, of the five degree 2 

spherical harmonics  2 2 2 2, , , ,x y x z xy xz yz− − —if you think of 2x   and all 

the rest of the items as polynomials over the whole of Euclidean x, y, z space. 

But 2x  is a linear combination AS IT BEHAVES ON THE SPHERE of the spherical 

harmonics of degree less than or equal to 2, namely   using  

gives  

2 2 2 1x y z+ + =

2 2 2 21 1 ( ) ( )
3

2x x y x z⎡ ⎤= + − + −⎣ ⎦                      

This always works—that is what  we set up our spherical harmonics to do and 

they do it.  
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The Spherical Harmonic Expansion in General 

Since every continuous function on the sphere can be approximated by 

polynomials (standard analysis) and since spherical harmonics up to and 

including degree n have linear combinations that represent any given polynomial 

on the sphere, any continuous function on the sphere can be approximated by 

linear combinations of spherical harmonics. You may want to read that sentence 

twice!!! 

But there is actually a more systematic series expansion by spherical harmonics 

that is a quite exact analogue of the Fourier series on the circle. It is not just 

some sort of abstractly guaranteed bunch of better and better approximations 

but is rather a systematic infinite series expansion. 

 To make this work out well, we need to go back to that  condition on spherical 

harmonics that we mentioned earlier, the one about being “perpendicular.” It 

may seem a bit odd to use such geometric terms about functions ,but this kind 

of thinking about functions in terms of geometry is actually a really good idea. In 

fact, it is the basic idea of a whole mathematical subject called “functional 

analysis”. 

First we define the idea of an “inner product”  ,f g   of two functions f and g 

on the sphere. It is by definition what you get by integrating over the sphere  

the product of the functions: ,f g = fg∫ .   Now, we define just as in vector 

calculus, the norm ,f f f= .   

This makes the space of continuous functions look like a linear algebra item, 

namely a vector space with an inner product . And the norm is like length.  Also 

we can talk about perpendicular functions; f is perpendicular to g if   <f,g> =0.  
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Of course we can describe what it means without the geometric terminology: f is 

perpendicular to g if the average value on the sphere of f g⋅  is 0!! 

It is easy to check that one can make the spherical harmonics all unit length and 

make every pair of harmonics, whether of the same degree or not, 

perpendicular. In fact, you can do this on any vector space with an inner 

product. If you start with a generating set of independent vectors, or in this 

case, with a generating set of polynomials of degree 0, degree 1 ,degree 2, and 

so on, you can change each on as needed to make them all perpendicular to 

each other and all unit length ,too. This is done by what is known as the Gram 

Schmidt process. 

Once we have this in sight, one way or another, the spherical harmonics 

expansion is just like Fourier series. Namely, an arbitrary (continuous) function f 

on the sphere is represented by  a series , l
l

lf h h∑   where h  is some 

numbering off all of the unit length and mutually perpendicular spherical 

harmonics.  

Of course one usually does the sum by doing degree 0, then degree1, then 

degree 2 etc. So the harmonics are numbered  with n=degree and j being 

some index that runs from –n to +n so that there are 2n+1 of them as we say 

earlier.   

,n jh

Why does this series represent the function and in what sense? The sense is 

easy. While the series need not converge at every point, it converges to the 

function in the sense that  the norm of the difference between the function and 

the sum of the  first big bunch of terms of the series gets arbitrarily close to 0 as 

the bunch becomes big enough. ("Convergence in L2 norm" is the catch phrase 

here—it all looks just like Fourier series). 
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Why does this work? There is a general theorem, that Laplacian eigenfunction 

expansions are always  convergent in our “L2” norm as it is called (on compact 

manifolds). [This is why I have included an  Aside at the end of this article—to 

explain   where the spherical harmonics come from in terms of harmonic 

polynomials—-it gives one a way to find spherical harmonics explicitly in terms of 

linear algebra.]   

But the general theorem is hard to prove. And it turns out that in the specific 

case of spherical harmonics, the situation can be understood much more directly.  

The argument is almost exactly like the one for the corresponding result about 

Fourier series. 

First, let’s introduce a convenient notation. Let  be the spherical 

harmonic expansion of f up to and including harmonics of degree n. Now the 

way we set things up,

( )fS n

( )ff S n−  is perpendicular to the set of all polynomial 

functions on the sphere of degree less than or equal to n. By what amounts to a 

theorem of Euclidean geometry, this implies that  is the unique best 

approximation of 

( )fS n

f  in the norm sense among all the polynomials that are of 

degree n or less. (Just remember Euclid’s theorem that the closest point on a line 

to a given point not on the line is the foot of the perpendicular to the line). 

So  is the best L2 approximation of ( )fS n f of a given degree.  

On the other hand, we already know that, given any amount of closeness you 

want, there is SOME polynomial , say of degree n , that is that close to f  in the 

L2 norm—just take a polynomial that is close enough to f  at every single point. 

(This is possible on account of some standard theorem from analysis called 

Weierstrass’s theorem). But then   is that close or even closer in L2 norm ( )fS n
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to f —because  is the best approximation in the L2 sense of degree n.  

A detailed version of this proof outline will be added later. Anyway, the 

approximation result is true! And you can just take it on faith if you want to. 

( )fS n

A partially worked out example: How the Gram Schmidt process works 

in low degrees, up to and including degree 2. 

Working out the first few degrees may help with understanding all of this. Let us 

try first on the one harmonic of degree 0. We were choosing 1, but actually  1  

is not =1 because the integral    21 4π=∫   .  So we ought to replace 1 by 

1 1
4 2π π

=  to have unit length!  Set 0,0
1

2
h

π
= .     This is our one and 

only degree 0 harmonic.  

The natural generating set for degree 1 is x,y, and z-- or so it seems. These are 

all right on being perpendicular to   :   0,0h 0x =∫   by symmetry, so  

1( )
2

x
π

=∫ 0  ,too: and similarly for y and z.  Furthermore, x and y are 

perpendicular to each other: 0xy =∫  again by symmetry (think that one 

over!).  Similarly,  y and z are perpendicular and x and z are perpendicular. But x 

is not unit length!! Namely  2 4
3

x π
=∫  .  

You can see this without any work. It is apparent by symmetry that 

2 2 2x y= =∫ ∫ ∫ z  while clearly   2 2 2 1 4x y z π+ + = =∫ ∫ .  
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So we ought to take 1, 1
1 3
2

h x
π− = ,   1,0

1 3
2

h y
π

= , and 1,1
1 3
2

h z
π

= . 

So far, so good. Now our guaranteed generating set for moving from first degree 

to second degree was  2, , , , 2xy xz yz y z  .  The first three turn out to be 

perpendicular to 1, ,x y  and ,  and hence are also perpendicular to 

 and    .  But there are problems: 

z

0,0 1, 1 1,0, ,h h h− 1,1h 2y and are not 

perpendicular to 1, for instance. And of course we want to make everything unit 

norm, too. 

2z

Let us worry about what it takes to make y and z perpendicular to the lower 

degree items .  All we  need to do ,it turns out ,is to get them perpendicular to 1 

by subtracting something. Namely, 2 1
3

y −  is perpendicular to 1 since 

2 1 4 4( ) 1
3 3 3

y 0π π
− ⋅ = − =∫ .  So we should replace  by 2y 2 1

3
y − .  To 

make this look  homogeneous of  degree 2 , we could write it as 

2 2 21 (
3

y x y z− + + 2 ) .  Obviously, the algebra of this is going to get messy, 

but in principle you can make the generating set of five harmonics of degree 2 all 

of unit norm and perpendicular to each other and to the  lower degree 

harmonics.  It turns out to be a lot easier to make it all systematic if one does it 

in spherical angular coordinates—latitude and longitude in effect. You can read 

up on this in many sources.  

People came up with another way to find spherical harmonics that is the basis 

for the systematic calculations in the latitude-longitude situation.  But you do not 

really have to know this if all you care about are fairly low orders. If you are 

curious, you can read the aside that follows on how this other way goes, and 
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then follow up by looking into the standardized representation in terms of what 

are called Legendre functions, a representation  that uses the idea explained in 

the Aside below.  But what you have already gets you about as far as you need 

to go  to start in on the mathematics of Ambisonics, which is all that this 

summary was intended to do! 

 ______________________ 

    An Aside explaining what spherical harmonics really are! 

For the circle, there are naturally arising definite items to use as harmonics, 

namely the sines and cosines.  But on the sphere, there is no definite, familiar 

set of items. For example, for the harmonics of degree 2 , we could have used                             

2 2 2 2, , , ,x y y z xy xz yz− − .    There is ,however, a way to describe not the 

specific harmonics but at least what the whole set of linear combinations of them 

for a fixed degree actually is. Again, it is easiest to start with the circle 

.  With 2 2 1x y+ = α  being the angle , the functions sin , cosn nr n r nα α are 

polynomials in x and y that are harmonic on the x,y plane. (Recall that a 

harmonic function f is one that satisfies 0fΔ = , where 
2 2

2 2x y
∂ ∂

Δ = +
∂ ∂

. 

Moreover, these two harmonic polynomials generate the set of all the harmonic 

homogeneous degree n polynomials as linear combinations. (This is a standard 

fact from complex analysis). 

So we can try the same thing on three-dimensional space. Namely, we can look 

at the harmonic homogeneous degree n polynomials and restrict them to the 

unit sphere to get our degree n spherical harmonics.  

Now you can see how to get the number of degree  harmonics to compare with 

the answer we got before, namely 2n +1. Think about the Laplacian                                           
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acting on homogenous polynomials of degree n.   It converts them to 

homogeneous polynomials of degree n-2.   It turns out that this operation 

generates ALL the homogenous polynomials of degree n-2 (we are supposing n 

is at least 2 here). So we can find the dimension of the space of harmonic 

polynomials that are homogeneous of degree n by subtracting: 

 The space of homogeneous harmonic polynomials has dimension given by: 

(dimension of homogeneous polynomials of degree n ) – (dimension of space of 

homogeneous polynomial of degree n-2). 

The dimension of homogeneous polynomials in x, y and z of degree k can be 

computed as follows: 

If x has degree j, j at least 0 but not more than k, then y can have degree 

anything from 0 to k-j, and then the degree of z is determined by the fact that 

the total degree is k. 

If x has degree 0 There are k+1 possibilities  

If x has degree 1 There are k possibilities  

If x has degree 2 There are k-1 possibilities  

  

If x has degree k There is k-(k-1)=1 possibility , it is kx . 

So the total number of possibilities is the sum 

( 1)( 2( 1) ( ) ( 1) ... (1)
2

k kk k k )+ +
+ + + − + + =  

Thus the dimension of harmonic homogeneous polynomials of degree n is 

( 1)( 2) ( 1)( ) 4 2 2 1
2 2 2

n n n n n n+ + − +
− = = + . 
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It works ! This is the same answer we got earlier. And the fact that we have 

identified the harmonics of degree n as a certain specific space of polynomials 

that satisfy a differential equation makes a systematic treatment with explicit 

formulas  possible, instead of our Gram Schmidt process, which is complicated 

and does not lead easily to systematically labeled results, although for any 

particular degree you can get a basis that makes the expansion work out 

correctly—with enough work!  

One of the really cool things about this new approach is that the fact that the 

different degree harmonics are perpendicular to each other is automatic! We do 

not have to do any Gram Schmidt maneuvering—except to get unit length 

perpendicular things WITHIN a fixed degree. For example, let us look at the 

harmonic polynomials of degrees  0,1, and 2 one more time, with a more or less 

randomly chosen bunch of generators: 

1 for degree 0, 

x,y, z for degree 1 

2 2x y− , 2 2x z− , xy, xz, and yz for degree 2. 

Now we do not know about unit length nor about perpendicularity within a 

degree unless we compute. But we know without computing that for example 

2 2x y−  is perpendicular to 1 and to x , and that x is perpendicular to 1 and so 

on. This is a good thing, and it is true in all degrees.  A degree k homogeneous 

harmonic polynomial is always perpendicular on the sphere to a degree n one, as 

long as k and n are different!  There will be another item explaining why this is 

so later on. But anyway, you can see how much easier it makes like 

computationally. A lot of the messiness goes away. 

----------------( End of Aside )  
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