

Using Matlab/Simulink as an implementation tool for Multi-Channel Surround Sound

P. Schillebeeckx, I. Paterson-Stephens, B. Wiggins
Signal Processing Applications Research Group, University of Derby

Derby, DE22 1GB, United Kingdom

This paper discusses a highly flexible and powerful implementation toolkit that allows new ideas in the field of
multi-channel surround sound to be implemented with great ease and minimal development time. The key feature of
the toolkit is that it enables complex surround sound encoding and decoding algorithms to be implemented in real-
time with relative ease.

Introduction
The authors experience in designing and
implementing encoding and decoding systems for
multi-channel surround sound showed that although
the design of such systems was not in itself
excessively complex, the time consuming nature of
designing circuit boards and software routines for
each new system, often proved to be prohibitive. This
was especially true if a quick test of a new idea or
innovation was required.

The availability of a rapid development and
prototyping toolkit for the design and implementation
of multi-channel surround sound processors soon
became a clear requirement. This paper describes a
highly flexible software based toolkit, designed to
operate on a suitably equipped Pentium PC. The
software toolkit enables up to 16-channels of 16 bit
48k audio to be processed in real-time. The toolkit
also provides a collection of processing blocks
specific to multi-channel sound processing.

The Aim
The key aim of the project was to produce a highly
flexible software toolkit, which can be re-configured
quickly an easily with minimal effort and cost.

High flexibility should mean that the toolkit can be
used to implement a wide variety of surround sound
systems, ranging from two channel (such as dipole
and binaural) through to the 3-2 consumer formats
(more commonly known as 5.1) and higher-order
ambisonics systems. With this level of flexibility in
mind, the software toolkit incorporates a series of
software routines ‘building blocks’ to perform
operations such as: Signal Matrixing, Complex
filtering (for HRTF, Cross-talk cancellation and room
response characterisation), Fast convolution, Fourier
and Hilbert transformations, Variable delays, Pan-
rotate-tilt and Multi-channel I/O.

The system had to be low cost (doesn't it always)
which in the authors case meant that wherever
possible the system should make use of existing

resources. In practical terms this meant that the use of
a standard Pentium PC equipped with a multi-channel
sound card was the obvious choice.

System Overview
As already mentioned, a standard PC forms the basic
hardware platform for the system. The PC needs to
be equipped with a multi-channel sound card
(Soundscape Mixtreme in the authors case), see
figure 1. The software toolkit was designed to operate
within Simulink, which, in its basic form, is a block-
diagram based approach to the Matlab programming
language.

Fig. 1. Overview of the system.

Introduction to Simulink:
Simulink incorporates a wide variety of building
blocks, which can be used to develop complex
simulations of a wide range of systems, such as
mechanical vibration models and complex electronic
control systems.

Using Simulink, it is possible to simulate continuous,
discrete and hybrid systems using varied solver
methods as required to meet the needs of a specific
application [1, Simulink].

For the purpose of the system described in this paper
the following additional Simulink toolboxes were
required: DSP Blockset, Fixed-Point Blockset and
Real-Time Workshop. These standard blocksets add
various discrete time operations to the basic Simulink
application as well as the ability to translate software
designs to work on other platforms [2, RTW].

Multi-
Channel

Audio Input

PC running
real-time
Surround

Sound System

Multi-
Channel

Audio Output

SCHILLEBEECKX ET AL SURROUND SOUND TOOLKIT

AES 19TH INTERNATIONAL CONFERENCE 2

Input and Output Interface:
Although Simulink incorporates I/O blocks which
can be used to interface a software model to a
standard PC soundcard, none are suitable to deal with
multi-channel surround sound in their existing form.
Multiple instances of the two-channel audio I/O
block, which is provided as standard within Simulink,
could in principle be used so that, for example, 16
channels of audio could be processed simultaneously.
The problem with this is that variable delays exist
between blocks, as the Windows operating system is
not capable of opening more than one audio device
instantaneously, see figure 2.

0000 2000200020002000 4000400040004000 6000600060006000 8000800080008000 10000100001000010000 12000120001200012000
-0.3-0.3-0.3-0.3

-0.25-0.25-0.25-0.25

-0.2-0.2-0.2-0.2

-0.15-0.15-0.15-0.15

-0.1-0.1-0.1-0.1

-0.05-0.05-0.05-0.05

0000

0.050.050.050.05

0.10.10.10.1

0.150.150.150.15

0.20.20.20.2

time in samples at 44.1KHz sampling frequencytime in samples at 44.1KHz sampling frequencytime in samples at 44.1KHz sampling frequencytime in samples at 44.1KHz sampling frequency

m
ag

ni
tu

de
m

ag
ni

tu
de

m
ag

ni
tu

de
m

ag
ni

tu
de

Delay between opening of devicesDelay between opening of devicesDelay between opening of devicesDelay between opening of devices

device 1device 1device 1device 1
device 2device 2device 2device 2
device 3device 3device 3device 3
device 4device 4device 4device 4

Fig. 2. Delay between audio devices

The first challenge in using Simulink for multi-
channel audio processing is therefore to produce a
block capable of opening multiple audio channels
simultaneously. By re-coding parts of Simulink, it
was possible to produce a set of audio I/O blocks
capable of handling eight and sixteen channels. These
interface directly with the soundcard and do not
suffer any of the latency and synchronisation
problems previously experienced. In order to
overcome the problem of opening multiple devices
instantaneously, the audio device has been set to
operate as a single sixteen-channel device. In this
case whenever the audio device is opened, all sixteen
channels will be perfectly synchronised.

Case Study: An 8-Channel
Ambisonics Decoder
To demonstrate the application of the Multi-channel
sound Simulink toolbox, a case study involving the
design and real-time implementation of an 8-channel
ambisonics decoder will be considered. The
implementation of an 8-Channel Ambisonics
Decoder relies on basic sine and cosine laws and a set
of signal matrixing operations.

Ambisonics – an overview:
Ambisonics [3, Gerzon; 4, Gerzon] is a surround
system based on the decomposition of a soundfield
using spherical harmonics, see figure 3. The spherical
harmonics contain a zero'th order omni-directional
pressure signal (W) and three directional particle
velocity signals (X,Y,Z), front-back, left-right and
up-down.

Fig. 3. Spherical harmonics forming B-format

The W, X, Y and Z signals are jointly referred to as
the B-format signal and together these are used to
describe a full-periphonic soundfield. From these
signals it is possible to derive a loudspeaker feed for
any position on the unit sphere. Such a loudspeaker
feed is dictated by the following relationship:

()
()

() ()
() ()
() Zelevation

Yelevationazimuth
Xelevationazimuth

W

elevationazimuthfeedLSP

×+
××+
××+

×=

sin
cossin
coscos

2

,_

For this particular case study, the B-Format signal
will be decoded to 8 speaker feeds, each equally
spaced apart (45 degrees azimuth) at 0 degrees
elevation, see figure 4.

Fig. 4.Loudspeaker layout

SCHILLEBEECKX ET AL SURROUND SOUND TOOLKIT

AES 19TH INTERNATIONAL CONFERENCE 3

Using a package such as MATLAB, it is possible to
create a mathematical model or even process B-
format audio files off-line [5, MATLAB], resulting in
the required speaker feeds. This will allow for a
mathematical verification of the theory, but does not
allow for any real-time adjustments. These real-time
adjustments are particularly useful in surround sound
systems, as the final tweaks are often down to
subjective fine-tuning.

Non Real-Time model using MATLAB:
The program below shows the mathematical
principles behind the decoder, any B-format signal
can be used, both recorded or simulated:

% An off-line ambisonics decoder for an 8-
% channel loudspeaker set-up. The height
% factor is ignored as all speakers have an
% elevation of 0.

% B-format input (simulated or recorded B-
% format)
W= a signal;
X= a signal;
Y= a signal;

% Declarations of the loudspeaker positions
azim_0 = 0;
azim_45 = pi/4;
azim_90 = pi/2;
azim_135 = 3*pi/4;
azim_180 = pi;
azim_225 = 5*pi/4;
azim_270 = 3*pi/2;
azim_315 = 7*pi/4;

% Calculation of the loudspeaker feeds
LSP_0 = sqrt(2)*W + cos(azim_0)*X

+ sin(azim_0)*Y;
LSP_45 = sqrt(2)*W + cos(azim_45)*X

+ sin(azim_45)*Y;
LSP_90 = sqrt(2)*W + cos(azim_90)*X

+ sin(azim_90)*Y;
LSP_135 = sqrt(2)*W + cos(azim_135)*X

+ sin(azim_135)*Y;
LSP_180 = sqrt(2)*W + cos(azim_180)*X

+ sin(azim_180)*Y;
LSP_225 = sqrt(2)*W + cos(azim_225)*X

+ sin(azim_225)*Y;
LSP_270 = sqrt(2)*W + cos(azim_270)*X

+ sin(azim_270)*Y;
LSP_315 = sqrt(2)*W + cos(azim_315)*X

+ sin(azim_315)*Y;

Note that the elevation factor and it's relevant
spherical harmonic Z have been discarded from the
above program, as all speakers are at 0 degrees
elevation.

A more useful model would be one capable of
simulating the system in real-time allowing for real-
time parametric adjustment, giving a far more
flexible method of adjusting and analysing system
performance.

Real-Time implementation using Simulink:
For real-time operation, Simulink and an associated
multi-channel sound toolkit has been developed. As
mentioned earlier, Simulink allows a block diagram
approach to programming, as will be demonstrated.

The 8-channel ambisonics decoder, this time using
basic Simulink Building blocks, is shown in Fig. 5 at
the end of this paper.

Creation of dedicated processing blocks:
Once a system or part of a system has been designed
successfully, it can be converted into a building block
and added to the library of parts for future use. The
simple 8-channel ambisonics decoder shown in figure
5, although not highly complex is already somewhat
of a maze, and adding more functionality to the
system will clutter the view further. The ability to
contain sub-systems within individual building
blocks allows for logical and transparent designs to
be built up.

In the software toolkit, the 8-channel ambisonics
decoder appears as a single building block which can
be added to any system. The decoder can then be
used as the output stage of more complex surround
sound system designs.

Fig. 6. Eight channel ambisonics decoder block

By specifying the correct I/O interface within the
software, the 8-channel ambisonics decoder can be
run in real-time.

A fully working 8-channel ambisonics decoder with
an audio I/O interface is shown in figure 7. The B-
format input signal is fed to the computer, via the
soundcard, and processed in real-time. The processed
outputs are then fed, again via the soundcard, to eight
amplifiers, which in turn feed the loudspeaker array.

SCHILLEBEECKX ET AL SURROUND SOUND TOOLKIT

AES 19TH INTERNATIONAL CONFERENCE 4

Fig. 7. Decoder with I/O interface

Although the great advantages of real-time modeling
will be apparent from the above model, its use is
most advantageous in less static models where the
real-time control of parameters is of great use.

Figure 8 shows another example of a more dynamic
model, which allows for rotation of the soundfield
about the Z-axis i.e. a Z-pan control. As before, the
input to the system is the standard B-format signal,
but rather than just decoding the signal via the eight-
channel ambisonics decoder, it is possible to rotate
the signal by any angle about the Z-axis.

As W is an omni-directional signal it will be
unaltered, X and Y will be changed according to the
following rules [6, Malham]:

() ()
() () YXY

YXX
×+×=
×−×=

αα
αα

cossin'
sincos'

Where α is the angle of rotation.

sin

sin1

sin

sin

cos

cos1

cos

cos

1
2
3
4
5
6
7
8

To Amplifiers

Product3

Product2

Product1

Product

1
2
3
4
5
6
7
8

From Multi-Track

pi/2

Constant

W

X

Y

LSP_0
LSP_45
LSP_90

LSP_135
LSP_180
LSP_225
LSP_270
LSP_315

8-Channel
Ambisonics

decoder

Fig. 8. Soundfield auto rotation

When running the above model it now becomes
possible to update the angle of rotation whilst the
model is running. Alternatively, the model could be
updated automatically, by replacing the constant by a
sine wave generator, resulting in a spinning
soundfield – autopan effect. Also, the pan/auto-pan
control can be placed into a building block and added
to the library of parts for future use.

The eight-channel ambisonics decoder is only one of
a wide variety of dedicated processing blocks that
have been designed. An entire surround sound toolkit
has been created containing various encoders,
decoders and converters. These include dipole,
binaural, ambisonics (first and second order) and 3-2
consumer format encoders and decoders; B-format to
3-2 consumer format, B-format to binaural, B-format
to dipole and A-format to B-Format converters etc.

Toolkit Performance
The overall performance of a PC-based real-time
toolkit is dependent on several factors, these factors
can be categorized into Hardware and Software
related issues.

Hardware issues:
The performance of the PC is an obvious factor and
is dependent on several issues, although these will
not be discussed in this paper. However, it is clear
that CPU speed ultimately determines the maximum
complexity of model that can be successfully
simulated in real-time. The authors experience with
this toolkit has been gained using a Pentium III – 600
MHz processor and this has proven to be quite
acceptable for most applications.

Being an audio implementation tool, the performance
of the multi-channel soundcard is of great
importance. Although standard desktop personal
computers are not the most ideal places to host audio
equipment, many of today's higher-end soundcards
perform very well, especially those with external A/D
and D/A converters, such as the 16-channel
soundscape mixtreme card used in this project.

The soundcard used in this project was capable of
sampling frequencies up to 48KHz at 16-bit
resolution, for all sixteen input and output channels.
Some test results for a basic thru application were
carried out (soundcard in -> software mixer ->
Simulink model -> software mixer -> soundcard out).
The tests included: frequency response, quasi peak
rectified noise measurement and total harmonic
distortion + noise, these results are shown in figures
9, 10 and 11 respectively. For the purpose of this
project the results obtained were deemed to be
acceptable.

Software issues:
The accuracy of calculations, and particularly the
handling of intermediate results, is an important
performance issue when considering the overall
performance of the real-time software. The great
advantage of using a package such as Simulink is that
all calculations are carried out using floating-point

SCHILLEBEECKX ET AL SURROUND SOUND TOOLKIT

AES 19TH INTERNATIONAL CONFERENCE 5

arithmetic. However, if the final target system is to be
based on a fixed-point DSP processor for example,
then Simulink can configured to perform all
calculations using fixed-point arithmetic. This way,
the final system performance can be evaluated.

In the case of audio manipulation a fixed-step solver
at a set sampling frequency is used. This approach to
processing data is analogous to the approach used in
DSP algorithms [3, Paterson-Stephens]. All data to be
manipulated is arranged in buffers, allowing for
efficient data manipulation, the size of these buffers
are user defined and can be increased for demanding
implementations. An increase in buffer size does
however increase the latency of the system.

Latency of the system:
The overall latency of the system is dependant on
several factors; some of these factors are determined
by the I/O configuration, others by the processes
employed.

When configuring the I/O of the system three main
parameters are set, the buffer size, the queue duration
and the initial output delay [7, DSP Blockset].

The buffer size determines the size of the data buffer
passed to the Simulink model and will be used
throughout the model.

The queue duration determines the maximum length
of time that data acquisition within Simulink can lag
data acquisition by the hardware. Also there is a
similar parameter to determine the maximum amount
of time that the data output from Simulink can lag the
data output of the hardware. The maximum queue
duration is specified by 1024-buffered audio frames
or the size of the hardware buffer on the soundcard
whichever is the smallest.

The initial output delay determines the amount of
time by which the initial output to the audio device
has been delayed.

These I/O parameters should be configured taking
into account the likely demands put on the Simulink
model, for simple models it will be possible to keep
the latency inherent to the I/O interface to a
minimum, more complex models may require the
latency time to be increased to guarantee stable
operation of the model.

The overall latency of the system will consist of the
latency inherent to the I/O interface plus the latency
due to the processes taking place within the Simulink
model.

Conclusions
A flexible real-time simulation and implementation
tool, demanding a minimal amount of
implementation time has been outlined, with the
focus on surround sound systems.

It should be stressed that this is not a tool meant to
create finalised products, but a platform upon which
to build and fine tune ideas and concepts in the field
of multi-channel surround sound. Further, a great
advantage of the way the code is structured in
Simulink is that it is analogous to the code structure
that would be required for DSP routines, allowing for
easy porting of code to dedicated DSP processors.
Recently toolboxes have been added that will
automatically port Simulink simulated systems to
specific DSP platforms.

This portability makes the system described a very
powerful development tool and a crucial part of a
three stage development cycle.

Once the theory for a system has been established, a
real-time model can be built up to verify and fine
tune the system followed by the final stage, porting
the system established onto the DSP platform of
choice.

Not mentioned in this paper is the capability of
Simulink in combination with the Real Time
Workshop blockset to compile Simulink models as
stand-alone PC based applications. This ensures the
portability of simulations to PC’s without any
specific software requirements.

The eight-channel ambisonics decoder discussed in
this paper, can be downloaded as a stand-alone
application from http://sparg.derby.ac.uk.

References
[1] The Math Works Inc, Simulink, Dynamic System
Simulation for MATLAB, version 4, 2000.
[2] The Math Works Inc, Real Time Workshop
Blockset for Simulink, version 4, 2000.
[3] M.A. Gerzon, “Psychoacoustic Decoders for
Multispeaker Stereo and Surround Sound”,
Proceedings of the 93rd AES Convention, San
Francisco 1992.
[4] M.A. Gerzon, General Metatheory of Auditory
Localisation, Proceedings of the 92nd AES
Convention, Vienna 1992.
[5] The Math Works Inc, MATLAB, version 6, 2000.
[6] D.G. Malham, Spatial hearing mechanisms and
sound reproduction, University of York, 1998.
http://www.york.ac.uk/inst/mustech/3d_audio/ambis2
.htm.

http://www.york.ac.uk/inst/mustech/3d_audio/ambis2.htm
http://www.york.ac.uk/inst/mustech/3d_audio/ambis2.htm

SCHILLEBEECKX ET AL SURROUND SOUND TOOLKIT

AES 19TH INTERNATIONAL CONFERENCE 6

[7] I. Paterson-Stephens, A. Bateman, The DSP
Handbook, Algorithms, Applications and Design
Techniques, Prentice Hall, 2001.
[8] DSP Blockset for Simulink, version 4, 2000, The
Math Works Inc.

Fig. 5. Eight channel ambisonics decoder using
Simulink building blocks.

SCHILLEBEECKX ET AL SURROUND SOUND TOOLKIT

AES 19TH INTERNATIONAL CONFERENCE 7

Fig. 9.Frequency response of the system

Fig. 10. Quasi peak rectified noise measurement of
the system

Fig. 11.THD + noise measurement of the system

	Introduction
	The Aim
	System Overview

	Introduction to Simulink:
	Input and Output Interface:
	Case Study: An 8-Channel Ambisonics Decoder

	Ambisonics – an overview:
	Non Real-Time model using MATLAB:
	Real-Time implementation using Simulink:
	Creation of dedicated processing blocks:
	Toolkit Performance

	Hardware issues:
	Software issues:
	Latency of the system:
	Conclusions

	References

