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ABSTRACT
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Doctor of Philosophy

SOUND FIELD REPRODUCTION

by Filippo Maria Fazi

This thesis is concerned with the problem of reproducing a desired sound field with
an array of loudspeakers. A theory based on functional analysis and the theory of
integral equations is developed for the study of this problem. An attempt is made to
develop a mathematical framework that can be adopted as a generalized theory of sound
field reproduction. The reproduction problem is formulated as an acoustical inverse
problem, in which the target sound field is given on the boundary of a control volume
located in the interior of the loudspeaker array, while the loudspeaker signals required
for the reproduction of the desired field are to be determined. The loudspeaker array
is initially modeled as a continuous distribution of secondary sources, mathematically
represented by a single layer potential, whose density is to be determined. The singular
value decomposition of the integral operator involved is proposed as a method for solving
the inverse problem. Closed form expressions are derived for the singular system for the
cases of secondary sources arranged on a sphere and on a circle. An attempt is also
made to extend the calculation to unbounded geometries, such as an infinite line and a
plane. The inverse problem under consideration is in general ill-posed, and the existence
and uniqueness of its solution are studied in relation to sound fields of practical interest.
It is shown that an exact and unique solution exists for a large family of sound fields.
Strategies are proposed for overcoming the problem of nonexistence and nonuniqueness
of the solution, arising in cases such as the reproduction of focused sources or when the
operating frequency corresponds to one of the Dirichlet eigenvalues of the control region.
An important analogy is also drawn between the problem of sound field reproduction
and the theory of acoustic scattering. In a later part of this work, the assumptions of a
continuous layer of secondary sources and of a single operating frequency are removed,
and the resulting consequences are analyzed. The experimental validation of some of the
theoretical results is described in the final part of the thesis. A large spherical loudspeaker
array is used in an attempt to reproduce the sound field generated by a single virtual
source, located in the exterior of the array. Experimental results are in good agreement

with the theoretical results over a wide range of frequencies.
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A mia nonna Alina ed a mio padre Maurizio,

dat quali non finiro mai di imparare.

[To my grandmother Alina and to my father Maurizio,

from whom I shall never stop learning.|



Da chimico un giorno avevo il potere
di sposare gli elementi e farli reagire,
ma gli womini mai mi riusci di capire
perché si combinassero attraverso l’amore

affidando ad un gioco la gioia e il dolore.

Primavera non bussa lei entra sicura
come il fumo lei penetra in ogni fessura
ha le labbra di carne, © capelli di grano.

Che paura, che voglia che ti prenda per mano.

Che paura, che voglia che ti porti lontano.

Ma guardate l'idrogeno tacere nel mare
guardate l’ossigeno al suo fianco dormire:
soltanto una legge che to riesco a capire
ha potuto sposarli senza farli scoppiare.

Soltanto la legge che io riesco a capire.

[ As a chemist, I once had the power

to marry the elements and make them react,
but people I could never get to understand
why they’d combine together through love

entrusting their joy and their pain to a game.

Spring doesn’t knock, she boldly steps in,

like smoke she diffuses through every gap.

Her lips are all fleshy, her hair is like wheat.

How scary, how tempting that she’ll take your hand.

How scary, how tempting that she’ll take you away.

But look at the hydrogen quiet in the sea!
look at the oxygen asleep at its side!

only a law which I comprehend

allowed them to marry and not to explode.
Only that law that I comprehend.]

(Fabrizio De André, Un Chimico
translated by M.Orsi, A.Simmonds,
M.Danby and F.Fazi)
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Chapter 1

Introduction

1.1 Background and scientific contribution of the thesis

This thesis addresses the problem of reproducing a desired sound field with an array of
loudspeakers. This problem is of relevance for many practical engineering applications.
The design of multi-channel audio systems, which allow for an accurate rendering of
the spatial detail of a sound scene, is probably the most obvious application. Other
fields in which the reproduction of a desired acoustic field may be of relevance include
the active control of sound and the design of loudspeaker or hydrophone arrays for
telecommunications, public address systems, underwater arrays and sonar technologies or
military applications. The general subject of multi-channel systems and array technology
has received increasing interest during the last decade. This fact is probably due to
the recent advancement in electronics and telecommunication technologies, which have
allowed for the realization and commercial diffusion of a variety of affordable products
capable of sophisticated and simultaneous real time digital processing of a large number

of signals.

The main contribution of this thesis consists of the development of a rigorous theoretical
study of the problem of sound field reproduction. An attempt is made to develop an
analytical framework which can be adopted as a generalized theory of sound field repro-
duction. Other reproduction methods, such as for example Wave Field Synthesis, High
Order Ambisonics and other techniques reported below, can be derived from the general

theory proposed here and can be interpreted as special cases of the latter.

The starting point of this work is the mathematical formulation of the problem of sound
field reproduction as an inverse problem. The corresponding direct or forward problem
consists of the determination of the sound field generated by a given array of loudspeakers,
for which the signal driving each loudspeaker is known. This problem is simply solved

by creating a suitable physical model of the array. The solution of the inverse problem
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requires the answer to the following question: given a desired sound field, defined within
a bounded region of the space, and given a loudspeaker array, what are the loudspeaker
signals which allow for the array to reproduce that desired field? In many cases, an exact
answer to this question might not exist, but it is possible to give an answer, which is
as accurate as possible. In other words, it is possible to compute loudspeaker signals
allowing for an acoustic field to be reproduced, which is as similar as possible to the

target field (later, we will see what is meant by as similar as possible).

The backbone of the approach developed relies on the assumption that the loudspeaker
array can be modeled as a continuous distribution of ideal omnidirectional acoustic point
sources (secondary sources). The assumption of a continuous distribution implies the use
of an ideally infinite number of loudspeakers and is therefore clearly unrealistic, but this
nevertheless proves extremely useful for developing a solid and rigorous theory of sound
field reproduction. In Chapter 7 of this thesis, this ideal assumption is removed and the
effects of the discretization of the array are studied in detail. It is clear from the outset,
however, that the ideal assumption above is a good approximation to reality when the
number of loudspeakers is such that the average distance between neighboring units is
small in comparison to the wavelength of the sound to be reproduced. In Chapter 7, an
alternative solution method is presented, which involves directly the discretization into
a finite number of secondary sources of the integral operator adopted as a model of the

loudspeaker array.

The assumption of a continuous distribution of secondary sources allows for the loud-
speaker array to be modeled as an integral operator, and more specifically as a single layer
potential. This crucial step leads to the fundamental connection between the problem
of sound field reproduction and the branch of mathematics know as functional analysis,
more specifically to the theory of integral equations, thus opening the door to a vast
source of mathematical tools and results, which can be used to analyze and solve the
inverse problem under consideration. Functional analysis has been developed mainly
during the last century, and has been successfully applied to the study of a variety of
problems of relevance for physics and engineering, including the study of acoustical in-
verse problems such as scattering of sound and acoustic holography. To the author’s
knowledge, the problem of sound field reproduction has not hitherto been formulated
within this framework, and this is therefore believed to be a relevant scientific contribu-

tion of this thesis.

The philosophical motivation behind the effort spent developing a theory of sound field
reproduction on the basis of functional analysis, apparently adding an extra layer of
mathematical complexity, is probably summarized well by the following citation of E.

Kreyszig, Introductory functional analysis with applications [Kre78, p.1]:

Mathematicians observed that problems from different fields often enjoyed related fea-

tures and properties. This fact was used for an effective unifying approach towards such
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problems, the unification being obtained by the omission of unessential details. Hence
the advantage of such an abstract approach is that it concentrates on essential facts, so
that these facts become clearly visible since the investigator’s attention is not disturbed by
unimportant details. In this respect the abstract method is the simplest and most econom-
tcal method for treating mathematical systems. Since any such mathematical system will,
in general, have various concrete realizations (concrete models), we see that the abstract
method is quite versatile in its application to concrete situations. It helps to free the
problem from isolation and creates relations and transitions between fields which have at

first no contact with one another.

The above refers to the use, in general, of abstract mathematical models for the study of
different problems, which share underlying logical properties, but suits very well the issue
under consideration. In fact, the study of sound field reproduction in the framework of
functional analysis not only allows for the formulation of a general theory, from which
other specific approaches can be derived, but it also reveals hidden and yet enlightening
analogies between the problem addressed and other apparently unrelated subjects such
as acoustic scattering and Near-field Acoustical Holography, as shown in Chapter 6 of
this thesis.

In the theoretical framework adopted, the acoustic fields and the functions representing
the loudspeaker signals are elements of abstract spaces of functions (more specifically,
Hilbert spaces). The loudspeaker array, as mentioned above, is modeled as an integral
operator and the mathematical properties of this operator are analyzed. This brings
to light the fact that the inverse problem under consideration is, by its very nature,
an ill-posed problem, thus implying that the solution to the problem might not exist,
might be non unique, or might be unstable. Existing mathematical results are deployed
and new results are derived, which indicate the sound fields that can be reproduced and
the degree of accuracy with which this can be accomplished. For several ideal array
geometries, explicit expressions for the solution of the problem are derived, in most of
cases by means of the singular value decomposition of the integral operator involved.
In the cases when an exact solution of the inverse problem does not exist, approximate
solutions are derived by applying regularization techniques. The validity of the results
derived for ideal continuous loudspeaker arrays is then analyzed for the case of arrays
including a finite number of units, and the effects due to spatial aliasing are studied in
detail. The computation of the loudspeaker signals for the reproduction of sound fields
with broad-band spectral content leads to the definition of digital filter design strategies.
These can be implemented in digital signal processing algorithms for practical sound

field reproduction systems.

Finally, an important contribution of this work, on which the last chapter of this thesis
is focussed, is the experimental validation of some of the theoretical results presented.
This shows that the utility of the abstract models developed is demonstrated by their

application to real situations. The experiments discussed in this thesis represent an
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initial step, which may pave the way to further development and practical applications
of the theory.

Although no explicit connection to other branches of acoustics is made here, it is the
hope of the author that some of the theoretical results developed within this work may
prove useful not only for the specific subject of sound field reproduction but also for
other acoustical problems such as sound radiation, acoustic source reconstruction and
identification, acoustic holography, active control of sound, acoustic imaging and acoustic

scattering.

It is important to emphasize that several results presented in this thesis, and especially
those discussed in Chapter 7, are not novel and are reported also in the literature ded-
icated to other sound field reproduction techniques, such as Wave Field Synthesis and
High Order Ambisonics. However, consistent with the intent of presenting a general-
ized theory, the deliberate choice has been made of deriving these results following the
general analysis developed in this thesis, rather than introducing them by referring to
other specific and established techniques. Therefore, with respect to these results, the
originality of the scientific contribution lies in the fact that several results arising in dif-
ferent methods, are here derived within the framework of a unified general approach to

the problem.

One final, yet relevant, aspect of the problem that should be considered from the very
beginning is that this thesis deals with the physical reproduction of a desired sound
field, rather than with the accurate rendering of its spatial attributes in terms of human
perception. The relation between the accuracy of the reproduction of the physical char-
acteristics of the desired field, such as acoustic pressure and acoustic intensity, and the
human perception of the spatial attributes of the reproduced sound scene is beyond the

objective of this thesis and may be the subject of future efforts.

Some of the results and concepts presented in this thesis are also reported in the following

publications:

e Filippo M. Fazi and Philip A. Nelson, A theoretical study of sound field reconstruc-
tion techniques. 19th International Congress on Acoustics, Madrid, 2007 [FNO7c].

e Filippo M. Fazi and Philip A. Nelson, Application of functional analysis to the
sound field reconstruction. 23rd Conference on Reproduced Sound of the Institute
of Acoustics, Newcastle, 2007 [FNO7a].

e Filippo M. Fazi and Philip A. Nelson, The ill-conditioning problem in sound field
reconstruction. 123rd International Convention of the Audio Engineering Society,
New York, 2007 [FNO7b].
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e Filippo M. Fazi, Philip A. Nelson, Roland Potthast and Jeongil Seo, The study
of sound field reconstruction as an inverse problem. Institute of Acoustics Spring
Conference Reading, 2008 [FNPS08c].

e Filippo M. Fazi, Philip A. Nelson, Jens E. N. Christensen and Jeongil Seo, Sur-
round System Based on Three-Dimensional Sound Field Reconstruction. 125th
International Convention of the Audio Engineering Society, San Francisco, USA,
2008 [FNCS08].

e Filippo M. Fazi, Philip A. Nelson, Roland Potthast and Jeongil Seo, An intro-
duction to a generalised theory for sound field reproduction. 24th Conference on
Reproduced Sound of the Institute of Acoustics, Brighton, 2008 [FNPSO08b|.

e Filippo M. Fazi, Philip A. Nelson, Roland Potthast and Jeongil Seo, Application
of the theory of integral equations to the design of a multi-channel reverberation

simulator. 35° Convegno Nazionale dell’ Associazione Italiana di Acustica Milano,
Italy, 2008 [FNPS08a).

e Filippo M. Fazi, Philip A. Nelson and Roland Potthast, Analogies and differences
between three methods for sound field reproduction. Ambisonics Symposium 2009,
Graz, Austria, 2009 [FNP09].

1.2 Brief overview of previous work

The problem of reproducing a desired sound field with an array of loudspeakers has
been the subject of scientific research for many years, and several approaches have been
proposed in order to provide a practical solution to this problem. Most of these meth-
ods are grounded on a solid mathematical and physical basis, and the implementation
of these techniques into practical systems, especially for audio purposes, has increased
progressively during the last decade. In what follows, several of these techniques are
briefly described. Following this, some references are provided to work relating to the

application of functional analysis and of the theory of integral equations to acoustics.

1.2.1 Wave Field Synthesis

One the most well-known sound field reproduction techniques is Wave Field Synthesis.
This technique was initially conceived by A.J. Berkhout and presented in 1988 in a
highly cited paper [Ber88|. After that, much research was undertaken, especially at
the Delft University of Technology, in order to develop further this technique. Many
authors contributed to this effort and a large number of scientific publications on Wave
Field Synthesis is now available: [BdS97], [BDV93|, [Sta97]|, [Ver97], [Vog93|, [dV96],



Chapter 1 Introduction 6

[Boo04], [BVv94], [SRA0S], [SR06], [Spo07], [SA09], [AS07], [CPKROS], [Cor07], [Cor06],
[MLAVO05] and [PRP*08] , among others.

The theory of Wave Field Synthesis is based on the well-known Huygens- Fresnel principle,
whose first formulation appeared in 1690 in Huygens’ Traité de la lumiére (see for example
[Huy66]). This principle states that each point of a propagating wave front may be
regarded as a center of a new disturbance and the source of a new secondary wave,
and that the principal propagating wave may be regarded as the sum of all the these
secondary waves. This simple but fundamental principle laid the foundations for the so-
called Green’s representation theorem [CK83|, allowing for the representation of a field p,
which satisfies the homogeneous Helmholtz equation in a bounded set D, by the following

integral

p(x) if x is inside D
op(y) _ 0G(y)

o O Gy~ Gty ") 45 = #0072 i x nen 0D
0 if x is outside D

where 0D is the boundary of D, G(x,y) is the Green function and n(y) is the unitary
vector orthogonal to 9D at y and directed toward its exterior (see chapters 2 and 3 for
more detail). In the literature on acoustics, the formula above is usually referred to as

the Kirchhoff-Helmholtz integral (or Helmholtz integral) [Wil99).

The practical implication of this relevant result is that a given sound field can be repro-
duced, in the interior of a bounded region of the space, by a continuous distribution of
dipole-like and monopole-like secondary sources, arranged on the boundary of this region.
The strength of these secondary sources is given by the value of the acoustic pressure
field and of its derivative, respectively, evaluated at the location of the secondary source

under consideration. The sound field reproduced in the exterior of D is identically zero.

As will be shown in Chapter 6 of this thesis, in the special case when 9D is an infinite
plane or an infinite line, the integral representation above can be substituted by the first

Rayleigh integral (or alternatively to the second Rayleigh integral), which reads

_ . Ip(y)
p(x) = - G(x,y) 2aﬁ(y) dS(y)

In this formulation, secondary sources of one kind only are required (monopole-like

sources for the first Rayleigh integral and dipole like sources for the second). This
representation formula is the basis of Wave Field Synthesis: an array of equally spaced
loudspeakers is used to reproduce a desired field, and the loudspeaker signals are derived
directly from the normal derivative of the desired acoustic pressure field, evaluated or
measured at the location of each loudspeaker. Reproduction artifacts derived from the
finite size of the array and from the discretization of the ideally continuous distribution

of secondary sources are well known and are discussed in the literature. This technique
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applies rigorously to planar arrays, but effective methods have been derived in order to
extend it to arrays of different shape. Of special relevance is the so called 2.5 operator,
derived from a stationary phase approximation of the three dimensional free field Green

function and applied to two dimensional arrays (see for example [Sta97]).

Adaptive methods have been applied to Wave Field Synthesis, as is discussed in the
works, among others, of S. Spors et al. [Spo06], [SBRHO07| and P.A. Gauthier et al.
[GBWO05], [GB06], [GBOSb], [GB0Sa).

1.2.2 Ambisonics

Another well-known and widely used technique for sound field reproduction is Ambison-
ics. This method was invented by M.A. Gerzon and its principles were presented in a
series of publications, the first of which, [Ger72|, was presented in 1972. Some of these
papers are: [Ger73|, |Ger74|, |Ger75]|, |Ger77c|, |Ger77b|, |Ger77a], |Ger80|, [Ger85],
[GB92], [Ger97] and [GB98]. It should be mentioned that Gerzon often refers to psy-
choacoustical principles in relation to the theory of Ambisonics. In [Ger80] two local-
ization theories are mentioned, namely Makita theory and the Energy vector theory, but
Gerzon also proposed his own theory of auditory localization [Ger74|, [Ger92|, intended

as a theoretical tool for designing strategies for surround sound systems.

In spite of the fact that Gerzon’s theory was valid for systems of arbitrary order, for a
long period of time after its invention the practical applications of Ambisonics involved
only first order systems (the order refers to the truncation order of the spherical har-
monic series described below). The works of J.S. Bamford and J. Vanderkooy [Bam95],
[BV95] and the series of publications by J. Daniel, R. Nicol and S. Moreau [Dan00],
[DRP98|, [Dan03], [Nic99|, [NE99], INE9S|, [DNMO03], [Mor06] contributed to the further
development of the theory and applications of Ambisonics. Much attention has been
dedicated to the extension of Ambisonic systems to orders higher than the first. Some
of this work emphasizes the capabilities of Ambisonics for reproducing a desired sound
field. Furthermore, much effort has been dedicated to the study of analogies and differ-
ences between Ambisonics and Wave Field Synthesis. The use of the term High Order
Ambisonics has become increasingly popular in the literature when referring to this new
evolution of Ambisonics. An extensive literature is now available on the theory and ap-
plications of Ambisonics. Some of the relevant publications are, among others, [Fel75],
[CGT77], [Mal99], [Cot02], [Wigh4], [SS06], [Sol08], [HS09], [AS08a|, [ASO8b|, [AS08c]|,
[SA08], [MAAO7], [ZPF09], [SHO1|, [NMSHO03], [FU98| and [HLBOS|

In the work of Daniel et al. [DNMO3]| it is reported that Ambisonics is based on the
representation of the field by means of spherical harmonics. More specifically, a given

field p, satisfying the homogeneous Helmholtz equation in the interior of a sphere of
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radius R, can be expressed by

oo n
_ N - ﬂ ) m(s m
p(xjw)—Zz jn(cx Z Y '(x)B)'(w), © <R
n=0 m=—n
where j,, are spherical Bessel functions and Y,)” are spherical harmonics (see Chapter 2
for more detail). The coefficients B]"*(w) of the series constitute an infinite and countable
set of complex numbers, which fully describe the sound field in the interior of the sphere

of radius R. The series above is then approximated by applying a truncation to a given
order N.

The so-called Ambisonic encoding process consist, in mathematical terms, of the de-
termination of a given number of coefficients B} (namely the coefficients with n < N
and —n < m < n) from the knowledge of the target field p, which is either expressed
mathematically or measured. The use of the so-called sound field microphone is very
popular for Ambisonic recordings. The set of signals generated by the encoding process
are referred to as B-format signals and correspond to the Fourier transform, from the

frequency domain (w) to the time domain, of the coefficients B (w).

Given an array of L loudspeakers, arranged ideally uniformly around the listener on a
circle or on the surface of a sphere surrounding the listener, the Ambisonic decoding
process generates from the B-format signals the loudspeaker signals allowing for the
reproduction of the desired field. It can be shown that the reproduced sound field p can

be expressed as follows

pxe) = 3 (22) X vir@B®)

n=0 m=—n
=SS i () (20) 3 VPG
=1 n=0 m——n

where the vectors y, = yy, indicates the position of the loudspeakers and Sy(w) are the
loudspeaker signals (expressed as functions of the frequency). The frequency dependent
coefficients r, (% y) depend upon the chosen acoustic radiation model of the loudspeak-
ers, and they all equal 47 if each loudspeaker is assumed to generate a single propagating
plane wave. Substituting the coefficients B”(w) with the coefficients B™(w), describing
the target field, and deploying the orthogonality of the spherical harmonics (see Chapter

2), the formula above leads to the solution of the following system of linear of equations:

L
w ANk
By (w) = Y Sulw) ra (2 ) V(50"
(=1
n=0,1,.N, -n<m<n

The solutions of this linear system, that can be exact or approximated, provides the

loudspeaker signals Sy(w). If 7, (% y) does not depend on the frequency, the solution
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of the system above is particularly simple and the loudspeaker signals can be computed

directly in the time domain by a simple linear combination of the B-format signals.

The decoding procedure discussed above is usually referred as basic decoding. Other
decoding strategies have been proposed, such as the in-phase decoding or the energy
vector mazimization decoding (see for example [Dan00]). These strategies are supposed
to provide better psychoacoustical performance. In terms of signal processing, these
alternative strategies simply include the multiplication of the B-format signals by a set

of given scaling factors before solving the linear system above.

1.2.3 Other methods for sound field reproduction

Several other methods and techniques for sound field reproduction have been proposed,
especially during the last decade. New theories, which are also based on the spherical
(or cylindrical) harmonic decomposition of the sound field, have been proposed by M.A.
Poletti [Pol96], [Pol00], [Pol05], [Pol07], by T.D. Abhayapala, D.B. Ward, T. Betlehem
and Y.J. Wu [WAO1], [BA05],[WA09] and by J. Hannemann and K.D. Donohue [HDOS].

P.A. Nelson, O. Kirkeby et al. [NOBH96|, [KN93| proposed approaches, which rely on
the numerical solution of an acoustical inverse problem. The underlying principles shares
significant analogies with the theory of active control of sound (see, for example, [NE92])

and can be simplistically summarized as follows:

e A target sound field is defined on a set of given locations. These data are repre-

sented by the vector p.

e A matrix H of acoustical transfer functions is computed between the elements of
a given loudspeaker array and the locations above. The reproduced field at these
locations is therefore given by p = Ha, where a is the vector of loudspeaker signals

(in practice, as discussed in Chapter 7, these are coefficients of digital filters).

e The loudspeaker signals are computed by minimizing a cost function, given by
|Ha — p|?. A modeling delay is usually included in order to preserve the causality
of the digital filters. This operation typically involves the inversion of the matrix
H, which can be performed by applying various techniques, either in the time
or frequency domain, and requires in general the use of regularization techniques
(discussed in Chapter 6).

Other methods have been proposed, whose formulation includes the Kirchhoff-Helmholtz
equation and the theory of inverse problems and acoustic holography (see, for example,
[Ise99] and [CIB08|). Another relevant technique, very popular among the community of
audio engineers, is the so-called Vector Based Amplitude Panning, proposed by V. Pulkki
[Pul97]. In spite of its reduced DSP computational load (real gains applied to three
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loudspeakers for reproducing a virtual source), this method features good capabilities of
reproducing some physical attributes of the desired sound field. J.W. Choi’s and Y.H.
Kim’s acoustic contrast mazimization method [CK02] is also of relevance to the subject
of sound field reproduction. This technique aims at the creation of so-called acoustically

bright and dark zones with an array of loudspeakers.

Finally, several hybrid methods have been proposed: among the others, R. Nicol and
M. Emerit [NE99| suggested a combination of Ambisonics and Holophony (an approach
analogous to Wave Field Synthesis), while A. Farina et al. [FGATO01| suggested a com-

bination of Ambisonics with binaural systems.

1.2.4 Functional analysis, integral equations and inverse problems in
acoustics

In this thesis, mathematical concepts and techniques such as spaces of functions, integral
equations and the singular value decomposition of an operator are applied to the problem
of sound field reproduction. As mentioned above, these theoretical tools belong to the
field of functional analysis. This branch of mathematics has been widely developed,
especially during the last century, and its fundamentals are presented in a variety of
texts, such as [Kre78|, [Now81|, [CK83], [Pot07].

Functional analysis has been successfully applied to the study of a variety of physical
problems. A remarkable example is represented by quantum mechanics, but also several
other branches of physics and engineering have made good use of many results from this
discipline. Functional analysis has been used, for quite some time, to also tackle acousti-
cal problems. An extensive mathematical literature exists, dedicated to the application
of integral equation to direct and inverse acoustic scattering problems (see for example
[CK92]). Integral equations have also been widely used in the study of acoustic radia-
tion problems (see, for example, the work of L.G. Copley [Cop68| and of H.A. Schenck
[Sch68]), and are at the basis of the boundary element methods (BEM) [VWO04]. The
singular value decomposition of integral operators has been deployed for the study of
sound radiation and acoustic source reconstruction problems. In that respect, relevant
contributions were given by G.V. Borgiotti et al. [Bor90|, [BSWS90|, [BJ93] and more
recently by C. Maury et al. [MEO05], [MBOg].

As will become clear later, the mathematical formulation of the sound field reproduc-
tion problem as an inverse problem shares many similarities with the problem of acous-
tic source reconstruction and Near-Field Acoustical Holography (see, among the others,
[VM89]|, [IMWLS85], [BSWS90], [Wil99]|, [WAT9], [Sar05], [NY00], [YNOO],[KNO3|,[WW97],
[WY98]|, [Hal09]), Inverse Boundary Element Methods (see for example [VWO04]) and ac-
tive control of sound [NE92|, [EF07]. All the techniques mentioned above have in common

the fact that, from the knowledge of a portion of a given sound field, they aim at solving a
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similar mathematical inverse problem, in order to either reconstruct the acoustic pressure
and particle velocity fields near the source (acoustic holography), to identify the sources
of sound generating a given field (source reconstruction) or to define the signals driving
an array of secondary sources for canceling sound (active noise control) or synthesizing

a given sound field (sound field reproduction).

The work presented in this thesis has been significantly inspired by the literature dedi-
cated to all the techniques for sound field analysis and reconstruction mentioned above.
It is therefore the hope of the author that the results shown here, although developed in
the framework of sound field reproduction, may be also useful for further developments

and comparative analysis between these techniques.

1.3 Overview of the method and summary of the thesis

In what follows an overview is given of the approach developed throughout this thesis
and of the underlying assumptions. The aim is to provide the reader with a general and
intuitive understanding of the subject, in order to facilitate the reading of the theoretical
core of this thesis, in which the mathematical formalism may sometimes hide the physical

and practical meaning of the results developed.

A preliminary chapter has been included, Chapter 2, which presents the mathematical
formalism used in this thesis. Some important mathematical concepts and results are
recalled, and some other less widely known concepts are reported from the literature.
No effort is made in this preliminary chapter to explain the physical interpretation of
the concepts introduced or their usefulness to the problem under consideration, as this

is the objective of the subsequent chapters of the thesis.

Chapters 3 and 4: The inverse problem and its solution

The starting idea includes the reproduction of a sound field over a given region of space.
A generic sound field can be characterized by the acoustic pressure. The latter can
be mathematically represented by a scalar field, that is a function which describes the
acoustic pressure as a function of the space and time. The sound field is therefore
represented by the function p(z,t), where z is a vector representing a position in space
and ¢ is the time. For reasons which will become clear later, it is preferable to describe
the acoustic field as a function of the frequency w or equivalently of the wave number
k, rather than of the time. This is simply achieved by applying the well-known Fourier

transform, with respect to the variable ¢, to the function describing the sound field.

A region of the space is defined, over which an attempt is made to reproduce the desired

field. This region is referred to as the control region, and is indicated in Figure 1.1 by
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Control
region

V

Reproduction region A

FIGURE 1.1: Two-dimensional diagrammatic representation of the control region, of
the reproduction region and of the secondary sources (the black dots).

the letter V. The reproduction region can be a subset of either the three dimensional
space R? or of the two dimensional space R?. The diagram in Figure 1.1 represents a
two dimensional setting, in order to simplify the visualization. It is assumed that the
target sound field satisfies the homogeneous wave equation within the control region. In
practical terms, this means that the control region should be free of sources of sound or

scattering objects.

An attempt is made to reproduce the target acoustic field with an array of loudspeakers.
The latter includes a limited number of electroacoustical transducers (represented by
the black dots in Figure 1.1), which radiate sound in the space when fed by an electrical
signal. Clearly, the sound fields generated by the different units of the array combine and
produce a complex pattern of constructive and destructive acoustic interferences. The
resulting field is referred to as the reproduced field p(z,w). The loudspeakers of the array
are also referred to as the secondary sources. These are driven by electrical signals, which
are referred to as secondary source signals or secondary source strength (the difference
between the two terms is clarified later). The assumption is made, that the loudspeakers
are arranged on the boundary of a region of the space A, the reproduction region, which

contains the control region V in its interior, as shown in Figure 1.1.

In order to deploy some relevant mathematical properties (more precisely, the compact-
ness of the integral operator involved), useful to the solution of the acoustical inverse
problem, the reproduction region A and the control region V' should be bounded regions,

meaning that they should have finite extension in the space. In spite of that, in Chapter
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4 of this thesis an attempt is made to extend the approach developed also to cases when
A and V are not bounded.

The objective is to define the secondary source signals, which allow for a reproduced
field that is as similar as possible to the target field. As mentioned previously, this is the

essence of the acoustical inverse problem addressed by this thesis.

A crucial step, which allows the link of the problem under consideration to the theory
of integral equations, lies in the model of the loudspeaker array. The latter includes the

following ideal assumptions:

e The number of loudspeakers (secondary sources) is infinite and these are continu-

ously arranged on the boundary of A;

e Each loudspeaker (secondary source) radiates sound as an ideal omnidirectional
point source (an acoustic monopole) for the three dimensional case, or as an ideal
infinite line source (perpendicular to the plane considered) for the two dimensional

case.

The first assumption is clearly unrealistic and has the drawback of completely neglecting
the relevant problem know as spatial aliasing. This is directly related to the sampling the-
ory and to the well-known aliasing phenomenon arising in the reproduction of a sampled
function of time. This problem arises when approaches developed under the assumption
of an ideally continuous distribution of loudspeakers are applied to real arrays with a
finite number of transducers and has the effect of degrading the sound field reproduction
performance of a system, especially at high frequencies. An extensive section of Chapter
7 is dedicated to the detailed analysis of the consequences of this assumption. For the
time being, it suffices to say that the analytical results presented in what follows can be
safely applied to real cases, provided that the operating wavelength is larger than the

maximum distance between neighboring loudspeakers.

The second assumption is quite mild for the three dimensional problem, especially if
the wave length of the sound to be reproduced is large in comparison the size of the
single loudspeakers. For the two dimensional case the loudspeakers are assumed to
be infinite line sources. This represents a less realistic assumption, due to the fact
that traditional, compact loudspeakers exhibit a spherical spreading of acoustic energy,
instead of the cylindrical decay typical of a line source. This problem is widely discussed
in the literature on Wave Field Synthesis, and strategies have been developed to take
this aspect into consideration (see for example [Sta97| for the 2.5 operator based on
the stationary phase approximation). Other characteristics of real loudspeakers, such as
diffraction of the loudspeaker cabinet, frequency response and non-linear distortion have

also been neglected.
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A further relevant assumption is made, that the loudspeakers radiate sound in the free
field. In principle, this assumption could be removed and the approach developed may be
extended to reverberant environments, but this would superpose, in a way, the problem

of sound field reproduction with the problem of active room correction.

The ideal model of the loudspeaker array introduced above allows for the expression of
the reproduced sound field at the location z and for a given frequency w as an integral

of the form

ﬁ(z,w) = G(ZaY7w)a(yaw)dS(Y)
oA

where the function G(z,y,w) represents the acoustical transfer function between the
secondary source arranged at y and the location z, and under the assumptions above
corresponds to the so-called free field Green function. The form a(y,w) is a complex
valued function (having magnitude and phase), proportional to the strength of the sec-
ondary sources. The integral above is know in the literature as the acoustic single layer

potential and is one of the fundamental mathematical entities occurring in this thesis.

The objective is now to compute a function a(y,w), that is the solution of the inverse
problem, such that the reproduced field is as similar as possible to the target sound field.
In the ideal case, we would be able to define a source strength a(y,w), such that the left

hand side of the single layer potential above is the target field p(z,w).

In Chapter 3, the following important concept is introduced (the uniqueness of the Dirich-
let problem): if the desired sound field satisfies the homogeneous wave equation in V', the
knowledge of the acoustic pressure on the boundary of V' (and not of both the pressure
and its normal derivative) uniquely defines the sound field in the interior of V. This
is always valid, except for a countable set of wave numbers identified by the resonance
frequencies of V. In Chapter 6 it is explained that the solution of the inverse problem
involved is non unique at these frequencies, and some simple strategies are illustrated for
avoiding this problem. The control of the sound field can be therefore restricted to the
boundary of the control region. The function representing the restriction of the target
field to this boundary is referred to as the pressure profile. The unknown source strength
a(y,w) can therefore be determined from the knowledge of the target sound field on
the boundary of the control volume. Since the unknown of the problem appears as a
member of the argument of an integral, an integral equation is involved, more specifically

a Fredholm integral equation of the first kind, .

Some fundamental question arise: Does a solution of this integral equation exists? And
does it exists for any desired sound field or just for some families of fields? If the solution
exists, is it possible to calculate it? How? Is the solution unique or do multiple solutions
exist? And if the solution does not exists, is it possible to find an approximate solution?
In order to give a rigorous answer to these questions, we need to dip into the mathematics
and make use of the tools and results of functional analysis. This analysis is presented in

chapters 3, 4, 5 and 6 of this thesis. Fortunately, integral equations of the first kind are
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well-known in the literature. Unfortunately, such equations represent so called ill-posed
problems. This implies, in short, that no guarantee is given about the existence of a
solution, and even when this exists it might not be unique, or its computation could be

severely compromised by the presence of errors in the data associated with the problem.

All the concepts introduced above are presented rigorously in the first half of Chapter
3. The following logical step would be to discuss under what conditions the solution of
the problem exists and is unique. However, the choice is made to assume initially that
a solution exists and is unique, and to focus the attention on how to calculate this solu-
tion analytically. For this purpose, the singular value decomposition of a compact linear
operator is introduced and applied to the integral operator in question. This powerful
mathematical tool plays a crucial role in the development of most of the results derived in
this thesis. It should be highlighted that the singular value decomposition of a compact
linear operator is related though not identical to the singular value decomposition of a
matrix, the former requiring for its derivation advanced mathematical concepts of func-
tional analysis. One section of Chapter 2 is dedicated to the mathematical fundamentals
of the singular value decomposition, while the second half of Chapter 3 illustrates the

application of this technique to the specific problem under consideration.

Particular attention is given to the concepts of secondary source modes and acoustic
pressure modes, which can be summarized as follows: the sound field generated by the
array on the boundary of the control region (the pressure profile) can be decomposed into
a usually infinite series of orthogonal functions (namely, independent from one another),
referred to as the acoustic pressure modes. FEach of these modes is generated by one and
only one secondary source mode, that can be interpreted as a special combination of
signals of the secondary sources. Each pressure mode is independent from all secondary
source modes other than the one corresponding mode. The acoustic pressure modes and
secondary source modes are represented in mathematical terms by the singular functions
of the operator. The relation between the magnitude of the secondary source modes and
of the corresponding acoustic pressure modes is expressed by a set of positive scalars
called the singular values of the operator, which can be interpreted as a measure of the

modal efficiency.

At the end of Chapter 3 a general analytical solution of the inverse problem under
consideration is derived by means of the singular system of the operator, that is the set
of all the singular functions and singular values of the integral operator. However, in
spite of the generality of this solution, explicit expressions for the functions constituting
the singular system depend strongly on the specific geometry of the array and of the

control region, and their computation is in general non-trivial.

In Chapter 4 singular systems for some specific geometries of continuous arrays are
derived, as well as explicit expressions of the secondary source strength. The case of

spherical geometry is studied, and it is shown that the singular functions are strictly
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related to the spherical harmonics, while the expression of the singular values includes
spherical Hankel and Bessel functions, whose arguments are the wave number k and the
radii of the control region and of the array. The singular system and the solution are then
derived for the corresponding 2D problem, namely the circular geometry. It is shown
that the singular functions are related to complex exponential functions and the singular

values to Hankel and Bessel functions.

An attempt is then made to extend the approach to the case of loudspeaker arrays includ-
ing a continuous distribution of secondary sources on an infinite plane or on a line. These
arrangements violate the requirement of the reproduction region A being a bounded set.
As it is mentioned at the beginning of Section 4.3, the violation of this assumption gener-
ates some mathematical difficulties (for example, the integral operator is not compact),
which add several layers of complexity to the problem. However, some simplifying as-
sumptions are made in order to go around these issues. This effort is rewarded by the
finding of some interesting results: the secondary source modes are expressed by com-
plex exponential functions, which generate either propagating or evanescent plane waves.
The efficiency of each mode is put into relation with the evanescent or propagating na-
ture of the corresponding plane wave, and in the second case also with the direction of

propagation of the wave.

Chapters 5 and 6: The ill-posedness of the problem

The expressions of the singular systems derived in Chapter 4 prove to be useful for the
analysis undertaken in Chapter 5. The latter is dedicated to the study of the ill-posedness
of the problem under consideration. This is probably the part of this work, which is most
dedicated to the underlying mathematics of the problem. The concept of ill-posedness is
explained, and it is put into direct relation with the singular value decomposition of the
integral operator involved. More precisely, it is shown that the ill-posedness is related to
the decay of the singular values of the operator. In fact, the expression of the solution
includes the inverse of the singular values, and it is clear that if one or more singular
values are very small or close to zero, the amplitude of the solution will tend to infinity.

This is a fundamental concept of the problem addressed here.

Attention is then focussed on the properties that the target sound field should posses
in order for the solution of the inverse problem to exist. The so-called Picard theorem
plays a central role in this study. The latter is introduced at the end of Chapter 2.
This theorem defines two conditions, which the target sound field must satisfy in order
for a solution to exist. Some theorems are presented and proved, which show firstly
that the first Picard condition (relating the target field with the nullspace of the adjoint
operator S*) is satisfied for all sound fields satisfying the conditions imposed at the
outset (the target field satisfies the homogeneous wave equation in V). Secondly, it is

shown that the second Picard condition (relating the singular values of the operator with
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the orthogonal projection of the target field onto the singular functions) is not satisfied
by a restricted family of fields. It is demonstrated that the second Picard condition is
satisfied by all fields generated by source of sound (or scattering objects) lying outside
of the reproduction region, that is outside of the speaker array. Conversely, sound fields
due to sources lying outside of the control region V' but within the reproduction region
A (see Figure 1.1) do not admit an exact solution, that is they can not be reproduced by
the continuous loudspeaker array. On the other hand, it is shown that it is possible to
compute solutions such that the reproduced field is an arbitrarily good approximation
of the target field (this result arises from the denseness of the range of the operator
S). However, the better the approximation the larger is the amplitude of the secondary

source strength and the more the solution is unstable.

Subsequently, the concept of ill-conditioning and robustness of the solution against errors
is addressed and again put into relation with the singular system of the operator. The
uniqueness of the solution is then analyzed, and it is shown that the latter is strictly
related to the so-called Dirichlet eigenvalues of V. These are introduced in Chapter
3 when discussing the uniqueness of the Dirichlet problem, and are identified by the
resonance frequencies of a cavity with the shape of V' and pressure release boundary
conditions. It is shown that when the wave number k£ corresponds to one of the Dirichlet
eigenvalues, the inverse problem has an infinite number of solutions allowing for an exact
reproduction of the pressure profile (the field on the boundary of V'), but only one of
these solutions leads to an exact reproduction of the sound field in the interior of the

control region.

In the remainder of Chapter 5, the concepts above are demonstrated for spherical and
linear array geometries, for the case of target fields due to ideal omnidirectional point

sources or line sources, respectively, which are referred to as virtual sources.

In Chapter 6 several strategies are presented for overcoming the different difficulties
arising from the ill-posedness of the inverse problem. The concept of reqularization is
introduced and several regularization schemes are presented, such as spectral truncation,
spectral damping and Tikhonov reqularization. The method know as time reversal mirror
is also taken into consideration as a regularization method. These techniques are dis-
cussed especially in relation with the singular system of the integral operator involved,
and it is shown that their application has the effect of preventing the undesirable ef-
fects arising from the inversion of small singular values, often at the price of partially
reducing the accuracy of the reproduced field. The application of regularization tech-
niques is applied to the computation of stable and robust solutions. Special attention
is dedicated to so-called focused sources. This term refers to sound fields generated by
point or line sources lying in the exterior of the control region V but in the interior of
the reproduction region A. As mentioned above, this family of sound fields does not
allow for an exact solution, but the application of regularization techniques allows for

the computation of approximate solutions (with bounded norm). The latter are derived
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for linear, planar and spherical geometry. The first two examples are of special rele-
vance, since they highlight the relation between the ill-posedness of the inverse problem
and the attempt to reproduce the so-called pseudo-evanescent component of the target
field. The latter is the component of the desired pressure profile, which is generated by
pressure modes corresponding to evanescent waves (but does not necessarily represent
the evanescent component of the target field). The interesting result arises, that the time
reversal method provides an exact representation of the pseudo-propagating part of the
target field, but leads to the generation of the pseudo-evanescent field due to a virtual

source located at a mirrored position with respect to the linear or planar array.

In the second half of Chapter 6 the relevant analogy is drawn between the problem
of sound field reproduction and the theories of scattering of sound and of Near-Field
Acoustical Holography. This analogy is an important outcome of the application of
functional analysis to sound field reproduction. The analysis begins with the discussion
of the fact that the ill-conditioning of the problem is greatly affected by the distance
between the boundary of the control volume and the boundary of the reproduction region,
the latter corresponding to the layer of secondary sources. The larger this distance, the
more severe are the effects of ill-conditioning of the problem. This phenomenon is well
known in Near-Field Acoustical Holography, and it is shown that the ill-posed nature of
acoustic holography is very similar, though not identical, to the problem of sound field
reproduction, and the theories behind these two subjects benefit from some common

mathematical similarities.

In light of the considerations above, the special case is considered when the control region
V and the reproduction region A coincide, namely when the layer of secondary sources
coincides with the boundary of the control region. It is shown that in this case the prob-
lem is only mildly ill-posed (the decay of singular values is linear rather than exponential)
and can be solved by a straight-forward application of the so called jump relation, intro-
duced in Chapter 2. Consequently, it is shown that the sound field reproduction problem
can be reformulated in the form of an equivalent scattering problem. More specifically,
the determination of the source strength a(y) is equivalent to the determination of the
normal particle velocity of the total field originating from the scattering of the target
field by an object with the shape of the reproduction region and pressure release bound-
aries (also referred to as a sound soft object). It is shown that, in the case of planar
and linear geometry, the single layer potential reduces to the well-known first Rayleigh
integral formula. This important analogy allows for an explicit connection between the

theory of acoustic scattering and sound field reproduction.

A relevant outcome of the above consists of the application of the so called Kirchhoff
approzimation, well-known in the study of scattering phenomena, to the solution of the
reproduction problem. This approximation is typically applied when the wavelength of
the sound to be reproduced is short in comparison to the characteristic dimension of

the array, and allows for a simple computation of the source strength form the value of
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the normal derivative of the desired field (evaluated on a portion of the boundary of the
reproduction region). As mentioned at the end of the chapter, the result above allows
for a rigorous interpretation of some techniques commonly used in Wave Field Synthesis
and sheds light on the relation of the latter with High Order Ambisonics.

Chapters 7 and 8: Practical realization and experiments

The first section of Chapter 7 is dedicated to the study of the effects and undesired arti-
facts arising from the application of the result derived under the assumption of a contin-
uous distribution of secondary sources to arrays including a finite number of elements.
For this purpose, a sampling theory is discussed, in order to provide a mathematical
explanation of the issues above. The phenomenon known as spatial aliasing is studied in
detail, especially in relation to the singular system of the integral operator in question.
The concepts of pre- and post-aliasing are defined and their difference explained. It is
shown that the technique referred to as spectral truncation can be applied in order to re-
duce the undesired effect of pre-aliasing (but not post-aliasing!). In short, this technique
involves the truncation of the series arising in the expression of the solution by means of
the singular system of the integral operator. The aliasing matriz is defined and is used
in order to provide a greater insight into the computation of the sampling reproduction
error. The relevant conclusion is made that spatial aliasing always occurs (except in a
few very special cases), and its effect can at most be reduced or might be negligible, but

can never be completely removed.

The results above are demonstrated for the case of spherical and linear geometry, and
explicit expressions for the aliasing error are derived. In the former case the effect is
demonstrated of two different choices of the truncation order (representative of the num-
ber of terms included in the series expression of the solution). The case of linear geometry
is studied with special attention to the case of uniform sampling and of reproduction of
a plane wave. It is shown that under given conditions on the attributes of the desired
plane wave, the effect of spatial aliasing can be limited to the near field of the array.
If these conditions are violated, the reproduction artifacts effect also the far field. In
the worse case, the reproduction of an evanescent plane wave can generate an undesired

aliased plane wave which propagates to the far field.

In the second Section of Chapter 7 an alternative method for the solution of the acousti-
cal inverse problem addressed is presented. This method involves the numerical solution
of the integral equation involved, which implies the discretization of the functions repre-
senting the pressure profile and the source strength. This method can be regarded as a
boundary element method. Attention is drawn to the fact that spatial aliasing can occur
also from the discretization of the pressure profile. This is not the case for the other

solution method presented, involving the singular value decomposition of the operator,
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for which the pressure boundary is supposed to be known at all locations on the con-
trol boundary. The numerical methods involves the creation and inversion of a matrix
(S), which can be regarded as the inversion of the discretized version of the single layer
potential introduced above. It is shown that the singular value decomposition of this
matrix, in the limiting case when its two dimensions are both infinity and for spherical
geometry, gives singular vectors and singular values, which coincide with the singular
system generated by the singular value decomposition of the integral operator discussed

in the previous chapters.

At the beginning of Chapter 3 the time dependency of the sound field is substituted
with the dependency on the frequency w, or equivalently on the wave number k, and
the choice is made to study the problem for a single wave number. This is equivalent to
the assumption that the target field is monochromatic. In the last section of Chapter 7
this hypothesis is removed and attention is focused on target sound fields with a broad
band spectral content. The problem is addressed of deriving the source signals, which
are required for the reproduction of such fields. Special attention is dedicated to the
computation of filters, which can be applied to generate the loudspeaker signals for the
reproduction of a large family of sound fields, such as those generated by a motionless,
single source (either in the free field or in a reverberant environment). These filters are
expressed both as functions of time and of frequency, and can be practically implemented

as FIR digital filters (one filter for each loudspeaker of the array).

Results are derived for the specific cases of spherical, circular, planar and linear geome-
tries. Much attention is dedicated to the case of spherical geometry, since this geometry
is chosen for the experiments presented in Chapter 8: The filters for a single virtual
source in the free field are derived, and the effects of the distance of the source and of
the choice of the truncation order are illustrated. It is shown that the filters exhibit a
high frequency asymptotic behavior, corresponding to a so called panning function. The
latter can be effectively adopted as a high frequency or far field approximation of the fil-
ters, and includes simple, frequency -independent scalars, implementable as simple gains
rather than complex filters. Remarkable analogies can be drawn between this panning

function and elements of High Order Ambisonics theory.

For the case of linear and planar geometries, it is shown that the loudspeaker signals
for a single virtual source in the free field can be computed mainly by applying a set of
simple delays and gains to a pre-processed single (mono) signal, these delays and gains
depending on the reciprocal location of the virtual source and of the secondary sources.

The connection of this result with Wave Field Synthesis theory is highlighted.

Chapter 8 describes the design and realization of experiments for validating part of the
theoretical results presented in this thesis. Firstly, the experimental arrangement is
discussed. This includes a spherical array of forty loudspeakers, which was built in the

large anechoic chamber of the ISVR and which was used to reproduce the field due to a
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single virtual source. A translating linear array of microphones was used to measure the
target and reproduced fields, the former being generated by a single loudspeaker arranged
in the location of the virtual source. Secondly, the measurement procedure is presented,
followed by a discussion of the design of the specific digital filters, which were used
for the generation of the loudspeaker signals. The design follows the theoretical results
derived in the previous chapters of the thesis, with the addition of practical solution for
the specific processing of low and high frequencies (below 100 Hz and above 1.5 kHz,
respectively). Finally, the experimental results are presented and their consistency with

the theoretical analysis is shown.



Chapter 2
Mathematical preliminaries

In this Chapter the mathematical notation used throughout this thesis is presented, and
some mathematical concepts and results relevant to this work are recalled. Special atten-
tion is dedicated to the introduction of several special functions and of some elements of
set theory. The fundamentals of the Fourier series and Fourier transform are reviewed.
In the final part of this chapter the mathematical fundamentals are presented of the
integral representation of sound fields and of the singular value decomposition of a com-
pact operator. The application to physical processes of these more advanced subjects, as
well as their relevance to the problem under consideration, are discussed in the following

chapters of this thesis.

2.1 Notation and definitions

In this thesis, lower case boldface letters are used to represent vectors and lower case
italic letters generally represent scalars, functions or scalar fields. Upper case boldface
letters represent matrices and upper case italic letters generally represent operators, sets
or functions of time (while the related functions of frequency are represented by the

corresponding lower case letters).

The superscript * represents, for a scalar, the complex conjugate and for an operator its
adjoint. The symbol i = v/—1 is the imaginary unit, and d,,, is the Kronecker delta
(Opm = 1 if n = m, dpm = 0 if n # m). The notation = € X indicates that z is in the
set X, meaning that x is an element of X. The notation x := --- has the meaning that
the symbol z is defined by the given expression (for example, = := a + b). The symbol
V is the universal quantifier symbol. For example, the expression Vn € N, 2n > 0 means
that for all elements n of N, 2n > 0.

Let D be a bounded subset of the three dimensional or two dimensional space, with

boundary dD. n(z) is the unitary vector perpendicular to 9D at z € 9D, pointing

22
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towards the exterior of D. When there is no risk of ambiguity, the short notation n is
used. The normal derivative Vy, f(z) of the function f(z) is defined by

_0f(2)
on(z)

Vnf(z) = Vf(z) - A(2) (2.1)

2.1.1 Vectors and matrices

The norm and the direction of a given vector x = [z1, z2, x3] are respectively represented
by

X:i=— (2.2)

The relation between Cartesian and polar co-ordinates defining the position vector x is

x = [x1, T2, T3] = [xCOS Py Sinb,, xsin ¢, sinb,, xcosb,] (2.3)

Given two vectors x,y € R", their scalar product is defined by

N
Xly)=x-y:=> ahyn (2.4)
n=1
It holds that
x-y = (y-x)" (2.5)

The superscript ! represents the Hermitian transpose (complex conjugate transpose) of

a matrix or of a vector.

2.1.2 Integrals

Given the set D, the integration of an integrable function f(x) over the boundary 9D is
represented by

F(x)dS(x) (2.6)
oD

where dS(x) represents the infinitesimal fraction of the boundary D, with the appropri-
ate parametrization. For example: if D =R (the set of real numbers), then dS(x) = dx
(in this case, dS(x) might be substituted by dx), if D is a circle of radius R, then
dS(x) = R dé, if D is a sphere of radius R then dS(x) = R?sinf d¢ df and so on. In
general, if D is a subset of R then dS(x) is an infinitesimal line segment, while if D C R?
dS(x) is an infinitesimal surface. In the case of integration over a volume, dS(x) is an

infinitesimal volume and might be substituted by dV (x).



Chapter 2 Mathematical preliminaries 24

2.1.3 Sets

A set D is usually defined either by an explicit list of its elements, that is
D :={xy,2z9, -} (2.7)
or by expressing the properties that its elements z must satisfies, as for example
D:={zeR:2>a} (2.8)

(i.e. D is the set of all elements x of R such that z is greater than a).

The following lists some of the sets used in this thesis!:

N the set of natural numbers (including zero)

Z the set of integer numbers

Q the set of rational numbers

R the set of real numbers

R™ the m-dimensional Euclidean space, {z = (x1,22, -+ ,&m) : 1,22, -+ , Ty € R}
C the set of complex numbers

Qg sphere of radius R, {x € R™: |x| = R}

Q unitary sphere (sphere with radius R = 1)

Br ball of radius R, {x € R™: |x| < R}
L?(D) The set of square integrable functions defined on the domain D,

{F(x): [5f(x)[2dS(x) < 0o}

Given two sets A and B, the notation A C B indicates that A is a subset of B (the
notation A C B indicates that A may also coincide with B). For example, we have that
NcZcQcRcC.

We define

D =A®dB ={x=a+b: ac A, be B} (direct sum)

: (2.9)
D =A\B ={rxecA:x¢B} (subtraction)

For a given open set D, the symbol D represents the boundary of D and the symbol
D represents the closure of D, that is the union of D with its boundary (or equivalently

the union of D with the set of its accumulation points [Kre78|). A given set D is said to
be closed if it contains its boundary (D = D).

LA more rigorous definition of L? includes the concept of completion of a normed space or quotient
space [Kre78|, which are not discussed in this thesis.
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Given two square integrable functions f and g defined on D, their scalar product is
defined by 2

(flg)p = /D F(%)*g(x)dS(x) (2.10)

and the L? norm of f is

Allp = \//DIf(X)I2d5(X)= {(f1f)p (2.11)

The subscripts p can sometimes be omitted.

f is said to be orthogonal to g if
(flo)p =0 (2.12)

Given a subspace U C L%(D), the orthogonal complement of W is defined by

Ut = {py(x) € L}(D) : Ypy(x) € ¥, (py|py.)p = 0} (2.13)

Given p(x) € L?(D) and the relation
p(x) = pu(x) + pyr(x), pu(x) €V, pyo(x) e ¥t (2.14)

the function py(x) is referred to as the orthogonal projection of p(x) onto the subspace W.
The orthogonal projection operator Py maps p(x) € L%(D) into its orthogonal projection
onto W. This means that, with reference to the equation above, (Pyp)(x) = pw(x) (refer

to the discussion of operator notation below).

The span of a set constituted by the N functions p,(x) € ¥ C L?(D) is given by all

possible linear combinations of these functions, that is

N
span{p, } 1= {p(x) 1p(x) = Zanpn(x), an € (C} (2.15)
n=1

The set of functions p,(x) € ¥ C L?(D) is said to be a complete set or complete system

for W if the closure of its span equals V¥, that is
span{p,} = ¥ (2.16)

In this case, span{p, } is said to be dense in V.

More generally, a set X C W is said to be dense in W if

X=U (2.17)

2Formula (2.10) defines the scalar product usually adopted for L? spaces in connection with the L2
norm (2.11). The reader can refer to [Kre78] for a more general definition of scalar product.
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that is if for any function p(x) € ¥ and for any € > 0, a function p.(x) € X exists, such
that

lp —pel| <€ (2.18)

An orthonormal set of functions {p,(x)} is defined as a set of functions which have
unitary norm and are orthogonal to one another. This implies that for any function

Dn, Pm Of that set, the following relation holds:

<pn|pm> = dpm (2.19)

From the results presented above it follows that, if the set of the N orthonormal functions
pn(x) is a complete set for ¥, then any function p(x) € ¥ can be expressed as the sum
of its orthogonal projections (P,p)(x) onto the orthogonal subspaces spanned by each
function py(x). Therefore, in view of the definition of the scalar product (2.10), it is

possible to write 3

N N
p(x) =Y (Pap)(x) = > _(palp)w pn(x) (2.20)
n=1 n=1

where N equals the dimension of the space W. This might take the value of infinity or
might be a finite number. The series above corresponds to a generalized Fourier series
of the form (2.69) discussed below.

2.1.4 Operators

A given operator S acting between two normed spaces A and P is introduced as follows:
S:A— P

Given two function a(y) € A and p(x) € P, the following notation is used throughout
this thesis:

(Sa)(x) = p(x)

or equivalently
Sa=1p or [Sa(-)] (k) = p(K)

This notation, widely used in the mathematics literature, is slightly different from the
notation adopted in the engineering literature, in the fact that the variable appearing
in the left hand side, x, is the variable belonging to the domain of the function p(x) €

P. For example, if the operator considered is the Fourier Transform F (see Section

3The equality is valid in the sense of the metric associated to the normed space under consideration
(L? norm in this thesis).
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2.3), which transforms the function a(y) into the function p(x), the notation adopted is
(Fa)(k) = p(k), while other authors prefer the notation F [a(y)] = p(k).

Given the operator S : A — P and two functions a € A and p € P the adjoint operator
S* of S, sometimes also referred to as Hilbert adjoint operator [Kre78|, is defined to be
such that

(Salp)av = (alS"p)aa (2.21)

If §* =5, then S is said to be self adjoint.

The range S(A) of the operator S acting from the space A into the space P is the subset
of P containing all the functions, which can be generated by S acting on the functions
in A. It is defined by

S(A) :={p=Sa, a € A} (2.22)

The nullspace N(S) of the operator S acting from the space A into the space P is the
subspace of A containing those functions, on which the action of S gives zero as a result.
It is defined by

N(S):={aec A: Sa=0} (2.23)

2.2 Special functions and distributions

Dirac delta function

The Dirac delta function * §(x) can be defined by the following properties [NE92, p.45]
§(x) = 0, z#£0 (2.24)
/OO d(x)de = 1
The Dirac delta function has the following properties:
/OO Sz —aydr = 1 (2.25)

/ f(x)do(z —a")dz = f(2') [sifting property] (2.26)

where the function f(x) is continuous at © = a’. For the integration over a bounded,
open interval (—L, L) it holds that

/ f(x)o(x — 2")dx = f(2'), 2 € (~L,L) (2.27)

4The Dirac delta function is usually regarded as a generalized function, and can be formally defined
as a distribution.
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It is possible to extend the definition of the Dirac delta function to a bounded or un-

bounded multi-dimensional domain D. It holds that

/D Sp(x)dS(x) = 1 (2.28)
/Df(x)5D(x—x/)dS(x) = fx), XeD (2.29)

where f(x) is assumed to be continuous at x = x’. In this thesis, when no risk of

confusion arises, the subscript p may be omitted.

The comb function

The comb function II(x/a) is a series of Dirac delta functions and is defined by

o0

I (g) = |a| Z_: d(z — na) (2.30)

This function has the remarkable property that its Fourier transform is also a comb

function [Wil99], namely

/Rm(z) e\/;i: do =21 i (5(/{—n2;> (2.31)

n=—oo

For this identity, it holds that F~'IIT = FIII. This equality holds only for the definition

of direct and inverse Fourier transform given by equations (2.74) and(2.75), respectively.

The following relation holds [Wil99|

11 (%) - nioo gi2mme/a (2.32)

This is often referred to as the Poisson sum formula.
Spherical Bessel and Hankel functions

The spherical Bessel functions of the first and second kind are defined respectively by
[Wil99]

i) = () ) (233
TN1/2
(@) = (5) " Yepe) (2.34)



Chapter 2 Mathematical preliminaries 29

where J,, and Y, are Bessel functions of the first and second kind, respectively [GR65].

v is an natural number. It holds that

gy (kr)

= kj, (kr) (2.35)

where the jl,/ represents the first derivative of the corresponding Bessel function.

The spherical Hankel functions of first and second kind are defined respectively by [Wil99|

W (@) = ju(z) + iy, () (2.36)
WP (@) = ju(x) = iy, () (2.37)

The following Wronskian relation holds [Wil99|

Ju(@)h, () = g (2)h(2) = — (2.38)

The high order approximations of the spherical Bessel and Hankel function are given by

[CK92|, [Wil99]

v

. T
2v — 1N
AW (z) = (WH) v — 00 (2.40)
where
u+1:=1-3-5---2v—1)-(2v+1) (2.41)

The large argument approximations of these functions is given by [CK92|, [Wil99]

Ju(x) = %sin (a: — V;) T — 00 (2.42)
M @) = (' hP) = (TS o (2.43)

Legendre polynomials and spherical harmonics

The Legendre polynomial P, of degree v is defined by [GR65]|, [Wil99]

1 d v
Py(x) = 5 T (z* - 1) (2.44)

where v is a natural number. The following orthogonality relation holds [Wil99]:

1 T 2
/ P,(x)P,(z)dx = / P,(cos0)P,(cos@)sinfd) = ——9,, (2.45)
-1 0 2v + 1 ’
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the completeness relation for the Legendre polynomials is given by [Wil99, p.214]

> 2V2+ 1Pu(w)Pu(y) =d(z —y), zye[-11] (2.46)
v=0

The Christoffel summation formula reads as follows [GR65, p.986], formula 8.915.1:

N
P,(z)P, —P,(y)P,
S+ DR RAy) = (N + ) = Bl een (1) (2.47)
v=0
If y=1, for P,(1) = 1,v € N we have that [Raf04]
- Py () — Py (@)
S @v+1)P(x) = (N + 1) : _;V“ (2.48)
v=0
The associated Legendre function P(x) is defined by [Wil99|, [GR65, p.974]
d"P,(x)
PH(z) = (—1)H(1 — 2?2 = 2220 2.49
p) o= (11— 222 T (2.49)
Where P,(x) is the Legendre polynomial of degree v.
From [GR65, p.966, eq.8.737.2] we have that, when v, u € Z,
Pl (—x) = cos[(v + p)m| P! (z) (2.50)
The spherical harmonic Y)'(X) is given by [Wil99]
. 2uv+1)(v—p)! 4
V&) = Y0z, ¢a) = Pl (cos 0,) ' 2.51
H(5) = Y (0 00) \/ R st (251)
The spherical harmonics are orthonormal, that is [Wil99]
, 2m
[ veevy @aseo = [ don [T¥E0 0¥ (0rr0n)sin0,0, -
Q
= VV/5MM (2.52)
where () represents the unitary sphere.
The summation formula for the spherical harmonics is [CK92, p.27]:
2 1
Z VIR YA ”4+ P, (05 oxy) (2.53)
T

p=—v



Chapter 2 Mathematical preliminaries 31

where ¢y is the angle between the vectors x and y. The following relations holds:

COS Pxy = % = sin 6, sin 0, cos(¢, — ¢,) + cos b, cos b, (2.54)

The following equation represents the completeness relation for the spherical harmonics:

DD VHERVHE)T = dak — %) (2.55)

v=0 p=—v
The Jacobi-Anger expansion reads as follows [CK92, p.32]

ekz — iz'”(2u+1)jy(kz)g(z-1}) (2.56)

v=0

= > Ari¥j,(kz) Y VFR)YA(2)"
v=0

p=—v
Sinc functions

The unnormalized sinc function is defined by

sinc(x) := Siném) (2.57)

The circular sinc function is defined by [Pol96|

sin(Nx/2)

sin(z/2) (2.58)

csiney () =

The circular sinc is periodic with period 27 and its zeros are at x = +27n/N, n = 1,2, ...

The following relation holds

N N . L
inz sin (N + 3) z) '
n:ZN et =2 7;) cos(nz) — 1= o (%)2 = csmC(QNH)(x) (2.59)

where we have used equation (1.342.1) of [GR65, p.37|. In view of this result and of the

Poisson sum formula (2.32), we obtain

N—oo a

a P 2mn
1i i :m(f):f §(z—2), aert 2.60
im  csinc(on 1) (ax) 5% . n;w (ac > a€ (2.60)
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The following passages show that the circular sinc (for N odd) can be expressed as a

series of sinc functions
= 4 7
csiney(z) = Z e = / e Z d(k—n)| dr (2.61)
__N R __ N

= eI (k)T (%) dk = i d(z —2mn) ® N sinc x%
R

n=—oo

= N i sinc ((x—2m)];>

n=—oo

where we have used formula (2.59), the property (2.26) of the Dirac delta function,
the convolution theorem (2.93) and the properties of the comb function III and of the
rectangle function II, given by equations (2.31) and (2.63), respectively.

Rectangular function

The rectangular function T(xz/a) is defined by

1, x| < a/2
11 (g) =< 1/2, |2 =a/2 (2.62)
0, |z| > a/2

Its Fourier transform is given by [Wil99]

Jar(5) S o= SRR sine (u5) (2.63)

Since II(z/a) is a real-valued, even function, we have that F'II = F II. This equality
holds for the definition of direct and inverse fourier transform given respectively by
equations (2.74) and(2.75), discussed below.

2.3 Fourier series and Fourier transform

2.3.1 Fourier series

Any integrable function a(y), defined in the interval (—m, ), can be represented by an
infinite series of the form

ay) = > cne™ (2.64)

n=—oo
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at any point y € (—m, ) where a(y) is differentiable. The right hand side of this equa-
tion is known as Fourier series [Kre78, p.160|. The coefficients ¢,, in general complex

numbers, are referred to as Fourier coefficients. They can be computed with the formula

1 [~ . e™a)_rx
imvgy — W) i

=50 a(y) -

(2.65)

where the symbol (-|-) represents the scalar product defined by (2.10).

Any integrable periodic function, that is any integrable function a(y) such that a(y+A) =
a(y), can be also be expressed in the form of a Fourier series, again at any point y where

a(y) is differentiable. In this case, the coefficients are computed from

_1/A (y)e A d (2.66)
Cn_2A _Aaye Y .

The series (2.64) can be extended to points y where a(y) is not continuous (and therefore
not differentiable) but has right-hand and left-hand derivative. We have that [Dav63,
p.94]

[e%S) ‘ 1

> ene™ = lim o la(y +h) +aly — h)] (2.67)

n=—oo

The meaning of the Fourier series is that the complex exponential functions e* with
—00 < n < oo represent a complete set of orthogonal functions for L?(—m, 7). Therefore,
in view of relation (2.20), it is possible to express any square integrable function a(y)

defined over (—m, ) by

o0

ay) =Y w"’;i‘”)emy (2.68)

n=-—00

at any point y where a(y) is continuous, otherwise the convergence holds in the sense of
L? norm (2.11) (convergence in the mean square). It should be noticed that the complex
exponential functions are not orthonormal, but ||e”]|(_r ) = v2m. Therefore the set of

functions e //2m, —oo < n < oo defines a complete orthonormal set for L?(—m, 7).

Generalized Fourier series

It is possible to extend the concept of Fourier series to other orthogonal sets of functions
and to functions defined over subsets of Euclidean spaces with more than one dimension.
Let the set of orthonormal functions a,(y) be a complete set for L?(D), with D being
a bounded subset of R™. Then any function a(y) € L?(D) can be expressed by the

following series, often referred to as generalized Fourier series [Now8]|

a(y) = cnan(y) (2.69)
n=0
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where again the convergence is to be intended in the L? sense. The Fourier coefficients

cn, are given by

e — /D a(y)an(y)*dS(y) = (alan)p (2.70)

This formula is analogous to (2.66).

Parseval relation

Given the generalized Fourier series (2.69) and formula (2.70), the following relation,
known as the Parseval relation, holds |[Kre78, p.170]:

> lanla)pl* = [lall* (2.71)

n=1
Spherical spectrum

The spherical harmonics Y,/'(%x), defined (2.51), with v = 1,2, ...00 and |u| < v, represent
a complete orthonormal system for L?(Q2) [CK92]. A given function f(X) € L*() can

be represented by the following generalized Fourier series

FR) =D Vi R) (2.72)

v=0 p=-v

at any x where f(X) is continuous (otherwise the convergence is valid in the mean square
sense). The coefficients x,,, represent the spherical spectrum of f(x) and are calculated

from

Xy = /Qf(fc) YH(x)"dS(x) (2.73)

2.3.2 Fourier transform
The Fourier transform F of a function a(y), defined for —oco < y < oo, is given by
1 %
Fa)(k) := / e "Ya(y)d 2.74
(Fa)(x) N (y)dy (2.74)
The inverse Fourier transform F~1 is defined by

(FA)(y) = \/12? / " e A () dn (2.75)

It should be noticed that these definitions are slightly different from the conventional

definitions of direct and inverse Fourier transform (see, for example, [Wil99]), in the fact
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that the kernels of both integrals include here the §-function normalization factor /2w,
so that the following orthogonality relations hold:

etry e—iﬁ’y <eiﬁ|ein’>R .
dy = 1 1% §(x— 2.76
| S IR s ) (2.76)
eiry ef'my’ <eiy‘€iy’>R .
€ e = IR s 2.77
| = R by~ ) (277

It can be easily shown that, for the definition above, the following relations hold true:
(Fla)(k) = (Fa*)(w)" = (Fa)(=k) = (Fa(~-))(x) (2.78)

Identical relations hold if the roles of the direct and inverse transforms are interchanged.

Parseval relation

As for the Fourier series, the following Parseval relation holds:

2 = a)lk 2 K .
/Rramr dx/R\(f () 2d (2.79)

Fourier transform of the derivative of a function

Given the differentiable, square integrable function f(z), we have that

d
(ff> (k) = ik(Ff)(k) (2.80)
dx
This result is a consequence of the following relation:

af _ 4L eire K)dk b ik €T K)dk
T = o (e [emEnemin) = = [ Enea @)
= [FUE)FO @)

Two dimensional Fourier transform

The two dimensional Fourier transform (Fa)(k) of a function a(y), defined over R?, and

the inverse transform F~! are defined by

1 oo (o] .
(Fa) () = o / / e gy, o )y dys (2.82)

(F'A)(y) = ;ﬂ/ / e FR2y2) A () o) dky dky (2.83)
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Using a more compact and general notation, the definitions above can be rewritten in

the following form:

1

(Fa)(k) = o RQe*“"ya(y)dS(y) (2.84)
(FLA)y) = % [ AR ) (2.85)

By analogy with the one dimensional case, a d-function normalization factor 27 has been

introduced, as a consequence of the following orthogonality relations:

;!

iRy g—ik’y <€im‘ein’>R2 .
|5 5dse) O () (2.86)
eiky g—iry’ <eiy|eiy’>R2 .
d = ——=60(y — 2.

Similarly to the Fourier series, the direct and inverse Fourier transform can be interpreted
as the representation of a square integrable function a(y) in term of the sum of its
orthogonal projection onto the complete set of orthogonal functions. In fact, given the
function a(y) € L?(R?) and considering the definition of scalar product (2.10), it is
possible to write for the two dimensional transforms

oY <€m’a> ,

aly) = [F Y Fa = — R4Sk 2.88
¥) = FF) = [ G () (2.89)
at any y where a(y) is continuous, otherwise the equality is valid in the mean square
sense. The same holds for the one dimensional case. It can be observed that this
expression is analogous to (2.20), with the relevant difference that the summation over

n has been replaced by an integration over k.

Fourier transform in the time domain and time convention

Given a function of time P(¢), its temporal Fourier transform is

1 > iwt
(FiP)w) i= = /_ Pt (2.89)

It should be emphasized that the kernel of this integral is the complex conjugate of
the kernel included in the definition of direct Fourier transform (2.74). The choice of
the kernel e~ for the spatial direct Fourier transform and of the kernel ! for the
temporal direct Fourier transform implies that a function of the kind ¢“("*=%) represents a
propagating plane wave traveling in the positive x direction. This choice is defined as the
—iwt

time convention e , and is frequently used in the mathematical and physical literature.

This convention is adopted throughout this work. The reason for this will become clear in
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Section 4.3.1: in fact, a function of the kind e*(¢()7=«t) with ¢(x) = vk — K2 represents

a propagating wave when x < k, and an evanescent wave decaying in the positive x
direction when x > k and therefore i((x) = —|((k)|.

Another mathematically equivalent choice, more often used in the engineering literature,

is the time convention e? (or e/“!). In this case, the kernel of the integrals (2.74) and

i(wt—kKx)

(2.89) should be substituted with their complex conjugate, and the function e

represents a wave traveling in the positive x direction.

Although the direct Fourier transform in the time domain is mathematically identical
to the inverse Fourier transform (2.75), in order to avoid any confusion we will use the
notation F; for to the transform (2.89). Analogously, we will use the symbol F; ! for the

inverse transform. Hence it holds that

Convolution

Let f(z) and g(x) be two square integrable functions defined on R. The convolution of

these two functions is defined by

f(2) ® g(z) = /R f(a")g( — 2')da’ (2.92)

The well-known convolution theorem reads as follows:
f@)©g(x) = FHVer (Ff) (Fg) l(x) (2.93)
Analogously, it holds that

F(frfaro fn)(5) = 2m) "5 (FA)(K) @ (Ff) () © - (Ffn)(r) (2.94)

2.4 Integral representation of wave fields

In this section some integral formulae are introduced, which are of relevance to this work.
These formulae are presented following the material reported in [CK83], [CK92], [Pot07]
and [Wil99].

It is recalled that a function u(z) is said to satisfy the homogeneous Helmholtz equation
in the domain D if
VZu(z) + k*u(z) =0, z€ D (2.95)
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2.4.1 Single layer potential

Given the bounded domain A ® and the integrable function a(y), the integral

u(z) := » G(z,y)a(y)dS(y), ze€R™0A, m=2,3 (2.96)

is called acoustic single layer potential with density a (not to be confused with the
acoustic energy density function). G(z,y) is the fundamental solution of the Helmholtz
equation, that will be introduced in Chapter 3 and which is given by (3.6) and (3.7) for

the three-dimensional and one-dimensional case, respectively.
Having defined

up(z) = u(z) ze€R™A (2.97)
u_(z) = u(z) z€A (2.98)

we have that both u4 (z) and u_(z) satisfies the homogeneous Helmholtz equation in the

exterior and in the interior of A, respectively.

If the function a(y) is continuous, then the acoustic single layer potential is continuous
throughout R™. We have that

u(z) = G(z,y)a(y)dS(y), z€ IA (2.99)
oA

Given the unitary vector n(x), normal to OA at z and directed towards the exterior of

A, we define the right and left derivative of the single layer potential as:

Vauy(z) = hlin+10 n(z) - V(z + hn) (2.100)
Vau_(z) = hlg?ro n(z) - V(z — hn)

The normal derivative of the single layer potential is discontinuous at the boundary.
Considering the right and left derivatives introduced above, the following relevant relation
holds (see, for example, [CK92, p.39]):

1
Vuy(y) = / M a(x) dS(x) F za(y), y € 0A (2.101)
on On(y) 2
This results leads to:
Vau-_(y) = Vauy(y) = aly) y € 0A (2.102)

®The set A must have boundary dA of class C? (two times differentiable with continuous second
derivative) and simply connected exterior.
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These formulae are referred to as the jump relation for the acoustic single layer potential,
and have the relevant meaning that the density of the potential is given by the difference

(jump) between its left and right normal derivative on the boundary 9A.

We have uy(z) and u_(z) are both solutions of the homogeneous Helmholtz equation
in the respective domains, they are continuous on dA (if the density is continuous) but
their normal derivatives have a discontinuity on JA. Hence u(z) and u_(z) can be
understood as two different sound fields, representing the solutions of an exterior and
interior Dirichlet problem, respectively (see Section 3.18). From these considerations,
given two sound fields p4 (z) and p_(z), that are solutions of the homogeneous Helmholtz

equation in the exterior and interior of A, respectively, they can be represented by

p+(z) z€R™A

oz zcX (2.103)

p(z)+r = » G(x,¥)(Vap-(y) — Vap+(y))dS(y) = {

it is clear that py(z) = p_(z), y € OA. This result is often referred to as the Simple
Source Formulation [Wil99, p.267] ©.

2.4.2 Green’s second theorem and the Kirchhoff-Helmholtz integral

Given two functions u(z) and v(z), which are of class C? on A (two times differentiable

with continuous second derivative) and continuous on dA, it holds that

/ u(z)V?v(z) — v(z)Viu(z)dV (z) = / u(y)Vav(y) —v(y)Vau(y)dS(y) (2.104)
A oA

This result is often referred to as the second Green’s theorem |CK83, p.68].

If the field p_(z) satisfies the homogeneous Helmholtz equation in any open and bounded
set that contains A and its boundary OA, then it holds that [Wil99, p.256]

p-(z) z€A
G(2,y)Vap-(y) — VaG(z,y)p-(y)dS(y) = { p-(2)/2 z<€OA (2.105)
o 0 z € R™\A
where
VnGlz,y) = 2CZ:Y) (2.106)

on(y)

A function p(z) is said to satisfy the Sommerfeld radiation condition [Wil99, p.261] if

lim z <ag(:) - ikp(z)) =0 (2.107)

Z—00

5In [Wil99] the role of the left and right derivatives in equation (2.103) is exchanged. This is due to
the vector n pointing towards the interior of A.
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This condition implies that the sound field p(z) vanishes when |z| tends to infinity.

If the sound field p4(z) is a solution of the homogeneous Helmholtz equation in the
smallest open set containing the exterior of A and the boundary JA, and if p (z) satisfies
the Sommerfeld radiation condition, then the following result, similar to equation (2.105),
holds [Wil99, p.261]:

0 ze A

VnG(z,y)p+(y) — G(2,y)Vap+(y)dS(y) = § pi(2)/2 z € 0A (2.108)

o pe(z)  zeR™MA

Equations (2.105) and (2.108) are usually referred to as the Helmholtz integral or as the
Kirchhoff-Helmholtz integral. They represent a powerful tool for the representation of

sound fields, which are solutions of an interior or an exterior problem, respectively.

A relevant difference between the Simple Source Formulation (2.103) and the Kirchhoff-
Helmholtz integral is that in the former the density of the potential is given as a function
of the normal derivatives on OA of both the exterior and interior fields p4(z) and p_(z),
while equations (2.105) and (2.108) require the knowledge of either the interior sound
field p_(z) or of the exterior field p (z), respectively, but both the value of the considered

field and its normal derivative on OA must be known.

2.5 Spectral decomposition and SVD

The mathematical derivation of the singular value decomposition (SVD) of the operator
S is briefly reported here, following a procedure analogous to that described in [CK92]
and [Pot07].

2.5.1 Spectral theorem for a self adjoined, compact linear operator

Let S be a linear compact” operator, acting between two normed spaces A and P. Its
adjoint operator S* is also compact and the composite operator S*S is compact and self
adjoined ([Kre78|).

The eigenfunctions ay,,(y) and the eigenvalues u,, of S*S are given by the solutions of the
eigenvalue problem
(8*San)(y) = Anan(y) (2.109)

They have the following properties see [Kre78, p.420 and p.461]:

"The discussion of the concept of compactness of an operator is beyond the scope of this work. The
reader can refer to [Kre78, p.405] for an introduction to this subject
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e The eigenvalues )\, are real (from S self-adjoined);
e The eigenvalues A, are countable (from S compact);
e The only possible accumulation point for the eigenvalues is 0 (from S self-adjoined);

e Eigenfunctions associated with different eigenvalues are orthogonal (from S self-

adjoined);

e The dimension of the eigenspace associated to any non-zero eigenvalue is finite

(from S compact).

All non-zero eigenvalues are ordered as
A1l > [A2] = [Ag] > -+ > |AN] (2.110)

where each eigenvalue is repeated according to its multiplicity. N, the total number
of eigenvalues, can be either finite or infinite. In what follows, we will assume that
N = oo. The eigenfunctions a,(y) can be chosen to be such that ||a,|| = 1. This
property, together with the orthogonality relation, implies that the eigenfunctions are
orthonormal (see (2.19)), that is

(anlam)on = Opm Vn,m=1,2,3... (2.111)

The determination of the eigenfunctions is in general not unique, due to the possible
presence of one or more degenerate eigenvalues. Such an eigenvalue has multiplicity
8 u > 1, and is associated to an eigenspace with the same dimension. The set of

eigenfunctions, which span this eigenspace, are not uniquely defined.

The hearth of the SVD is the application spectral theorem for compact and self adjoined
linear operators to S*S. The derivation and discussion of this powerful theorem is beyond
the scope of this thesis, and the reader can refer to standard textbooks on functional
analysis such as [Kre78|, [Pot07] and [Kre99| for a better insight. The main results of
this theorem, for the case of the operator S*S, is that

e any function a(y) € L?(0A) can be expressed as
a(y) = an(y)(anla) + (Py(s-5)(y) (2.112)
n=1

where the operator Py (g-g) represents the orthogonal projection onto N (5*S), the
nullspace of S*S. The latter equals N(S) [CK92, p.91] and is defined by (2.23).

8The algebraic and numeric multiplicity of the eigenvalue are assumed to be equal.
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e The action of S*S on a(y) can be expressed as

(S*Sa)( Zan An{an|a) (2.113)

If S is injective, that is if

Vi(y).9(y) € L*00),  f(y) # 9(y) — (SH(x) # (S9)(x) (2.114)

then the set of orthogonal functions a,(y) is a complete set for L?(9A). This means (see

(2.15)) that any function a(y) € L?(0A) can be expressed by a series of the eigenfunctions
an(y).

The meaning of equation (2.113) is that a self adjoined and compact linear operator
can be diagonalized following a procedure analogous to the eigenvalue decomposition
of a normal matrix, although for the analogy to hold the matrix must have infinite

dimensions.

2.5.2 Singular Value Decomposition of a compact linear operator

The singular values o, of the compact operator S are defined as the square roots of the

non-zero eigenvalues A, of §*S, ordered with decreasing magnitude.

The functions p,(x) are generated by letting the operator S act on the different functions
an(y): 1
pn(x) = —(Sa,)(x) (2.115)

On
In view of the orthogonality of the functions a,(y) and of the definition of the adjoint
operator (2.21), it can be easily proven that the functions p, (x) are mutually orthogonal

and of unitary L? norm, namely

1

<pn|pm>8V = <San‘5am>8V = <an|S*Sam>8A (2~116)
OnOm OnOm
0.2
= 2 <an|am>8A = 5n,m
OnOm

The functions p,(x) and a,(y) are called the left and right singular functions of S,
respectively, and together with the singular values o, constitute a singular system of the
operator S. As in the case of the determination of the eigenfunctions of 5*S, the choice
of the singular system is not unique, due to the potential degeneracy of the singular

values.
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The singular system {oy,, an(y), pn(x)} has the following properties [Pot07], [CK92]:

(San)(x) = onpn(x) (2.117)
(S*pa)(y) = onan(y) (2.118)
(8*San)(y) = onan(y) (2.119)

The action of the operators S, * and S*S can be expressed as:

Z Pn(X)on (an]a)on (2.120)
Zan On pn|p> (2'121)
(S*Sa)( Zan o2 (an|a)on (2.122)

Each function p(x) € L?(9V) can be expressed as

an pn‘p ov + (PN(S*)p)( ) (2'123)

where the operator Py (g« represents the orthogonal projection onto the nullspace of 5™.
Note that the series p(x) is an orthonormal and complete system for L?(9V) only if the
nullspace of S* is trivial (namely, if S*p = 0 implies that p = 0).

2.5.3 On the existence, uniqueness and expression of the solution

Let S be a linear compact operator acting between two normed spaces A and P. Following
[CK92, p.89], it can be shown that the nullspace of S* is the orthogonal complement of
the range of S, and that the closure of the range of S equals the orthogonal complement

of the null-space of its adjoint. This means that
N(S*) = S(L*(0A))* (2.124)

S(L2(OA)) = N(S*)* (2.125)

The following inverse problem is addressed:

p(x) = (Sa)(x) (2.126)

where the function p(x) € P is given and the function a(y) € A has to be determined,

when this is possible.
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Theorem 2.1. Picard theorem [CK92, p.91] Given the problem p(x) = (Sa)(x) de-

scribed above, the solution a(y) exists if and only if the following two conditions hold:
p(x) € N(S*)L (2.127)

In order to seek a solution of the integral equation (3.19), which has the same form of

(2.126) and will be introduced in Chapter 3, the following results are applied:

p(x) = (Sa)(x) (2.129)
(Pnlp) = <pn\5a> (S*pnla) = onlanla)
(anla) = <pn\p>

As a consequence of this result and using the relation (2.112), if one solution a(y) exists,

this is given by

Z an(y pnlp) (2.130)

This solution is, in general, not unique. In fact, if a(y) given by (2.130) is a solution
for Sa = p and if the nullspace of S is non trivial, then any function a(y) + a(y) with
a(y) € N(9S) is also a solution.

It can be observed that, because of the definition of nullspace, any function a(x) € N(S)

does not contribute to generating p(x).

Note that condition (2.128) implies that the solution a(y) must have finite norm. In fact,
considering equations (2.113) and (2.115), the orthogonality of a,(y), the definition of
oy, and the Parseval relation (2.71), it holds that

- | pn]p | San\Sa
D Z = (2.131)

o0

n=1

> SSana 2 A
Z' . =Z;l<an|a>|2=||a\|2
n=1

n=1 "



Chapter 3

Sound field reproduction as an

inverse problem

In this chapter the problem of sound field reproduction is mathematically formulated in
the form of an acoustical inverse problem. Firstly, the main assumption and the general
framework of the problem are formulated, starting from the wave equation. Secondly,
mathematical entities and results such as the acoustic single layer potential and the
Dirichlet problem, relevant to this work, are introduced. The acoustical inverse problem
under consideration is then formulated as an integral equation of the first kind. Con-
sequently, the singular value decomposition of the integral operator is introduced and
used as a tool for solving the integral equation. These concepts represent the theoretical
basis of the entire thesis, and are crucial for the development of the results presented
in the rest of this work. An effort has been made to provide a physical interpretation,
in the framework of the acoustical problem considered, of the mathematical concepts
introduced. Special attention is dedicated to the physical interpretation of the singular

system of the integral operator arising in the formulation of the problem.

3.1 Mathematical formulation of the problem

Let V and A be two simply connected subsets of the three dimensional space, such that
V CACR™, m =2,3 and that their boundaries OV and A are smooth (of class C?).

Most of the arguments presented here hold for both two-dimensional and three-dimensional
problems. Hence, unless differently specified, R™ is either R? or R3, respectively, depend-
ing on the problem considered. In what follows, V' and A are referred to as the control
region and the reproduction region, respectively, while OV is referred to as the control
boundary. A given choice of V and A defines a geometrical arrangement. Figure 3.1

shows an example of a generic geometrical arrangement. For the sake of clarity we use

45
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FIGURE 3.1: Generic three dimensional geometrical arrangement.

the notation z for any vector identifying a location in R™, while the vectors x and y

identify locations in OV and OA, respectively.

It is assumed that a sound field p(z,t), hereafter referred to as the target sound field,

is defined over V' (namely over the closure of V) and satisfies the homogeneous wave

equation !
1 dp(z,t)
Vip(z,t) — =
p(z.t) - 55,

where ¢ is the speed of sound. The fact that this equation is homogeneous, that is

=0, zeV (3.1)

that the right-end side of the equation is zero, implies that no sources of sound and no
scattering objects are contained in V. Hence, p(x) can represent a physical sound field
generated by sources located in the exterior of V' (but not necessarily in the exterior of
A). The one dimensional Fourier transform (2.89) with respect to the time variable ¢
is applied to the right side of equation (3.2). As a result the latter reduces, for a given

frequency w, to the homogeneous Helmholtz equation
V2p(z, k) + K*p(z, k) =0, ze€V (3.2)

where k = w/c is the wave number and the time convention e~ has been chosen. It is
assumed that the sound propagates in a non dispersive and homogeneous medium (c is
independent of z and w). In the following passages the operating frequency w is assumed

to be fixed, and the dependence of p and other functions from k is omitted for brevity.

!The assumption is made that V?p exists on the boundary V. More rigorously, it can be said that
equations (3.1) and (3.2) are satisfied in the smallest open set containing V.
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The function p(x), x € IV, is the restriction of the sound field p(z) to the control

boundary 0V, and is hereafter referred to as the pressure profile.

The set Uy is now defined as the set of all pressure profiles p(x), which are of interest
for the sound field reproduction problem addressed here. These are the restrictions to

OV of all target sound fields satisfying equation (3.2). Formally

Uy = {p(x)|ov : V°p(2) + k*p(z) = 0, z €V} (3-3)

3.2 Acoustic single layer potential and the inverse problem

The assumption is made now that a continuous distribution of monopole-like sources is
arranged on the boundary dA. These sources are referred to as secondary sources and

OA is therefore referred to as secondary source layer.

The sound field py(z) due to a single secondary source, located at y € 0A, is assumed

to satisfy the inhomogeneous Helmholtz equation [KF62]:
Vpy(z) + k*py(2) = iwpoquor 8(z—y), z€ A (3.4)

where pg is the static density of the fluid and ¢, is the volume flow generated by
the secondary source. This implies that the secondary sources radiate sound as an
ideal monopoles for the three dimensional problem and as an ideal infinite line sources,

perpendicular to the plane considered, for the two dimensional problem.

We define
m = —iwpPoQGuol (35)

This can be interpreted as the wvolume acceleration of the secondary source, multiplied
by the static density po of the fluid [KN93]. This product can in turn be interpreted
as the time derivative of the mass flow due to the secondary source considered. In this
sense, each secondary source can be interpreted either as a simple source which pulsates
(alters its volume) with an acceleration of 7/ pg, or equivalently as a device which locally
injects and subtract mass into and from the system, and 7 represents the second time
derivative of this mass variation process. m is hereafter referred to as the source strength

2 and has dimensions of [Kg s~2].

The solution of the inhomogeneous Helmholtz equation (3.4) with m = 1 is given by
the Green function G(z,y), and the field given by the secondary source located at y is
therefore given by py(z) = mG(z,y). The assumption is made that the sound propagates

2In the literature [Wil99],[KF62], the term source strength is usually referred to the volume velocity
Guvol, as the inhomogeneous wave equation is solved for the velocity potential ® = p/(iwpo) rather than
for the acoustic pressure p.
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in the free field, then G(z,y) satisfies the Sommerfeld radiation condition (2.107) and
corresponds to the free field Green function [Wil99|, [CK92]

G(z y):M z#+y ifACR3 (3.6)
’ dr|z — y|’
1 .
Glz.y) = 7Hy (klz—y)), z#y #ACE (3.7)

H(()l)(‘) is the zero order Hankel function of the first kind. If the assumption of free
field propagation is removed, as for the case of a reverberant environment, most of the
results presented in this work will still hold, but all of the equations involving or derived
from a series or integral representation of the free field Green function (as for example
in Chapter 4) will need to be calculated again using a different (and not always simple)

representation of the Green function.

The relation between pressure p and particle velocity v of the field is given by Euler’s

equation [Wil99]
9v(z))

_ = 3.8
Vip(2) = po—p; (3.8)

which for fixed frequency w reduces to
Vp(z) = iwpov(z) (3.9)

For the case of a secondary source radiating sound as an acoustic monopole, we observe
that Vp(z) = 20p(z)/0z. Consequently, for the free field case, we have the following
expression for the pressure p, particle velocity v and (time averaged) intensity I of the
acoustic field due to a secondary source and of the acoustic power W generated by it

[Wil99]:

eikz
p(z) = v — (3.10)
v(z) = mpicz; (1+k2>z=};}:c) <1+Zz)z (3.11)
I(z) = %Re p(z)v(z)"] = 32752/)03 - “’2(;0)6’22 (3.12)
-9 2
W 877:;06 = ‘1; (pzo)l A2 (3.13)

The last expression highlights the fact that the acoustic power generated by a secondary

source is proportional to the square of m.

Given a continuous distribution of secondary sources on 0A, the source strength can be
substituted by the source strength density a(y), which represents the strength m per

unit of area (or unit of length for the two dimensional problem), thus given by

i

“= g

(3.14)
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Clearly, a(y) has the dimensions of [Kg s~2 m~?] (for the 3D problem). In what follows,
when there is no risk of confusion, we will for simplicity refer to a(y) as source strength,
omitting the word density. It should be clear, however, that the term source strength is

referred to m.

Let p(z) be the sound field generated by the continuous distribution of secondary sources
mentioned above. The pressure field p(z) is hereafter referred to as the reproduced sound
field and it is due to the linear superposition of the fields generated by the layer of

secondary sources. It can be described by the following integral:

p(z) = G(z,y)a(y)dS(y), zeR™, m=2,3 (3.15)

oA
This integral is called the acoustic single layer potential [CK83, p.46]. The function a(y)
is also referred to as the density of the potential [CK92| and represents, as discussed

above, the strength of the secondary sources per unit of area or unit of length.

We define ? also the operator S as the restriction of the single layer potential (3.15) to
the boundary oV

(Sa)(x) = » G(x,y)a(y)dS(y), xeodV (3.16)
For compactness of notation, the symbol S is used in the rest of this work also for
the restriction of the single layer potential (3.15) to a different domain, provided that
the latter is clearly specified. For example, the notation (Sa)(z), z € V defines the
restriction of (3.15) to the interior of V', while the notation (Sa)(z), z € R™ identifies
the single layer potential defined by (3.15).

The operator S defined here should not be confused with the integral (2.103) involved
in the Simple Source Formulation [Wil99|, for which the control region V' and the repro-

duction region A coincide.

The sound field reproduction problem addressed in this work consists of determining the
density a(y), such that the reproduced sound field p(z) is the best approximation, in
an L? sense, of the target field p(z) in V. In other words, the aim is to determine the

density a(y) which minimizes the norm

H oA G(,y)a(y)dS(y) —pHV (3.17)

3Note that the definition of the operator S provided here differs from that often used in the literature
[CK83], [CK92], [Pot07] for a factor 2 and in the fact that the boundaries A and OV usually coincide
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3.3 The Dirichlet problem

A relevant aspect of the problem under consideration is that, under given conditions, the
target sound field p(z) in the interior of V' is uniquely determined from a knowledge of its
value on the boundary of the control region, that is from the knowledge of the pressure

profile.

In order to illustrate this concept, we proceed as follows: given the continuous function
f(x) defined on OV, representing the pressure profile, we seek the solution of the so

called Dirichlet problem

{ V?p(z) + k?p(z) =0, z€V (3.18)

p(x) = f(x), x €V

where the second equation represents the Dirichlet boundary condition. This is a well
known mathematical problem and in [CK83] and [CK92| is shown that it has a unique
solution, apart from the case when k is one of the so called Dirichlet eigenvalues. These
are defined as the set of wave numbers k,, such that the problem (3.18) with homogenous
Dirichlet boundary condition f(x) = 0 admits at least one non-trivial solution p,(z). In
the case of V' being a bounded set, it can be shown that the negative Laplacian is a com-
pact linear operator and for this reason the set of the Dirichlet eigenvalues k,, constitutes
an infinite but countable set. In physical terms, the problem (3.18) corresponds to the
modal decomposition of the sound field in a cavity with the geometrical shape of V' and
pressure release boundary conditions (p(x) = 0, x € V'), and the set of wave numbers

ky, correspond to the infinite number of resonance frequencies of that cavity.

In the case of k being one of the Dirichlet eigenvalues, the solution of (3.18) is not
unique. This can be easily proven: assume that k = k,, and p,(z) is the corresponding
eigenfunction (the eigenvalue is assumed to be non degenerate). Given a solution p(z)
of (3.18), the function p(z) = p(z) + mp,(z),m € R is also a solution. In this case
only the Dirichlet boundary condition is not sufficient for solving (3.18), but it is nec-
essary to impose boundary conditions both on the field and on its gradient (a Cauchy
boundary condition). In Section 5.5, we will see that this nonuniqueness problem of the
interior Dirichlet problem has some consequences for the uniqueness of the sound field

reproduction problem.

In what follows, unless specified differently, the assumption is made that k # k,,. Under
this condition, what has been discussed proves that the sound field p(z) in V' is uniquely
defined by its value on 9V | and this also implies that if the target sound field is reproduced

exactly on 9V, then it is reproduced exactly also in V.

Using arguments related to the analytical continuation of p(z), it can be shown that the
condition p(x) = p(x) on AV implies that the field is accurately reconstructed also in

the region of the space belonging to the interior of A and to the exterior of V' (namely
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in A\V), provided that p(z) still satisfies the homogeneous Helmholtz equation in that

region.

3.4 The integral equation

The discussion above leads to the conclusion that, under the conditions described above,
the sound field reproduction problem can be reformulated in terms of the reconstruction
of the pressure profile on 9V, at frequencies other than those identified by the Dirichlet
eigenvalues k,. Consequently, the optimal reconstruction (always in terms of the L2
norm) of the target sound field is given by a potential Sa, whose density a(y) is the
solution of

p(x) = (Sa)(x) = 8AG(X,Y)Q(Y)dS(Y)a x €V (3.19)

The latter is an integral equation of the first kind [Pot07], [Pot01], [Kre99] (sometimes
referred to as Fredholm equation of the first kind [Kre78]), and is one of the central
concepts of this work. For a thorough presentation of the subject of integral equations,
the reader can refer to the extensive literature dedicated to this wide topic (see, for
example, [Kre78|, [CK83] or [Pot07]).

It is important to underline that the left hand side of equation (3.19) differs from the
function p(z) in equation (3.15), the former being the pressure profile, defined on OV, the
latter the reproduced sound field in the entire space R™, m = 2,3. In fact, (3.15) defines
the acoustic single layer potential, while (3.19) is an integral equation with unknown

function a(y).

As will become clear later, equation (3.19) represents an inverse problem, and because of
its nature of an integral equation of the first kind, it represents an ill-posed problem. This
implies that the solution of (3.19) could either not exist, be non-unique or be unstable
(does not depend continuously on the data). These concepts are discussed further in

Chapter 5, that is dedicated to the problem of ill-conditioning.

It is therefore not possible, in general, to compute an exact solution of an ill-posed
problem. However, as it is shown later, it is usually possible to compute an approximate

solution by using a regularization scheme.

3.5 Singular Value Decomposition

The inverse problem (3.19) can be tackled with different methods (see, for example,
[CK92] for other solution methods). Some of these include the singular value decompo-
sition (SVD) of the operator S. This powerful method is discussed in what follows and

provides considerable insight into the physical problem of sound field reproduction.
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The analytical SVD used here, involving a compact linear operator acting on a func-
tion, can be simplistically understood as an extension of the more popular discrete
SVD, performed on a matrix acting on a vector, to the more general case of abstract
spaces of functions such as, for example, Hilbert spaces [Kre78|. The discrete SVD has
been widely used in acoustical problems related to analysis and control of sound fields
and source reconstruction (see for example [VM89], [NY00],[KN03|, [WHHO03|, [Spo06],
[SS06], [GBWO5], [GB0O8b]). A simple explanation of the discrete SVD and its interpre-
tation in the context of sound field reproduction is reported in Appendix A (the reader
can also refer to [FNO7b]). The extension of the SVD to operators is probably due to E.
Schmidt ([Sch07], published in 1907), who introduced the infinite dimensional analogous
of the SVD, and used it to approximate operators [Ste93]. The use of the SVD of oper-
ators for radiation problems was proposed by W.A. Veronesi and J.D. Maynard [VM89]
for the case of planar geometry. G.V. Borgiotti et al. also used this technique in the for
conformal holography and acoustic radiation [Bor90|, [BSWS90], [BJ93], and C. Maury,
S.J. Elliott and T. Bravo [MEO05|, [MBO0S8| recently proposed some analytical formula-
tion of the singular system of the radiation operator in terms of prolate spheroidal wave
functions [MEO5]. The SVD of an integral operator is also frequently used in acoustic

scattering problems (see, for example, [CK92]).

A short review of the main mathematical passages involved in the derivation of the SVD
and some of its relevant properties are reported in Section 2.5. A better insight into the
mathematics of the SVD can be found, for example, in [CK92] and [Pot07]. Some of
the properties of the operator S and its adjoint operator, which will be useful later in
this paper, are briefly discussed here. An important property is the compactness of S.
Despite the relevance of this concept in respect to the SVD, an exhaustive presentation
of this subject is not brief and no attempt has been made to describe the details here.
The reader is referred to [Kre78| or [Pot07] for more detail.

3.5.1 The compactness of S, the adjoint operator S* and the composite

operator S*S

The compactness of S is crucial to the validity of the following arguments. We are
not concerned here with the physical interpretation of compactness of an operator, but
we need to make sure that the operator S is compact in order to apply some relevant
properties that compact operators possess. In [CKS83, p.5| (among others) the proof is
given that under the assumptions introduced above, S is a linear and compact operator,
since its kernel is continuous (or weakly singular if A = V) and since the domain of
integration AV is bounded. It should be noticed that if the domain of integration oV is

not bounded, then S is not compact. This case is considered in Section 4.3.
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Considering the definition of an adjoint operator (2.21), it can be easily seen that S # S*,
that is .S is not self adjoined. The adjoint operator S* is

(S*p)(y) = - G(y,x)"p(x)dS(x), y € OA (3.20)
The operator S* does not have a real physical meaning, but it could be interpreted as
a time reversed single layer potential. We can imagine that a continuous distribution
of monopole-like sources, with source strength equal to p(x), is arranged on V. The
sound field generated by this source layer is reversed in time; this arises from the fact that
the kernel of S* is the complex conjugate of G(y, x) and considering that (F; 'p*)(t) =
(F7'p)(—t)* (see formula (2.78)). Equivalently, the sources on V could be interpreted
as sources of incoming sound, which have of course no reasonable physical meaning.
(S*p)(y) is actually this time reversed field measured on JA. A similar interpretation
was suggested by Tanter et al. [TAGT01].

As shown in [Kre78, p.416], if S is compact then S* is also compact. The composed
operator S*S' is expressed by

(5*Sa)(y) = [ Gly.x)° (

G(x,&)a(&)dS’(&)) dS(x), y € oA (3.21)
ov

oA
This operator is compact and self adjoined. As explained in Section 2.5, these two
properties imply relevant consequences for the spectral decomposition of the operator
S5*S, on which the SVD of S is grounded.

Following the interpretation of S* proposed above, the composite operator S*S could be
figuratively understood as follows: an acoustic field is generated by the secondary sources
on OA with strength a(y). This field, (Sa)(x), is measured on 0V and the pressure profile
p(x) is used to define the strength of a second layer of sources, this time arranged on 9V'.
These sources generate a second field, which is time reversed and measured on OA. The

function describing the acoustic pressure of this time reversed field on 0A is (S*Sa)(y).

3.5.2 Singular system and SVD of S

Following the passages reported in Section 2.5, it is possible to compute a singular
system {0y, an(y), pn(x)}, where o, are the singular values of S, while p,(x) and a,(y)
are respectively its left and right singular functions. The latter represent two sets of
orthonormal functions, defined on 0V and OA, respectively, and are analogous to the
singular vectors in the case of the SVD of a matrix. One of the most powerful features
of the SVD is that any function a(y) € L?(0A) and any function p(x) € L%(V) can be
expressed by
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[e.e]

aly) = Y an(x){anla)os + (Py(s)a) (y) (3.22)
n=1
p(x) = an ){(pnlp)ov + (Pyn(s+p) (%) (3.23)

Pysy and Py(g+) are the orthogonal projection operators onto the nullspace of S and
S* respectively (see (2.14) for the definition of orthogonal projection operator). If S
is injective 4 , its nullspace is trivial (contains only 0), and the functions a,(y) are a
complete set of functions for L?(9A) (see Section 2.5). The same holds for S*, and the
set of functions p,(x) in L2(9V'), respectively.

The equalities above are valid only at points where the functions are continuous. It
should be noticed, however, that the presence of removable or jump discontinuities is not
relevant for the physical problem under consideration. In fact, since p(x) is solution of the
homogeneous Helmholtz equation (3.2), it is differentiable and is therefore continuous.
On the other hand, given the functions a(y) and a/(y) that are identical apart from a
countable set of points where a/(y) is discontinuous. we observe that Sa = Sa’. As a

matter of fact, in an L? sense, the two functions are identified.

The result above implies that (in the case of S and S* injective) any square integrable
function p(x), representing the sound field on dV, can be expressed as a series of the
singular functions p,(x). Analogously, any square integrable function a(y) defining the
source strength on OA can be expressed as a series of a,(y). In this setting, equations
(3.22) and (3.23) can be interpreted as a generalized Fourier series for a(y) and p(x)
respectively, with (an|a)sr and (p,|p)sy being the Fourier coefficients. From a slightly
different perspective, equations (3.22) and (3.23) could be interpreted as the modal de-
composition of the source strength a(y) and of the pressure profile p(x), respectively.
The scalar product (a,|a)sa can be interpreted as the component of the source strength

with respect to the modal function or modal shape a,(y) (and analogously for (p,|p)sv ).

The action of the operator S on a(y) can be expressed by

an X)O0n an’a> (3.24)

This result represents the SVD of S, and has as the following meaning: given the source

strength a(y), the reproduced sound field can be computed by

4An operator S : A — W is injective if any two distinct element a and o’ of A are associated with
two distinct elements p and p’ of ¥, such that Sa = p and Sa’ = p’.
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1. Calculating the set of scalars (an|a)ga obtained from the scalar product of the
source strength a(y) with the singular functions a,,(y) (this operation is analogous

to the computation of the coefficients of a Fourier series);
2. Multiplying each coefficient (a,|a)gs by the corresponding singular value oy,;

3. Modulating the singular functions p,,(x) by the coefficients obtained in the previous

passage. This operation gives an infinite set of scaled orthogonal functions;

4. Synthesizing the target sound field by summing the scaled orthogonal functions.

It is interesting to observe that, even if the problem formulation includes an integral
operator (instead of a matrix), the singular functions and singular values are countable,
that is they can be associated with natural numbers n = 1,2,.... This property is a
consequence of the compactness of S (see Section 2.5). If this was not the case, the series
in (3.22),(3.23) and (3.24) would become integrals, and the series of singular values a
function (the spectrum of S). An analogous argument can be used to interpret the

difference between a Fourier series and a Fourier integral.

It can be noticed that, in the special case when the set of left and right singular functions
are the same, the passages described above define a convolution operation. Original
approaches to the sound field reproduction in terms of spatial convolutions, which share
some analogies with the approach discussed here, have been proposed by Nicol and

Emerit [NE99| and by Ahrens and Spors [AS08d|, [AS08a].

Another possible understanding of the SVD is the so called mode matching approach,
as proposed by Poletti [Pol05],[Pol00]. In this interpretation, every mode p,(x) of the
pressure profile is matched to one mode a,(y) of the source strength. The latter could
be described as a given combination of strengths of the secondary sources. One example
of source mode is the typical case of all secondary sources acting in-phase (very often
corresponding to the first mode a1 (y)). Consistently with this interpretation, the singular
functions py,(x) and a,(y) are hereafter also referred to as acoustic pressure modes and

secondary source modes (or array modes), respectively.

It is important to emphasize that, as a consequence of the orthogonality of the singular
functions, each pressure mode py,(x) is controlled by one and only one secondary source
mode a,(y). Furthermore, the amount of energy transferred between one mode ay,(y)
and one mode p,(x) is related to the corresponding singular value o,,, which is always a
positive value. In other terms, from (3.24) and from the orthonormality of the singular

functions we can easily derive the relation

o = [alp)] _ [ISan]]
= -
llanll [lan]]

(3.25)

This means that the singular values are representative of the efficiency (in energetic

terms) of the secondary source modes. In this sense, if a given amount of energy is
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required for the mode p,(x) of the reproduced pressure profile, the corresponding sec-
ondary source mode a,(y) must be driven with a small amount of energy if o, is large,
or oppositely with a large amount of energy (sometimes very large!) if oy, is small. As
will become clear in Chapter 5, this phenomenon is one of the main reasons for the ill
conditioning of the inverse problem (3.19). In view of this interpretation, the singular

values are also referred to here as modal efficiency.

The actions of the operators S* and S*S can be expressed analogously to the case of S

in equation (3.24):

(SP)y) = > an(¥)on(palp)ov (3.26)
n=1

(S*Sa)(y) = Y an(x)op(an|a)on (3.27)
n=1

As will become clear in Chapter 4, the integral operator S acts as a spatial low-pass
filter, which has in general the effect of smoothing out the rapid spatial variations when
transforming a(y) into p(x). This can be intuitively interpreted with the fact that
the low efficiency modes are generally associated with rapid spatial variations of the
pressure profile, which are therefore hard to reproduce. This concept is demonstrated

more rigorously in Section 4.1.

3.5.3 Separable geometries and representation of the single layer po-
tential

It must be emphasized that the expression (3.24) of the operator S by means of its
singular system {0y, a,(y),pn(x)} provides an expression for the single layer potential
(3.15) only on the boundary OV of the control region, but generally not in its interior
or in A. The singular system of S is clearly determined by the choice of both A and V/,

and if one of these two sets varies, the functions oy, a,(y), pn(x) will be different.

However, in the special case when JA and JV represent the separation surfaces [MF53|
of geometries in which the Helmholtz equation can be solved by separation of variables
(such as spheres, circles, planes, etc.), it will be shown that simple analytical relations
exist between the singular system of S defined for different 9V and OA corresponding
to different separation surfaces. Consequently, the representation of S by means of its
singular system can be extended to the single layer potential in the interior of A (and
by applying further analytical relations, also to its exterior). This concept will become
clear in Chapter 4, where the formulation of the singular systems of S for some separable

geometries is presented.
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3.5.4 Solution of the inverse problem

If an exact solution to the integral equation (3.19) exists, this is given by (see Section
2.5)

a(y) = an(y) — (palpov (3.28)
n=1

On

This meaningful result provides an expression of the source strength function a(y) in
terms of singular functions and singular values of S. Assuming that these are known, the

SVD gives the following important insight into the problem of sound field reproduction:

e The scalar product (p,|p) reveals how much of a given mode p,,(x) is present in the
target pressure profile p(x). It must be remembered that this analysis is performed

on the boundary 0V of the control region.

e Each singular function a,(y) describes what combination of strength of the sec-
ondary sources is required to generate a given mode p,(x) of the target pressure

profile

e The singular values o, indicate how efficiently each source mode ay(y) transfers
the acoustic energy to the related acoustic pressure mode py(x). It should be
emphasized that the singular values ¢,, depend only on the operator S, and not on
the target sound field. In other words, the singular values are influenced only by
the geometry of the secondary source layer 0A and of the control region V', and
by the function G(x,y), representing the acoustical transfer function between the

secondary sources and any point on 9V

e The factor (p,|p)/o, defines how much of each secondary source mode a,(y) is
required for the reproduction of the pressure profile p(x). This factor depends on

both the system configuration (A,V and G(x,y)) and on the characteristics of p(x).

From (3.28) and in view of the Parseval relation (2.71), the following relation can be

easily derived :

0 2
Pn|D
llall* = ‘(0’2>| (3.29)
n=1 n

This equation defines the relation between the norm of the source strength function a(y),
proportional to the total amount of acoustic energy generated by the secondary sources,
the contribution of each single mode p,(x) to the target pressure profile and the related
efficiency o,,. As discussed in Section 5.3, the first Picard condition (5.2) for the existence
of the solution a(y) imposes that the series in (3.29), and hence the total energy ||a||?,

must be less than infinity.

If we assume that the expression of the target pressure profile includes a single low

efficiency mode p,, associated to a small singular value o, then the total amount of
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energy generated by the secondary sources (proportional to |(p,|p)|?/c2) will largely
exceed the total energy of the acoustic field on OV (proportional to |{p,|p)|?). The main
physical reason behind the small efficiency of a mode is given by the fact that the fields

generated by the different secondary sources interfere destructively on oV.

But the small singular value ¢, does not give any information about the acoustic energy
of the sound field in other regions of the space, different from V. This energy is likely

to be also very large if ||a|| is large.

It has been shown that equation (3.28) provides a powerful method for the computation
of a solution to the inverse problem (3.19). However, some optimistic assumptions have
been made: the solution exist and is unique and the singular system {o,,, a,(y), pn(x)}
for the given operator S is known. However, the existence and uniqueness of the solution
need to be verified, and the singular system of .S must be calculated, depending on the

geometry A, V and on G(x,y). The next two chapters are dedicated to these subjects.



Chapter 4
Solution for special geometries

The computation of the singular functions p,(x) and a,(y) and of the singular values
op is in general not a simple task. Their determination in a closed analytical form is
relatively simple for some special geometries of A and V', while for arbitrary geometries
a numerical approach is often the only option. In this chapter, some singular systems
are studied in the case of some specific but important geometries. The assumption of

free field propagation holds for all the cases dealt with here.

The cases are studied where OA and OV are concentric spheres and concentric circles,
respectively. The analysis is then extended to the case of dA and AV being infinite
parallel planes and parallel lines, respectively. The study of the latter two geometries
requires some further mathematical assumptions, since the operator involved is no longer
compact. This additional effort is justified by the fact that the functions arising from
the decomposition of the integral operator can be simply interpreted as propagating
and evanescent plane waves, and a greater insight is provided into the problem under

consideration and into the solution technique adopted.

The results presented in this chapter show very clearly the relation of the sound field
reproduction problem to Acoustical Holography (discussed in more detail in Section

6.4.1) and, more generally, to other acoustical inverse problems.

All the derivations begin from the expansion of the free field Green function, given by

equation (3.6) and (3.7), in terms of orthogonal functions which suit the given geometry.

The notation used in the following derivations is recalled here. Thus, with respect to the

vector x

r:=|x| x:=x/z
X = [z cos ¢y sin by, xsin @, sinb,, xcosb,]

(4.1)

99
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and the spherical harmonics are written as

Ym(f() = ern(em ¢$)

n

Analogous relations hold for the position vector y. The symbol [-] denotes rounding up

to the next integer.

4.1 Concentric spheres

FIGURE 4.1: Geometrical arrangement with concentric spheres.

The case is considered where A and V are two concentric spheres with radius Ry and
Ry, respectively. The condition V' C A is simply satisfied by imposing Ry < Rj. It
follows that |x| = Ry, x € OV and |y| = Rp, y € OA .

The free field Green function (3.6) can be expressed by [Wil99]

ik|x—y| >0 v
4jr|x —1 = 2 ki ke) 3 YE®YIE), y>a (4.2)
v=0 p=—v

The following orthogonality relations follow from the orthonormality of the spherical

harmonics (2.52)

/ YHR)YH (R)dS(X) = R¥8,6, (4.3)
ov

YA@)YL (3)dS(y)
OA

RA0u 6,00
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For this geometry, we have that dS(x) = R%, cos(0,)d¢,d0, and dS(y) = R3 cos(0y)dep,db,.
The factors R:, and R3 on the right hand sides of these equations result from performing

the integrations on OV and OA, respectively, instead of on the unitary sphere as in (2.52).

In view of these orthogonality relation, it is possible to substitute the kernel of the inte-
grals (3.19), (3.20) and (3.21) with equation (4.2) and rearrange the order of summation

and integration in order to obtain

(S0)) = > iRy RARR (bR )i (k) S R< W@ lelon 4y

v=0 p=—v \% RA
* _ = i 2) (¥) (Y |p)av
(S*p)(y) Z@ Ry Rakh(® (kRp)j, (KRy) “ZV T (4.5)
(5°Sa)y) = ZR BRI (kR (kRy)| 32 T ATy

p=—v

Note that (-|)an = (|)oR% and (:|)ay = (:|)oR%, where Q is the unitary sphere.
Comparing these results with equations (3.24), (3.26) and (3.27), expressing the ac-
tions of the three integral operators above in terms of elements of the singular system

{on,an(y),pn(x)} of S, the following choices can be made

on = kRyRalhy(kRa)ju(kRv)| (4.7)
anly) = V) (4.9
i) = VIR (4.9)

2w = exp[i (arg (b (kRa)j(kRV)) + 3 )| (4.10)

v = [vVn-1], p=n—-1-v-—1> (4.11)

From equations (4.4),(4.5) and (4.6) it follows that this singular system satisfies the
relations (2.120), (2.121) and (2.122) reported in Section 2.5.

The factor 7, is a complex scalar of unitary norm, and represents the change of phase
experienced by the corresponding modes in the propagation from 0A to dV. It has been
introduced into the formulation of p,(x) since the singular values are constrained to be

real by definition.

The two indices v and pu, playing the role of the single index n, are due to the degen-
eracy of the singular values, often arising in eigenvalue problems in which symmetrical
geometries such as cylinders or spheres are involved. In fact, a singular value related to
a given coefficient v has multiplicity of 2v 4+ 1 | and is associated with 2v + 1 singular
vectors ay(y) and with 2v + 1 singular vectors p,(x). The relation between n and v, i

is given by (4.11) and is shown in Table 4.1.
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1 2 3 4 5 6 7 8 9
v 0 1 1 1 2 2 2 2 2 3
0o -1 0 1 -2 -1 0 1 2

TABLE 4.1: Relation between the index n of the elements of the singular system
{on, an(y), pn(x)} and the spherical harmonic and Hankel function indices v and p.

However, this indexing method might not be adequate, since the singular values are by
definition ordered by decreasing magnitude (see section 2.5), and therefore they might

need to be re-ordered (and accordingly the singular functions).

The constant factors Ry and Rj have been introduced into the formulation of the singular
values and of the singular functions in order for p,(x) and a,(y) to have unitary norm,
with respect to the integrations (4.3), since these are performed on the non-unitary

spheres OV and OA, respectively.

Summarizing, it can be stated that for the case of two concentric spheres, the singular
values are functions of the wave number k& (and hence of the frequency) and of the radii
of the two spheres. Their expression includes the absolute value of a combination of

spherical Hankel and Bessel functions, with arguments kR5 and kRy , respectively.

4.1.1 Properties of the singular system

Figure 4.2 and Figure 4.3 represents the spherical Bessel and Hankel functions, respec-
tively. It is very important to notice that absolute value of the Hankel functions is always
larger than zero, while this is not true for the Bessel functions. As a consequence, the
singular values given by (4.7) can theoretically equal zero for given values of the product
kRy (in which case they would no longer be regarded as singular values, by definition).
As shown in Appendix C, the frequencies w, such that j,(Rywy/c) = 0 identify the
resonance frequencies of a sphere with radius Ry and pressure release boundaries, and
the corresponding wave numbers k,, are the Dirichlet eigenvalues for the domain V' (see
Section 3.3). As will be explained in Chapter 5, the Dirichlet eigenvalues of A do not

play any role here.

It can be observed that, for small arguments and high orders, the Hankel functions tend
to diverge, while the Bessel functions tend to zero (apart from the order v = 0). The high
order approximations of the spherical Bessel and Hankel function are given by equations

(2.39) and (2.40), respectively, which are reported below

:,UV

Ju(z) = m v — 00 (4.12)
M (z) = (v- LN vV — 00 (4.13)

v Z’xu+1
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FIGURE 4.2: Spherical Bessel functions of order n = 0 to n = 6).

where
Cu+DN:=1-3-5---2v—-1)-(2v +1) (4.14)

The high order approximation of the singular values is therefore

Ry (Ry\’
n = — — 4.1
ol <RA> el (4.15)

This result is a consequence of the behavior of the Bessel and Hankel functions for high
order or small arguments. Since it has been assumed that Ry < Ry, it is clear that the

asymptotic expression above tends to zero as n (and thus v) tends to infinity.

Decay of the singular values Figure 4.4 shows the singular values of S as expressed
by equation (4.7), with £ = 15R), 0 < v < 40 and different values of Ry . The degenerate
singular values are not repeated according to their multiplicity. The continuous line
represents the asymptotic decay given by equation (4.15). It can be observed that,
if Ry < Rp, the asymptotic decay of the singular values for n — oo is dominated
by the term (Ry/Ra)”. This decay becomes steeper as the difference becomes larger
between the radii of the two concentric spheres. As a consequence of this exponential
decay, the inverse problem addressed is said to be severely ill-posed. In the limiting case
when Ry = Ry, the asymptotic decay of the singular values is dominated by the term
Ry /(2v 4 1). In this case, the singular values exhibit a linear decay, the slope of which
does not depend on the geometrical arrangement. The linear decay of o,, implies that

the inverse problem is mildly ill-posed [CK92, p.92].
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FIGURE 4.3: The magnitude and phase of the spherical Hankel functions of the first
kind of order n = 0 to n = 6.

The large argument approximation of these functions are given respectively by equations

(2.42) and (2.43), reported here

. 1 . vT
Ju(x) = _sin (a: — 2) T — 00 (4.16)
WD (x) = (i) hY (2) = (—i)”“% z — oo (4.17)

Consequently, the high frequency or large wave number approximation of the singular

values o, defined by (4.7) is given by

1 . VT
on = o sin (k‘RV — ?) k — oo (4.18)
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FIGURE 4.4: Singular values o,,, computed with k¥ = 15R, and a range of values of

Ry . The degenerate singular values are not repeated according to their multiplicity.

The continuous line shown represents the asymptotic decay given by the high order
expansion of the Bessel and Hankel functions.

This means that the high frequency approximations of the singular values correspond to
a 1/k factor with a sinusoidal modulation. It is relevant to note that the radius of OA

does not contribute to the expression above.

The left and right singular functions a,(y) and p,(x) are identical, apart from a constant
factor, and are represented by spherical harmonics. These have the relevant property of
being independent of the frequency w. It can also be observed that the representation
of the operator S given by (4.4) can be extended to the expression of the single layer
potential (3.15) in all the reproduction region A. This can be simply achieved by substi-
tuting x € 9V with z € A in equation (4.4) and in the expression of the singular system,
equations (4.7)-(4.11). The functions (Say)(z), z € A can be interpreted as standing
spherical waves in the interior of A. Figures 4.5-4.10 show the horizontal cross-section
of the acoustic field due to several secondary source modes, corresponding to different
spherical harmonics Y}, and for different values of k. On the right hand side of each
figure, a plot of the real part of the corresponding spherical harmonic is illustrated (the
red and blue color correspond to positive and negative sign, respectively, while the radial

coordinate represents the absolute value of the real part of the function).

Each spherical wave (Sa,)(z) is characterized, in the interior of A, by nodal surfaces
defined by spheres of radius R,, such that j,(kR;,) = 0. It is clear that if OV corresponds
to one of these nodal surfaces, that is if Ry = R,, for a given n, then the corresponding
singular function (Sa,)(x) =0, x € dV. This implies that all function identified by the
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spherical harmonics Y})'(y), corresponding to the given order n, are in the nullspace of
S, defined by (2.23). Strictly speaking, these spherical harmonics do not define singular
functions. However, they might be interpreted as secondary source modes with zero
efficiency. It should be emphasized that if (Sa,)(x) = 0 for all x in OV, this definitely
does not imply that (Sa,)(z) = 0 for all points z € A\OV. This fact is associated with

the problem of nonuniqueness of the solution discussed in Chapter 5.

FIGURE 4.5: Acoustic field due to the secondary source mode Y (y)/ R, for k = 9/Rx.

FIGURE 4.6: Acoustic field due to the secondary source mode Y} (y)/ Ry, for k = 9/Ry.
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FIGURE 4.7: Acoustic field due to the secondary source mode Yy (§)/Ry, for k =
9/Rx.

FIGURE 4.8: Acoustic field due to the secondary source mode Y2(y)/ R, for k = 9/Rx.
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FIGURE 4.9: Acoustic field due to the secondary source mode Y (y)/Ry, for k =
18/Rj.

FIGURE 4.10: Acoustic field due to the secondary source mode Y; *(3)/Ra, for k =
18/Ra.
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The analytical SVD of S for this geometrical arrangement can be compared with the
traditional discrete version (expressing any matrix H = UEVH). It can be argued
that the role of the unitary matrices U and V is here played by a generalized Fourier
series (2.69) and by the determination of the Fourier coefficients (2.70), respectively. The
orthonormal functions of the generalized Fourier series are closely related to spherical

harmonics. The diagonal matrix 3 corresponds here to the set of singular values o,,.

4.1.2 Solution

The solution of the integral equation (3.19) is given, if it exists and is unique, by equation

(3.28) in combination with the results shown above. This leads to

Z Z % Q) ) (Y p)ov (4.19)

V=0 =y kR, RQh,, (kRA)ju(kRy)

The assumption has been made, that j,(kRy) # 0 Vv = 0,1,...00. If this is not the
case, the expression given above represents one of the infinite possible solutions to (3.19).

This special case is discussed in detail in Chapter 5.

Not surprisingly, results analogous to the above arise in the literature dedicated to spher-
ical microphone arrays [Raf04], [Raf05] and High Order Ambisonics [DNMO03], [AS08a].

Equation (4.19) can also be obtained as follows. Equation (3.19) is rewritten by substi-
tuting the kernel of the integral with the series (4.2), thus obtaining

p(x) =Y ikh{D (ky)j, (k) Z YAR) (Y a)or, X €V (4.20)
v=0 p=—v

Both sides of the equation above are multiplied by Y“ (x)*/Ry and integrated over OV .

Rearranging the order of integration we obtain

/ (X)YVF’L/(’A‘)*CZS(X) = i'R RpkhS) (ky)j, (kx) (4.21)
an RV - V:07/ VLA v Y)Jv\RT .

S [ HRYE g 0oy

=, Jov v Ry Ra

X

In view of the definition of scalar product (2.10) and of the orthogonality relation (4.3)

the equation above can be rewritten as

<YVP/L/|p>6V N ; (1) ; . /<YVH’(1>8A
R = ZzRvRAkh,, (ky)jy(kx) Z Sy Oupl R

v=0 n=—v

(4.22)
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This, after substituting the dummy variables v/ and p/ with v and p, leads to

\ 23 \ 3
Ry Rp
Assuming that j,(kx) # 0 it is possible to write
iRy RakhS? (ky)j, (kz)  Bv Ry

The spherical harmonics Y;/'(y) constitute a complete set of functions for L?(9A) [CK92,
p.24]. That is, any square integrable function a(y) defined on OA can be represented,
at any point where this function is continuous, by a linear combination of spherical
harmonics. As a consequence it is possible to compute the solution a(y) to (3.19), if this

exists, in the form of
o 14

=3 > = Yoty Yu|“> (4.25)

v=0 pu=—v

In view of this result, and if both sides of equation (4.24) are multiplied by Y (y)/(Ra)

and summing over v, i1, one obtains

Y (y) i
VX;WZ_V D (e P =) (4.26)

This result is identical to (4.19), as expected.

An example of solution for the target field due to a virtual point source is presented in
Section 5.6.1.

4.1.3 The integral operator as a low-pass spatial filter

We have seen that both p(x) and a(y), assuming that they are square integrable func-
tions, can be represented by a generalized Fourier series of the form (2.73), at any point
where they are continuous (otherwise the equality holed as mean square). The Fourier
coefficients are given by the spherical spectrum (2.73) and, if the nullspaces of S and S*
are trivial, it holds that

oly) = SoavE) = oty (427
n v,
P9 = Y = Y L ) (1.28)

These formulae clearly show that the spherical spectra of a(y) and p(x) are equal to the
scalar products (a,|a) and (p,|p), apart from the constants R and Ry and the phase

factor ~,,.
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Equation (3.28) shows that the spherical spectrum of a(y) is related to that of p(x) by

the relation
P RA a _ [z . 2 a
Xbpu = an’yn—RV X = [zk:hl,(kRA)jy(kRv)RA] X (4.29)

The function within the square brackets in the equation above can be interpreted as a
spatial filter, which transforms a(y) into p(x) and provides an alternative representation

of the action of the operator S.

Equation (4.15) shows that the singular values exhibit an exponential decay, governed
by the ratio Ry /Ra. This decay can be interpreted as a spatial low-pass filtering that
the spherical spectrum of a(y) undergoes after the action of the operator S. As a
consequence, p(x) will be in general smoother than a(y), and this is not surprising as
the former is obtained after an integration (which is generally associated with a low-pass
filter). It is clear that the inverse problem is associated with a spatial filter which boosts

the high orders of the spherical spectrum of p(x).

What has been discussed justifies what has been qualitatively discussed in Section 3.5:
the low efficiency modes are associated with rapid spatial variations (here with respect
of angular coordinates) of the pressure profile p(x) and of the source strength a(y).
This leads to the consequence that the reproduction of pressure profiles with very rapid
angular variations is problematic, and can lead to instability of the system. This will be

discussed in more detail in Chapter 5.

4.2 Concentric circles

We consider the two dimensional case of A and V being two concentric circles, with
radius Ry and Ry, respectively (Ry < Rp). This geometrical arrangement is shown in
Figure 4.11. The starting point of the analysis is the following translation (or summation)
theorem [CK92, p.66]:

HY (klx — y) = B (ky)Jo(kx) + 23" HO (ky) Ju(kz) cos (n(¢x — ¢y))  (4.30)

n=1
The two dimensional free field Green function (3.7) can therefore be expressed by

i~ (o —
G(X’Y):Z Z H|(Ti|)(/€y)J|n‘(kx)em(¢”” W y>u (4.31)

n=—oo
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FIGURE 4.11: Geometrical arrangement with concentric circles.

the following orthogonality relations hold
/ eMXeMXAS(x) = 2w Ry (4.32)
ov
/ eV eV dS(y) = 2w RAGuy (4.33)
oA

where dS(x) = Rydg¢, and dS(y) = Radgy.

Equation (4.31) is used to express the kernel of the integrals (3.19), (3.20) and (3.21).

After rearranging the order of integration and summation the following results can be

obtained:
o)) = T S k) i) e I
S = G S R k) S I
St = T S (e )| S (1
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TABLE 4.2: Relation between the index n of the elements of the singular system
{on, an(y), pn(x)} and the number v.

Comparing these results with equations (3.24), (3.26) and (3.27), a singular system
{on,an(y),pn(x)} can be defined by

On = g\/RVRA’Hﬁjll)(kRA)JM(kRv)‘ (4.37)
1 wy

n(y) = o= (4.38)
— v [1%'3

pax) = e (4:39)

Y = exp [z (arg (H‘(;R(kRA)Jh,‘(kRV)) + g)} (4.40)

v = (=)D {";ﬂ (4.41)

It can be easily proven that this singular system satisfies the relations (2.120), (2.121)
and (2.122).

The index v takes into account the double multiplicity of all singular values o,,, n > 1.
The relation (4.41) is shown in Table 4.2. The singular values might need to be re-ordered

with decreasing value.

As in the case of the concentric spheres, the constant v/27 R has been introduce for the
normalization of the singular functions and the complex factor +, is required for the

singular values to be real.

As for the previous geometrical configuration, the singular values depend on the wave
number k and on the two radii, and include a combination of Hankel and Bessel functions
(but in this case not spherical Hankel and Bessel functions). The left and right singular
functions are frequency independent and are closely related to complex exponentials,
apart from a constant normalization factor. The properties of the singular system are
analogous (although not identical) to those of discussed in the case of the concentric

spheres.

If the comparison is made with the discrete SVD, the role of the unitary matrices U and
VH is played this time by the traditional Fourier series (2.64) and by the determination
of the Fourier coefficients (2.65), respectively.

If a solution to the integral equation (3.19) exists, this is given by

00 N
ey

aly) = (ei”f‘|p>av (4.42)
VZ_:OO im2 Ry RAH) (KRA)Jj,, (kRy)

lv|
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as a consequence of equation (3.28). Analogously to (4.19), it has been assumed that
Jy(kRy) #0Vr =0,1,...00.

An alternative way to arrive at the same result is to perform mathematical operations

analogous to those described for the case of concentric spheres.

4.3 Parallel infinite planes

=

FIGURE 4.12: Geometrical arrangement with parallel planes.

Attention is now focused on the special case that occurs when 0A and OV correspond to
two parallel infinite planes, separated by a distance d, as shown by Figure 4.12. In this
case, A and V correspond to two half-spaces, with V' C A. It is assumed that the origin

of the co-ordinate system is on OA.

This geometrical arrangement can be interpreted as a degeneration of the case when A
and V are two hemispheres with an ideally infinite radius (a similar philosophy is used
in the theory of Wave Field Synthesis for the domain of integration of the Kirchhoff-
Helmholtz integral [Sta97]).

This special geometry implies some severe mathematical difficulties related to the integral
operator (3.16), whose definition now includes two unbounded sets. These issues have
been already observed and studied, in relation also to acoustic scattering problems, as
reported for example in [CWHPO06]. In this publication it is argued that two main

difficulties arise: the first is due to the unboundedness of .S, caused by the slow decay at
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infinity of the kernel (3.6) (the 3D free field Green function). This implies that (Sa)(x)
is not well defined for all densities a(y) € L?(OA). The second difficulty is related to
the loss of compactness of S and S*, due to A and OV being unbounded. This implies
that S does not have the useful properties of compact operators described in Section
2.5 and this problem is a severe barrier to establishing the existence of the solution
of the integral equation considered. Furthermore, the singular value decomposition of
compact operators discussed in Section 2.5 should be revisited in view of the spectral
decomposition of linear non-compact operators, which involves a more complex theory
(see for example [Kre78|). One of the relevant consequences of S not being compact is

that its eigenvalues are, in general, not countable.

A thorough discussion of these two issues and the formulation of techniques to overcome
them is the subject of ongoing mathematical research and is far beyond the scope of this

work.

It can be briefly mentioned, without going into the detail, that an elegant way to overcome
the first difficulty described above consists in adding a small imaginary part to the wave
number k, that is k& = (1 + i€)w/c. The imaginary part mimics the physical decay
with distance of any radiating acoustic wave, due to viscous losses occurring during the
propagation of the wave in the medium. This is closely related to the minimum absorption
principle mentioned in [CWHPO06]. As explained by Maury and Bravo [MBO8§|, the factor

ik

etk — e—rew/ceixw/c

determines an exponential decay of the fundamental solution (3.6),

which allows for S being bounded.

Despite the mathematical difficulties mentioned above, the case of two parallel infinite
plane (and lines in the next section) is worth of consideration since it has some interesting
peculiarities that provide further insight into the sound field reconstruction problem.
More specifically, we will see that the kernel of the operator S can be decomposed
into evanescent and propagating waves. The resulting expression of S is believed to
provide a better understanding of the problem of ill-conditioning, and especially of its
physical interpretation. This subject is discussed in Chapter 5. This special case also
serves to emphasize the strong relation between sound field reproduction and Near-
Field Acoustical Holography, especially with the well-established planar holography. This

subject is discussed further in Section 6.4.1.

In order to go around the two issues above, the very strong assumptions are made that
the solution a(y) of the inverse problem S exists and is such that S is bounded. With
this premise, intended to justify a possible lack of mathematical rigor for the sake of a

better understanding of the problem, we begin the analysis.
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4.3.1 Propagating and evanescent plane waves

A propagating plane wave of frequency w = ck and unitary amplitude, traveling in the
direction r, can be described by the expression [Wil99],|WAO1]

Pppaw.(2) = e/ ETHEE) = (K4, e RE (4.43)

where ¢ is an arbitrary phase and k is referred to as the wave vector. It has the magnitude

of k and the direction of the propagating plane wave, and is defined by

k:=kr= [k‘l, k‘g, k‘3] (444)

Given the usual unitary vector n, perpendicular to A and directed as shown in Figure
4.12, it is possible to express the wave vector k as the sum of two orthogonal vectors k
and k,, defined by:

k, = (n-k)n (4.45)
k = k—ky (4.46)

The term ((x) is now defined as the component of k in the direction identified by —n.
This is given by
((k):=-n-k (4.47)

It can be observed that the dependance of ( on k is expressed by the following relation:
((k)=xVE2—kK?, K<k (4.48)

((rk) is positive if the acoustic energy carried by the plane wave flows from the half plane
R3\A into the half plane A, that is if the plane wave is traveling from R3\A to A (this is

the case considered in what follows).

The notation introduced above allows also for the description of evanescent waves [Wil99|
in the half space identified by A. An evanescent plane wave ' decaying in the direction
—n, that is when moving away from the surface A, and traveling in a direction parallel
to OA, can be represented by (4.43), with the only difference that ((k) is a positive
imaginary number (or analogously that the component of r in the direction identified by

—n is a positive imaginary number).

From (4.45) and (4.47), it is obvious that k,, = —((x)n. As the origin of the co-ordinate
system has been assumed to lie on JA, the product (z - n) is always negative if z € A.

Hence, for an evanescent wave, the product i(z-ky) = —i((k)(z- 1) is real and negative.

!Often in the literature [Wil99], the term plane is referred to propagating waves only.
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An evanescent wave can therefore be described by the expression

pe.p.w.(z) _ ei(z-kJrgo) — ei(z-kn+z-n+ap) — e*|C(I€)Z-fl|ei(Z'K/+QD)7 = ]RB (449)

Here ((k) is given here by equation (4.47) modified for the particular case of an evanescent

wave:

C(k)=VE2—r2=iVK2— k2, K>k (4.50)

The value —ivk2 — k? does not have any physical meaning for ((k), as it represents a

wave whose amplitude increases exponentially with distance from 0A [Wil99].

It can be observed that any restriction of a plane wave to the plane A can be expressed
by ei®* x € A, and corresponds to a wave propagating in A if kK < k and ((x) is real
and positive. On the contrary, if kK > k and ((k) is purely imaginary, the exponential
form corresponds to an evanescent wave decaying in A with increasing distance from 9A

. The special case of kK = k defines a plane wave propagating in a direction parallel to
OA.

A better understanding of the notation introduced above is given by the special case
when OA = {z : z3 = 0} and n = [0, 0, —1]. In this case Equations (4.43) and (4.49)
become

pp.p_w_(z) — ei(21k1+Z2k2+23k3+S0)’ = R3 (4.51)

Pepuw.(z) = e Wslseilibitakte) o g3 (4.52)

respectively.

Figure 4.13 and Figure 4.14 represent the acoustic fields due to a propagating plane wave

and to an evanescent plane wave, respectively.

4.3.2 Derivation of 0., a.(y), px(x)

The so called Weyl integral 2 [Wil99, p.35], [MW95, p.120-124] expresses the free field

Green function (3.6) as a superposition of plane waves, both propagating and evanescent:

eiklx—yl i oo oo ethsles—ys|
eyl ilks (o1-yn) +ha(ea—y2)] €0 4.53
4r|x —y|  8n? /_oo /—ooe ks o )

This can be rewritten in the following more generic formulation:

ik|x—y| ; i¢(k)|(x—y)al|
‘ - / e leY)gS(k) (4.54)
RQ

(k)

2See also [CWHPO6] for an elegant derivation of an analogous result in terms of the Funk-Hecke
formulae

Ar|x — y| ~ 82
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FIGURE 4.13: Acoustic field due to a propagating plane wave, with k = k/2.

=

FIGURE 4.14: Acoustic field due to an evanescent plane wave, with k = 1.1k. The
imaginary component of k is not represented.
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With reference to Figure 4.12 it is recalled that x € OV and y € A, and that the origin
of the coordinate system is on dA. It is clear that |(x —y) - n| = d. This leads to

ik|x—y| - il(k)d JikX ,—iky
¢ / e T S (k) (4.55)
R

Am|x —y]| T Jge 2¢(k) 27 27
It is recalled that ((k) is either real and positive if Kk < k, and the acoustic energy is
flowing from y to x, or purely imaginary with positive imaginary part if x > k. The
integrand in (4.55) has a singularity for k = k, which is anyway integrable except for
|x —y| = 0 [MW95] (for which the Green function (3.6) is not defined). 3

The first fraction in the integral above can be expressed as the product of a real, non

negative function o, and of a complex function ~, of unitary absolute value. Thus

jetC(r)d
() = OxVw (4.56)
e Im(¢(x))d
ox = EROE (4.57)
= exp [i (Re(¢(x))d — arg(¢(x)) + 5 )| (4.58)

Inserting equation (4.55) in the definition (3.16) of S and considering the definition (2.10)

of the scalar product we obtain the following expression for the operator S:

ez’h‘,-x <ei"]a>aA

(Sa) (x) = /R o s, x oV (4.59)

It can be observed that the value of o, tends to infinity for kK — k. This is a consequence
of the integrable singularity arising in the Weyl integral and is in turn strictly related
to the fact that S is not well defined for all a(y) € L?(0A), as it has been discussed at
the beginning of this section. As shown in [CWHPO06], if the free field Green function
G(x,y) is integrated over a disk By (R) defined by

By(R) :={x € 9V : (x1 —y1)* + (z2 — y2)® < R*}

and we let the radius R tend to infinity, we have that

27 R
1
y o 248 oy d - rd 4.60
R By(R)‘ Coy)Fdstx) R Jo ¢/0 1672(r2 + d?) e
1 R%+ d?
= lm —In({——— ) =
R—oo 167 d?

where 7 := /(y1 — 21)2 + (y2 — 22)2.

3The author would like to acknowledge Dr. Earl Williams for having stimulated the study of the
singularity arising in the Weyl integral in relation to the unboundedness of the integral operator S.
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However, if as discussed above the wave number is such that & = (1 + i€)w/c and
r > 0,d # 0, we see that

6—2%5W 6—2%67’
0< s r < 2 r, r>0 (4.61)

Therefore, applying a simple comparison test, we can prove that G(x,y) with modified

k is square integrable on By (R):

) 2m 72 2e Vritd?
li = li 4.62
B gy OIS0 = i [ do / o a0
1 R 6—2%61” 1
< lim — —rdr=——-> 4.63
= Ao 87r/0 2 T sra (2&6)2 <00 (4.63)

Some attention should be paid for the case when d = 0. In this case the integral above
diverges, but this is due to the pole-like singularity of the Green function at x = y rather

than to the slow decay of G(x,y) at infinity.

From equation (4.55) it is possible to compute the complex conjugate of the free field

Green function (3.6). This is given by

ik|x—y| * _io—iC(Kk)*d Liky —iKk-X
<e> = / e ¢ 4S(k) (4.64)
R2

4r|x —y| 20(k)*  2m  2m

em,y e—znx
= ds
[ o G aste)

In view of this result the following expression for the adjoint operator S* can be derived:

. _ . ein-y <€in‘p>8V
EDE) = [ oor G s,y <on (4.65)

Combining these results it is possible to apply the following steps:

(S*Sa) (y) (4.66)

B . ety ethx em'-x <6m' |a>6A ,
= /R2 TxVn g [/av 5 </R? TR~ 5 dS(k') | dS(x)| dS(k)

We rearrange the order of integration and use the orthogonality relation (2.86) to give

(57Sa) (y) (4.67)

IRy

N e o (€ |a)on ;o
_ /R oS (RQ(S(R K)o dS(m)) dS (k)
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In view of the property of the Dirac delta function (2.29) and observing that -,y =

1, Vk € R?, we obtain the following expression for the composite operator S*S

(S*Sa) (y) = / a26iﬂ%d5(n) (4.68)

R2 27 27

All the results above can be rewritten in terms of Fourier transforms, such that

(Sa)(x) = [F_l (a,{'y,{(]:a))] (x) (4.69)
(S'p)y) = [F ' (owra(Fp)](y) (4.70)
(8*Sa)(y) = [F ' (oi(Fa)](y) (4.71)
We define now the following orthogonal functions
ax(y) = %em'y, y € 0A (4.72)
Pe(x) = ;—;e"'""", x eV (4.73)

From an analogy with the previous geometrical arrangements considered, these functions
might be regarded as secondary source modes and pressure modes, respectively (although
these functions are not countable). Note that these functions are not orthonormal, since
(prlpk) = (axlax) = 0(k) and their norm is therefore is unbounded (strictly, these

functions do not belong to L?(R?)), but they can be regarded as 0-function normalized.

The results presented above and the orthogonality relations (2.86) lead to the following

relations:

(Sak) (x) = owpu(x), x €IV (4.74)
(S'pe) (y) = owax(y), y€OA (4.75)
(S*Saw) (y) = orax(y), y €A (4.76)

where o, is given by formula (4.57).

It can be observed that the set of functions o, ak(y), px(x) have the same properties
of the singular system described in Section 2.5, apart from a,(y) and pk(x) being 6-
function normalized and orthogonal instead of orthonormal. However, it has been said
that for this special geometrical arrangement the operator S is not compact and is not
well defined for all densities a(y) € L2(R?). As a consequence, the set of functions

Ok, 0k(Y), Pr(X) can not be rigorously defined as a singular system.

One of the main differences is that o, is a function, and not a countable set of numbers
as in the cases discussed above. This is due to the fact that the eigenvalues of S*S, and

hence the singular values of S, are countable when S is compact (see Section 2.5). We
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will not discuss this issue any further, but the reader can consider the relevant analogy
between the Fourier series and the Fourier transform of a function f(x) defined over
D C R. When D is bounded, it is possible to express f(z) by the Fourier series (2.64),
and the Fourier coefficients define a countable set. On the contrary, if D is unbounded,
f(x) can be expressed in the form of the integral (2.88) instead of a series, and the

countable set of Fourier coefficients is substituted by the function (Ff)(k).

4.3.3 Properties of 0,, a.(y), px(X)

We discuss now some of the properties of the functions o, ax(y), px(x). Firstly, it can
be easily observed that the functions a,(y) and p.(x) represent two-dimensional plane

waves defined on JA and on OV, respectively.

Secondly, it can be noticed that o, and ~, assume different forms depending whether

k < kor k>k. In fact

1 - ilC(k
78T 9] o e =W <k (4.77)
L s

Figure 4.15 shows the value of o, and of the phase of ~, as a function of |x|/k and for
different values of d. It can be noticed that o, = 1/2 (—6.0206 dB) for x = 0 and that
oy tends to infinity for k = k. The jump discontinuity of 7, at k = k (from 7/2 to 0)
is due to o4y, changing from a purely imaginary value to a purely real value. As we
will see soon, this jump identifies the passage from the propagating mode region to the

evanescent mode region.

As in the case of the spherical geometry, the expressions (4.59) and (4.69) of the integral
operator S can be extended to the expression for the single layer potential in all R? by
simply substituting d with |(z-n)| into the definitions of o, 7., equations (4.56)-(4.58),
and x € 9V with z € R3 in equations (4.59) and (4.73).

The argument of the exponential e¢(®) highlights the difference between propagating and
evanescent modes a, pr. In fact when x > k the corresponding function (Sa.)(z), z € A
represents a propagating wave in A. The factor ~,, included in the definition of py(x),
represents the change in phase that the plane wave undergoes in the propagation from
the surface A to the surface dV. This depends on the distance d between the two planes
and on the direction of propagation of the plane wave (Sax)(z), z € A, identified by the
vector I'y. The function ((k) can be directly related to the angle between the normal
vectors nn and r,. Considering the expressions (4.45), (4.46), (4.47) and (4.50) it holds
that
L G(k)

R =, Kk <k (4.79)
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FIGURE 4.15: Values of o, (dB scale) and phase of v, as a function of |k|/k.

This scalar product obviously corresponds to the cosine of the angle between the two
vectors considered. The case of kK = 0 corresponds to (Sak)(z), z € A being a plane
wave propagating in the direction —n, while the limiting case of kK = k defines a wave

propagating in a direction parallel to JA.

On the contrary, when k > k, then (Sax)(z), z € A represents an evanescent wave,

decaying exponentially in the direction —i. The complex exponential e%(*)4

represents
now a positive real number smaller than unity, which is proportional to the decrease in

amplitude of the evanescent wave on the plane OV with respect to its amplitude on JA.

Figures 4.16-4.20 show the horizontal cross-section of the fields (Sa,)(z) for different
values of k. The comparison of these figures with figures 4.13 and 4.14 can help make
the analogy with propagating and evanescent waves more clear. It can be observed that
for |k| < k (figures 4.16 to 4.18) the amplitude of the field increases with increasing ||,
as a consequence of the factor 1/{(x). This phenomenon is reversed for || > k (figures
4.19 and 4.20) but it is not evident, for the amplitude of the field is dominated by the

exponential energy decay.
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FIGURE 4.16: Horizontal cross-section of the acoustic field due to (Sax)(z), with
k=10, 0].

FIGURE 4.17: Horizontal cross-section of the acoustic field due to (Say)(z), with
K = [0.5k, 0].
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FIGURE 4.18: Horizontal cross-section of the acoustic field due to (Sax)(z), with
# = [0.9, 0].

FIGURE 4.19: Horizontal cross-section of the acoustic field due to (Say)(z), with
K = [1.05k, 0.
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FIGURE 4.20: Horizontal cross-section of the acoustic field due to (Say)(z), with
K = [L.5k, 0].

In Section 2.5 the concept of degenerate eigenvalues has been mentioned, in the case when
S is compact. A singular value is said to be degenerate when more than one singular
function is associated with it, and these singular functions span a space of functions with
dimension equal to the geometrical multiplicity of that eigenvalue. In the special case
described here, a single pair of a,./(y) and p,s(x) is associated with a given vector &/,
but an infinite number of modes are associated with the same value of o,/. Figure 4.21
shows a colored plot of values of o, in a so-called k-space diagram |Wil99|. The latter
is constituted by a plane representing all the values that k can assume. All functions
ax(y) and pe(x) are identified by one point in this plane. In the figure, the five blue
crosses identify the five modes illustrated by figures 4.16-4.20. It can be understood
that the points representing all functions a,/(y) and p./(x) associated with the same
value of o, define a circle with radius «’. The circle with radius & (the dashed line
in the figure) is the so called radiation circle. In fact, all functions corresponding to
propagating modes in A are represented on the k-space diagram by points lying within
this circle. All points in its exterior are associated with evanescent modes. Many of
these considerations are well known in other branches of physics and engineering such
as optics and Near-Field Acoustical Holography (see, for example, [MWO95] and [Wil99)]).
The arguments presented here show the meaningful link of the problem of sound field

reproduction to these other disciplines.

It can be observed that, both for the case of propagating and evanescent modes, the
magnitude of (Sak)(x) reduces by a factor 1/(2|((x)|). This factor depends only on
and is not related to the distance between the two planes A and V. As will be shown
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FIGURE 4.21: Representation of the value of o, in the k-space, with d = 0.1k. The
dashed line represents the radiation circle, while the five blue crosses identify the modes
illustrated in the figures 4.16-4.20.

in Section 6.4, this is related to the fact that the determination of a(y) is implicitly
connected to an operation of partial derivation of the field in the direction —n, which is

in turn related to a multiplication by a factor i((k).

Decay of o, In light of what has been discussed, if d # 0 the asymptotic behavior

4 as illustrated by

of the function o, for k — oo is dominated by the factor e~1¢(*)
Figure 4.15. If an analogy is drawn with the cases of the other geometrical arrangements
described above, this behavior of o, could be interpreted as an exponential decay of the
efficiency of the source modes a,(y). It is recalled, however, that S is not compact and
consequently o, is not a countable set. Henceforth, the definition of a,(y) and pk(x) as
modes is probably not rigorous. As for the case of the concentric spheres, the decay of
0 becomes steeper as d becomes larger, which represents the distance between JA and
0V. For what has been said, the inverse problem addressed can be referred to as being
severely ill-posed. In the limiting case of d = 0, it can be noticed that the asymptotic
behavior of o, is dominated by the factor 1/(2|((k)|, which determines a linear decay.

This implies that the inverse problem in that case is mildly ill-posed.

4.3.4 Solution

We seek now a solution of the integral equation (3.19). The latter can be expressed in
the form (4.59), substituting the left hand side (Sa)(x) with the target pressure profile
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p(x). We multiply both sides of the equation by e~ */(2r) and integrate over dV.

After having rearranged the order of integration of the right hand side we obtain:

efin’-x B ein-x e*’ilil-x <€iK"a>3A
/8 9l s = /R o ( / S dS(x)) 00 45(s) (4.80)

We apply the orthogonality property (2.86) and the property of the Dirac delta function
(2.26), and in view of the definition of the scalar product (2.10) we obtain

(e™|p)av (e™|a)an

= 4.81
o OkVk o ( )

where the dummy variable " has been renamed in terms of k. This equation corresponds
to a mode matching method, where the secondary source modes and the acoustic pressure

modes are two-dimensional plane waves on JA and on 9V, respectively.

Assuming that o, # 0, it is possible to divide both sides by o,7,, multiply by e /(27)
and integrate over R?. This leads to

ety (pik ethy iK'y’
[ B s | | GGy iseiste) (482
R2 Ok 271' R2

A27T

The scalar product (¢"%|a)ga has been re-expanded and e’ has been brought inside the
second integral. We now rearrange the order of integration on the right hand side, apply
the orthogonality relation (2.87) and the property of the Dirac delta function (2.26).
This operation allows the two integrals on the right hand side to vanish. Finally, we

obtain the following expression for the solution a(y), which is given by:

1 ein-y Rein —iC(K ZRY i
a(y) _ L <7 |p>8V _ / C( d) < n|p> dS(K,) (4.83)
R2 O 2T 27 r2 ei(®)d 272

It should be emphasized that no proof has been derived of the existence of the solution,
and it might be the case that the expression above does not give a bounded function
(this is the case for example of a focused source, introduced in Chapter 6). However, if

a bounded solution exists, this can be computed with the expression above.

Considering the definitions of ax(y) and pk(x), the result above can be rewritten as

Ok

a(y) = /Rz L) (Prlp)ovdS (k) (4.84)

This expression is analogous to equation (3.28), which gives the solution of the integral
equation considered in terms of a singular system of the operator S. The difference is,

again, that the series in (3.28) is substituted here by an integral.
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Finally, the same result can be expressed by means of direct and inverse Fourier trans-

forms, namely

ly) =5 |2 ) (485)

Ok

4.4 Infinite parallel lines

FIGURE 4.22: Geometrical arrangement with parallel lines.

The two-dimensional case is now considered in which A and dV are two infinite lines
with distance d, as illustrated by Figure 4.22. This is analogous to the previous case of
two parallel planes, with the difference that the kernel of S is now the two dimensional
Green function (3.7).

As in the previous case, A and V are unbounded sets. This implies that the S is not
compact, with all of the same implications discussed above. The problem of S being
unbounded holds here too, due to the slow decay of the kernel of S. For the sake of
completeness, it can be mentioned that this problem is less severe than for the previous
three-dimensional case, as discussed in [CWHPO06]. However, we will not discuss these

problems any further here.

We start as before with the expansion of the free field Green function in terms of plane

waves. In order to keep the notation simple, we assume that

ON = {yeR>:yy=0, y3 =0} (4.86)
OV = {xeR¥:29=0, 23 =d} (4.87)
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The two-dimensional free field Green function (3.7) corresponds to an infinite line source.
This can be expressed as an infinite distribution of point sources arranged on a straight
line, perpendicular to the plane where OA and 9V lie. This is expressed mathematically
by the following integral [GR65, p.915 equation 8.421.11]

O () /°° RLNEETS .
L RN R
470 —oo47T\/$2+y2 Y

This result can be combined with the Weyl integral (4.53) with x5 = 0 in order to obtain

) 1 o] o8] e8] iks|xs—ys|
(4 (1) ? —ik i[lﬁ ($1—y1)] €

2Y2 _ 4.
*4H0 (klx—yl|) = 32 /_ /_ </_ e dy2> e " dkidks (4.89)

(4.88)

where the order of integration has been rearranged. The integral within brackets equals
270 (ko) |Wil99]. Integrating with respect to ko and applying the property (2.25) of the
Dirac delta function leads to the plane wave expansion of the two-dimensional free field

Green function. This is given by

7

. oo ik3|zz—ys|
4Hél)(k\x _y]) = z/ ezkl(rryl)eidkl (4.90)

47 ]{}3

In order to use a notation consistent with that used in the previous section, we define

ko= ki (4.91)
((k) = Vk%— k2 (4.92)

and we rewrite equation (4.90) in the following form:

; ir(x1—y1) ;,iC(k)d
e _ _ e e
1 Ho (k[x —yl) /R o 2C(n) dr (4.93)

An alternative derivation of this result can be obtained by performing the Fourier trans-
form of Hy(k|x —y|) and considering equations 6.677.1 and 6.677.2 in [GR65, p.722|. It
should also be understood that the Fourier transform of Hy(k|x — y|) is not defined for
k=k.

We define o, and 7, and the orthogonal functions a.(y) and p,(x) as follows:

o~ Im(¢(R))d

Ox = RO (4.94)
= exp i (Re(¢(n)d — ang(C(n) + 7 )| (4.95)

1 1KY1
ax(y) = Ee (4.96)
pelr) = L) iy (4.97)

V2r
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The definition o, and -, above is identical to the case of parallel planes, equations (4.57)
and (4.58), while the definition of a,(y) and p,(x) is analogous to equations (4.72) and
(4.73), respectively. The properties of these functions are therefore analogous to those

described in Section 4.3.

Equation (4.93) can be substituted into the integral equation (3.19) and, performing

operations identical to those described above, we obtain the following results:

(Sa) (x) = /Ramp,i(x)m,ﬁ]a)a/\dn, x €V (4.98)
(D) = [ o) palplovis, v <on (1.99)
(S*Sa) (y) = /Ikazaﬁ(y)<an\a)aAdm, y € 0A (4.100)

As for the case of two parallel planes, these results can be expressed by means of direct
and inverse Fourier transforms (see (4.69),(4.70) and (4.71)).

If a solution a(y) to the integral equation (3.19) exists, this is given by

B —i2( (k) eV ik
a(y) —/RW o (" p)avdr (4.101)

As for the case of the parallel planes, this result can be expressed also by the following

formulae:
aly) = / M(p,.;!p>avdm (4.102)
R OkVk
_ _1 [ (Fp)
aly) = F LWJ (¥) (4.103)

These results are almost identical to equations (4.83),(4.84) and (4.85) and were obtained
with the same procedure. The main difference in that the integrals on the right hand
side of (4.101) and (4.102) are performed over R instead of R2. Consequently, the Fourier

transform in (4.103) is one dimensional.

An example of solution for the target field due to a virtual point source is presented in
Section 5.6.2.



Chapter 5

The ill-posedness of the inverse

problem

In the previous chapters expressions have been derived for the solution of the integral
equation (3.19), under the relevant assumption that this solution exists and is unique.
But this assumption is not valid for a general case. In Section 3.4 it was briefly mentioned
that equation (3.19) is an integral equation of the first kind. The so called Fredholm
alternative, described in [Kre78| and [CK83] provides powerful mathematical tools to
prove the solvability of integral equations of the second kind and these are of great
relevance to the solution of many inverse problems. However, this theoretical approach
does not apply to integral equations of the first kind, such as that arising in the sound
field reproduction problem addressed here. The inverse problem represented by equation

(3.19) is actually ill-posed, and is therefore generally not solvable.

The reader might find it strange that some effort has been dedicated to deriving expres-
sions for a solution, whose existence was taken for granted, when we now state that this
solution does in general not exist. The subject of this chapter is to provide a detailed
mathematical analysis of the solvability of the integral equation (3.19). In view of this
analysis we will be able to define those assumption regarding the target sound field and
the geometrical arrangement for which an exact solution exists, and if this solution is
or is not unique. We will see that a large category of sound fields of practical interest
allow for the computation of an exact solution. In this sense, things are not as bad as

the nature of the inverse problem addressed would suggest on first examination.

It will be shown that even when the solution exists it may not be stable and the repro-
duced field can be severely affected by the presence of small errors. If this is the case, or
if the inverse problem is not solvable, it is always possible to compute an approximate
solution, which can be effective for practical purposes. This is the subject of the next

chapter.

92
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The concept of ill-posedness of a problem is discussed in detail in what follows. The
mathematical concept of ill-posedness is presented, and then the causes of this prob-
lem are analyzed. The solvability of the inverse problem is studied in relation to the
characteristics of the target sound field considered. The results obtained in the previous

chapters are used to clarify these arguments with specific examples.

The arguments presented in this chapter lead to the important consideration that while
the existence of the solution depends on the secondary source layer 0A and on the
target field, the uniqueness of the problem depends on the control boundary and on the

operating frequency of the target field.

5.1 The definition of an ill-posed problem

The mathematical analysis of an ill-posed problem presented here follows the definition
introduced by Hadamard [Had23|, [CK92]. An elegant link between this theory and its
meaning in relation to engineering applications is described by Deschamp and Cabayan
[DCT2].

Given an operator S from a normed space A into a normed space V¥, (such as for example
L?(0A) and L%(dV) introduced above), an equation of the form Sa = p is said to be
well-posed or properly posed if S is bijective! and if its inverse S~! is continuous. This
means that, for any function p € ¥ one and only one function a € A exists, such that
Sa = p, and this solution depends continuously on the data p. If one of these conditions

does not hold, then the problem Sa = p is said to be ill-posed or improperly posed.

Three different kind of ill-posedness are possible, corresponding to the cases where, for

at least one function p € U,

1. no function a € A exist, such that Sa = p (nonexistence);
2. more than one function a € A exists, such that Sa = p (nonuniqueness);

3. the solution a € A does not depend continuously on the data p (instability).

In the framework of sound field reproduction, the ill-posedness of the problem involved
can be interpreted as follows. We firstly choose A to be the set of square integrable
functions on 0A. This choice is maintained throughout this work. We define then a
geometrical arrangement and a given set W of target pressure profiles defined on the
control boundary V. We then pose the following question: Is it possible, for any
pressure profile p(x) € W, to calculate the strength of the secondary sources a(y) € A,
such that the operator (Sa)(x) allows the reproduction of the target pressure profile? If

1 An operator S : A — W is bijective if every element p of U is associated with one and only one
element a of A, such that Sa = p.
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the answer to this question is negative, then we are in the presence of the first kind of

ill-posedness.

Furthermore, if a(y) exists, can it be defined uniquely or does more than one source
strength exist, such that Sa = p on V7 If the answer is the latter, then we are faced
with the second kind of ill-posedness. It must be clearly emphasized that even if we
have multiple possible choices for the source strength a, such that Sa gives an exact
reproduction of the pressure profile, that is of the sound field on the control boundary
0V, this does not imply that all these possible choices of source strength provide an
accurate reproduction of the target field in the interior of the control region V (and
possibly in the rest of the reproduction region A). On the contrary, there is in general
only one exact choice of a(y), which allows for an accurate reproduction of the field in
all V. As shown below, this fact is directly related to the non-uniqueness of the Dirichlet

problem, discussed in Section 3.3.

Finally, it is also possible that even if an exact solution a(y) exists, this might lead to a
system which is not stable. This means that the presence of very small errors, such as a
small amount of noise in the data describing the target pressure profile, might result in a
disastrous degradation of the reproduced sound field. In this case, a(y) can be classified
as an unstable solution. This is the third kind of ill-posedness, which is sometimes also

known in numerical analysis as the problem of ill-conditioning.

In general, for a given operator S and sets A and U, the three kind off ill-posedness co-
exist. For example, if the attempt is made to solve the ill-posed inverse problem discussed
above for all possible functions p(x) € L?(9V), we should expect that for some target
functions p(x) the problem has no solution, and for some other functions the solution is

either non-unique, unstable or both.

As explained in [CK92|, the ill-posedness of a problem does not depend only on the
operator involved, but also on the spaces A and ¥.? This suggests that, if a problem is
ill-posed for a given data space W, it might be possible to restore stability by limiting
the data space to a subset W/ C W. It could also be possible, in principle, to define for
which subset ¥ C L?(9V) the problem is solvable, and for which subsets the solution is

non-unique or unstable.

It is also of considerable relevance, especially for practical purposes, to identify those
physical parameters of the given problem which determine its ill-posedness. For example,
it is important to understand if a way around the problem of ill-posedness could be found
by modifying the shape of the control region or of the control volume or both. Later in
this chapter, we will assume that the target sound field is due to a monopole-like source,
and we will study how the location of this point source can affect the solvability of the

problem.

2The ill-posedness of S depends also on the norms defined on the spaces A, and ¥, here chosen to be
the L? norm (2.11).
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In what follows, the three type of ill-posedness are studied separately, and the causes by

which they are determined are analyzed.

5.2 Picard first condition and the denseness of the range of

S

The first type of ill-posedness relates to the existence of the solution of the integral

equation (3.19), which is repeated here:
(Sa)(x) = p(x), x€dV

One can expect that a condition for the solution a(y) to exists is that the function p(x)
is in the range of S (see definition (2.22)). In other words, one can expect that a solution
exists if the target profile p(x) belongs to the set of functions obtained by letting S act
on all functions a(y) € L?(9A).

This intuitive concept is expressed more rigorously by the Picard theorem (2.1). This

states that a solution a(y) exists if and only if

plx) € N(5°) (1)
00 2
Z:l [(pnlp)I” <p7;’§>‘ < 00 (5.2)

The first of the two conditions above requires the function p(x) to be in the closure of
the range of S. In fact, the result expressed by equation (2.125) states that S(L?(9A)) =
N (S*)*, that is the closure of the range of S corresponds to the orthogonal complement

to the nullspace of S*.

It is useful to underline that conditions (5.1) requires that p(x) is in the closure of the
range of S, and not strictly in its range. Hence, the first Picard condition alone does not
guarantee the solvability of the integral equation. We will come back to this important

point later in this chapter.

Recalling the definition (2.115) of the singular functions p,(x), we repeat here equation
(3.23)

p(x) =D pu(x)(palp)ov + (Pn(s+)p) (%)
n=1

which implies that the target pressure profile p(x) can be expressed as a series of sin-
gular functions plus a function belonging to the nullspace of S*. This concept can be

reformulated as follows

Uy Cspan{p,} & N(S*) = S(L2(0V)) & N(S¥) (5.3)
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It can be noticed that the two expressions above are consistent with condition (5.1). The
implication of (5.3) is that if p(x) has a non-zero orthogonal projection on the nullspace
of §*, then this target pressure profile can not be reproduced by the operator S. More
specifically, the component of the target pressure profile which belongs to the nullspace

of S* can not be generated by S.

An intuitive explanation of the nullspace of S*, can be provided following the figurative
interpretation of S* given in Section 3.5.1. If a continuous distribution of monopole-
like sources with strength p(x) is arranged on 9V, and S*p is the time reversed® field

generated by these sources, then N(S) is the set of the functions py(g~)(x) such that
(S*pn(s)(y) =0, y € OA.

We will study now under what circumstances the pressure profiles p(x) € Wy satisfy
the first Picard condition (5.1). The reader familiar with radiation problems might have
already understood that if S*py(g+) vanishes on JA, then the corresponding potential
Jov G(y, %) pr(s+)(x)dS(x) equals zero on all R™\V, m = 2,3 (the exterior of V),
including the boundary dV. As shown in Appendix B, this is derived from the uniqueness
of the exterior Dirichlet problem. However, this fact does not imply that the field is zero
also in the interior of V. This arises from the non-uniqueness of the interior Dirichlet
problem, and suggests that there might be a relation between the nullspace of S* (and
hence the range of S) and the solutions of the Dirichlet problem (3.18) with homogeneous
boundary conditions. The latter defines a field equal to zero on AV, but not zero in V.

This is formally proven in what follows.

Let Dy be the linear space defined by *
Dy = {Vau(x)|gy : V:u(z) + K*u(z) =0 z€V, ux)=0 x€dV} (5.4)

This means that Dy contains the normal derivative of any function u(z) that is a solution

of the homogeneous interior Dirichlet problem in V' and that is restricted to 9V

Theorem 5.1. The nullspace of the operator S* coincides with the set Dy, that is

N(S*) = Dy (5.5)

The proof of this theorem is given in Appendix B and is based on arguments inspired
by the discussion on the solvability of the Dirichlet and Neumann problems presented in
[CK83].

The theorem above, equation (2.125) and the definition of orthogonal projection (2.14)

lead to the following result

3The concept of time reversal is not relevant for the definition of N(S*) as (S*pyn(s«)(y) =
(S"PN(s+))(¥)" = 0 and both py(s+)(x) and pn(s+)(x)” belong to N(S*)

4The assumption is made that the normal derivative of Vau exists on AV, in the sense described by
[CK83, p.68|
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Corollary 5.2. A function p(x) € L?(0V) is in the closure of the range of S if and only
of
(Vnulp)ovy =0 (5.6)

for all functions Vyu(x) € Dy, where Dy is defined by (5.4).

This important result states that any function p(x), which has zero orthogonal projection
on the set Dy, is in the closure of the range of S. When k # k,, where k, is one of
the Dirichlet eigenvalues introduced in Section 3.3, the homogeneous interior Dirichlet
problem is solved only by the function p(z) = 0, Vz € V. As a consequence, Dy contains
only the function identically equal to zero and the condition (5.6) is trivially satisfied for

all p(x) € ¥y . This leads to the following result:

Corollary 5.3. If the wave number k is not one of the Dirichlet eigenvalues for V', then

any function p(x) € Wy is in the closure of the range of S.

The existence of the solution also for the case of k = k,, is a direct consequence of the

following theorem:

Theorem 5.4. Any function p(x) € Uy is in the closure of the range of S.

The proof is given in Appendix B. This important result indicates that all the target
pressure profiles of interest for the sound field reproduction problem addressed here have

zero projection on the nullspace of S*, including the case when k = k.

What has been discussed in this section means that any pressure profile p(x) of interest
for the sound field reproduction problem considered here is in the closure of the range of

S. Consequently, equations (3.23) and (5.3) can be respectively reformulated as follows:

p(x) = > pa(x)(palp)ov (5.7)
n=1
Uy C span{p,} = S(L?(0A)) (5.8)

Equation (5.8) indicates that the range of S is dense in Wy (see definition (2.16) of a
dense set). In other words, given any target pressure profile p(x) € ¥y and any € > 0, a

source strength a.(y) exists such that
[Sac —pllov <€ (5.9)

This means that any pressure profile in ¥y, can be reproduced by the secondary source

layer with arbitrary accuracy.
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5.3 Picard second condition and the nonexistence of the

solution

It can be noticed that the existence of a solution of the inverse problem Sa = p, p € ¥y

implies that the inequality (5.9) is substituted by
ISa —pllav =0 (5.10)

If this is the case, the statement that S(L?(9A)) is dense in Wy is substituted by the
stronger proposition ¥y C S(L?(OA)). In other words, all elements of Wy are in the

range of the operator S.

Two cases can be now analyzed: the case when the target pressure profile belongs to
the range of S, and the case when p(x) does not belong to S(L?(9A)) but belongs to
its closure. In the first case, an exact solution a(y) of the inverse problem (3.19) exists,

while this is not true for the second case.

As described above, if the two Picard conditions (5.1) and (5.2) are satisfied, then the
solution a(y) exists. It has been shown that the first Picard condition (5.1) holds if
p is in the closure of the range of S and is always satisfied by any pressure profile of
interest. The addition of the second condition (5.2) corresponds to the requirement of
p(x) being in the range of S, and not simply in its closure. In order to provide a more
intuitive explanation of this concept, we proceed as follows. Equations (5.7) and (5.8)
denote that any pressure profile p(x) € WUy can be expressed as a linear superposition of
sound pressure modes p,(x). As we have seen, this is a consequence of p(x) being in the
closure of the range of S. The indication of how much a given pressure mode contributes
to the target pressure profile is given by the scalar product (p,|p)gy. In Section 3.5 it
is explained that a given pressure mode is related to one and only one secondary source

mode a,(y) and to a modal efficiency o, by the relation

<pn|p>8\/ = o-n<an’a>8A, n=1,2, ..N

It is clear that, given the n-th Fourier coefficient (p,|p) of the target pressure profile, the

required energy of the corresponding secondary source mode a,(y) is given by

anay? = [PelP)® (5.11)

2
On

From this formula, it is obvious that this modal energy is larger the smaller is the modal
2

efficiency o;. In Section 2.5 it is reported that the eigenvalues of S*S, and hence the
singular values o, of .S, accumulate at zero. As an example, it is possible to consider the
high order approximation of the singular values in the spherical geometrical arrangement
expressed by equation (4.15). It is clear that the singular values decay exponentially (if

RA > Ry) and accumulate at zero. The decay of the singular values implies that the
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high order modes are characterized by decreasing efficiency. Consequently, the larger is
the contribution of high order pressure modes to the target pressure profile, the larger
is the energy of the signal driving the secondary sources for reconstructing the target
pressure profile. The total energy generated by the secondary sources is given by ||a||?.
The latter, in view of the orthogonality of the source modes and of equation (5.11), is

given by
- [(pnlp)?
2 . n
= lim g 5.12

The series above must converge in order for a bounded solution a(y) to exists. It can be
observed that the absolute value of the Fourier coefficients (p,|p) should decay to zero
much more rapidly than the singular values o, in order for the total source energy to be
finite. This condition is actually represented by the second Picard condition (5.2). For

" on— o0, a€RT,

example, if the singular values of S exhibit the asymptotic decay o~
then the Fourier coefficients (p,|p) should exhibit a steeper asymptotic decay 5", with

B > a, in order for the geometric series Y (a?/3?)" to converge.

If the target pressure profile p(x) € ¥y does not satisfy the second Picard condition
(5.2), but satisfies the first condition (5.1) discussed in the previous section, then the
given pressure profile does not belong the range of S (just to its closure), and an exact
solution to the inverse problem (3.19) does not exist. This case corresponds to the first

kind of ill-posedness.

A topological analysis of the latter case shows that if p is not in the range of S but is in
its closure, then p is a limit point for S(L?(OA)) (the converse implication is not true).
This means that, for any € > 0, there is at least one point p’ € S(L?(9A)) such that
llp—1'|| < e. This is analogous to the concept of denseness discussed above, and implies
that even if the desired pressure profile can not be generated by the single layer potential
S, it is possible to generate a profile which is arbitrarily close to it (in the sense of L?

distance).

In order to make this concept more clear, an intuitive example is provided: assume that
the target profile p is the one-dimensional Dirac function (2.24), and that the operator
S is a low-pass filter, which attenuates high frequencies with constant roll-off. We want
to define the signal a which, after the low-pass filtering due to S, corresponds to a Dirac
delta function. It is clear that the latter has a spectrum, that exhibits the same energy
for all frequencies. On the other side, the operator S is responsible of the attenuation of
high frequencies. Therefore, in order to compensate for this attenuation, the function a
should have an ideally infinite amount of energy at high frequencies. This is equivalent
to the fact that the inverse filter of the low-pass filter S, that is the inverse operator
S~1, should cause an infinite high frequency boost. For this reason, it is clear that no
bounded function a exists, such that Sa = p. It is however possible to compute a function
a with finite amount of energy at high frequencies, which generates after the low-pass

filtering S a reasonable approximation of the Dirac delta function. This is equivalent to
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a regularization scheme, discussed in the next chapter. It can be seen that the larger the

high frequencies content of a, the better the approximation of p.

This conceptual analysis can be applied, with the required modifications, to the sound
field reproduction addressed here. In fact, in view of equation (2.120), we see that the
decay of the singular values of the single layer potential acts as a low-pass filter for
the generalized Fourier series representing the density a. In other words, S generates
a function which is smoother than the potential a. The second Picard condition (5.2)
actually requires that the Fourier coefficients representing p exhibit a steeper decay than
the decay of the singular values o . If this was not the case, an infinite amount of energy
would be required for the higher orders of the Fourier series representation of a in order
to generate p. In Section 6.2 we will see that, even when an exact solution does not
exist, it is possible to determine an approximate solution, which allows to some extent

an accurate reproduction of the target field.

5.4 Ill-conditioning

We move now to the case when the target pressure profile belongs to the range of S
(both Picard conditions are satisfied) and therefore an exact solution a(y) to the inverse
problem considered exists . In Section 3.5 it has been shown that the solution is of the

form given by equation (3.28), which is again reported here:

On

a(y) = 3 an(y)— (pulp)ov
n=1

In the previous section, it has been argued that the decay of the singular values of S
is responsible for very large values of ||a||, which might lead to the nonexistence of the
solution for some pressure profiles. It is shown here that this behavior of the singular
values is responsible also for the third kind of ill-posedness. In order to do that, we first

generate a perturbed version of the pressure profile defined by
p(x) = p(x) + dp(x) (5.13)

where the perturbation dp(x) is a function representing, for example, small errors in the
data describing the target pressure profile. For simplicity, we assume that the pertur-
bation can be described by one pressure mode only, that is dp(x) = [|dp||[pn(x). We
also assume that the perturbation is small in respect to the pressure profile, that is
[|0p|] < ||p||. Since the problem is linear, the solution with perturbed data is given by
i(y) = a(y) + 1220, ) (5.14)

On
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From this expression it can be deduced that if the mode p,(x) is a high order mode,
associated with a very small singular value o,, < ||dpl||, then the effect of the perturba-
tion is significantly amplified. This might lead to a very large ||a||, corresponding to an
unreasonably large amount of energy generated by the secondary sources. This error am-
plification corresponds to the third kind of ill-posedness, also known as ill-conditioning.
In mathematical terms, it is said that the solution a(y) does not depend continuously on
the data. In fact, as we have seen, a very small variation dp of the data, which has a non

zero orthogonal projection onto high order modes, might lead to a meaningless solution.

The discussion above suggests also that, for engineering purposes, the line defining the
existence of the solution is not so well defined, or equivalently that the problems of
nonexistence and ill-conditioning are closely related. The singular functions p,(x) and
an(y) associated with very small singular values could be considered, in practical terms,
as belonging to the nullspace of S* and 5, respectively. In mathematical terms, given a

small € > 0 and recalling that ||a,|| = [|pn|| = 1, we see (with some lack of rigor) that
€20~ 0— €2 |lonan(y)l] = [I(S"pn) (¥)I] = 0 — pn € N7(5) (5.15)

This implies that the pressure mode p,(x) can not be reproduced and an exact solution
for the inverse problem addressed does not exist if the pressure profile has a non-zero

orthogonal projection on that mode.

In numerical calculations, the parameter e in the expression above is imposed by the
numerical resolution limit, while if the data describing the pressure profile are acquired
with measurement, € is given by the measurement error and noise and by the dynamic
range of the system, and can be quite large (in comparison with the largest singular
value o1) if the measurement system is not adequate. The measurements are the most
critical and delicate link in the chain, as far as the ill-conditioning problem is concerned.
Measurement noise from different microphones is generally uncorrelated, and the function
dp(x) describing this noise potentially has a large orthogonal projection on high orders

pn(x), thus leading to large error amplification.

On the reproduction side (that is to say if no error is made in the determination of (p,|p))
the effect of a non-robust solution might arise, for example, from inaccurate positioning
of the secondary sources or variation of the speed of sound. It can be observed that this
effect is largely dependent on the energy distribution of the Fourier coefficients (p,|p)av
of the pressure profile, and therefore on the sound field to be reproduced. If most of
the energy of the pressure profile p(x) is concentrated in the low orders, the solution
tends to be well-behaved. On the other hand, if much energy is contained in the high
order coefficients, the norm of a(y) becomes large and relevant destructive interference
phenomena occurs between the pressure fields generated by the secondary sources. This

obviously amplifies the effects caused by the presence of errors and the solution a(y)
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tends to instability. If too much energy is contained in the high orders, then the second

Picard condition (5.2) is not satisfied and the solution does not exist.

5.5 Uniqueness of the solution and Dirichlet eigenvalues

In the previous sections the study of the existence of the solution of the inverse problem
(3.19) has been addressed, but no discussion has been presented on whether the solution
is unique or more than one solution exists. It is shown in this section that the solution of
the inverse problem, assuming it exists, is unique if the wave number k is not one of the
Dirichlet eigenvalues k. On the contrary, if £ = k,,, the solution of the integral equation

is not unique. This subject completes the study of the integral equation (3.19).

The proof of the uniqueness of the solution of (3.19) is equivalent to the proof of the
injectivity of S, that is for any two functions a(y),a’(y) € L*(0A) with |[a—a'|| = 0 (they
are equal in L? sense), we have that Sa # Sa’ [Kre78, p.614]. This is in turn equivalent to
the proof that the nullspace of S is trivial, that is (Sa)(x) = 0 — a(y) = 0. This second
equivalence can be simply justified as follows: since S is a linear operator, if its nullspace
is non-trivial, that is to say if the non-trivial function ag(y) € L?(OA) exists such that
(Sap)(x) = 0, then for any function a(y) € L?(0A) it holds that Sa = S(a + ao), hence
S is not injective. Similarly, if S is not injective then two functions a’,a € L2(9A), ||la —
a'|| # 0 exist such that (Sa)(x) = (Sa’)(x). Consequently, (S(a — a’))(x) = 0, which

implies that the non-trivial function (a — a’)(y) belongs to the nullspace of S.

Theorem 5.5. Given p(x) € Uy, where ¥y is defined by (3.3), if the wave number k is
not one of the Dirichlet eigenvalues for V', then the solution a(y) of the inverse problem

Sa = p is unique.

The proof is given again in Appendix B.

The theorem above also implies that if k£ is one of the Dirichlet eigenvalues for V', then
the solution a(y) is in general not unique. In fact, given the solution (3.28) in terms of
a singular system of S, any solution of the form a(y) + ao(y), where ag € N(5), is also

a solution. This case corresponds to the second type of ill-posedness.

Recalling what has been discussed in Section 3.3, if k = k,, the Dirichlet problem (3.18)
is not uniquely solvable and the knowledge of the pressure profile p(x), x € dV alone
is not enough to determine the field in the interior of V. This suggests that even if the
solution of the integral equation (3.19) is not unique, only one of these solutions is such
that (Sa)(z) = p(z), Vz € V. In other words, even if the integral equation has an infinite
number of exact solutions, only one of these solutions allows for the exact reproduction of
the target field in the interior (and possibly in the exterior) of the control region. In the

next chapter some techniques are presented for overcoming this nonuniqueness problem.
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Assuming that this concept could be extended also to the case when OV is unbounded,
as in the cases described in sections 4.3 and 4.4, it can be deduced that the problem of
nonuniqueness does not arise as the homogeneous Dirichlet problem has only the trivial

solution (intuitively, an open space does not have acoustic resonance frequencies).

5.5.1 Dirichlet eigenvalues of A

It is interesting to note that the Dirichlet (and Neumann) eigenvalues k, for the repro-
duction region A do not play any role with respect to the solvability and uniqueness
of this inverse problem. It is useful however to notice that the reproduced sound field
has the following interesting peculiarity when the wave number is one of the Dirichlet
eigenvalues for A. Let Dj be the linear space of the normal derivatives of the solution of
the homogeneous Dirichlet problem for A, restricted to dA. Dp is defined analogously
to Dy by

Dy = {Vau(y)|yy : V2u(z) + k*u(z) =0, z€ A, u(y)=0, y¢€ oA} (5.16)

If the secondary sources are driven by a source mode a,(y), which lies completely on
Dy, then we have that

(San)(z) =0, ze€R™A, an(y) € Da (5.17)

which means that the acoustic field generated by Sa, vanishes in the exterior of A.
This can be shown using the same arguments used with respect to the uniqueness of
the exterior Dirichlet problem, which are presented in Appendix B. Figure 5.1 shows
the reproduction of the mode Y5 (y)/Rx by a continuous distribution of sources on the
sphere OA = Qg,. The wave number k considered is one of the Dirichlet eigenvalues for
A, more specifically js(kRp) = 0. It can be observed that the field in the exterior of the

sphere is zero, while this in not the case for the field in the interior.

The result shown above can be extended to any general source strength a(y): the field
generated by the orthogonal projection of a(y) onto Dy is zero in the exterior of the

reproduction region.

5.6 Examples with spherical and linear geometry

The results discussed in the previous sections of this chapter are now illustrated with
some examples. A representative and didactically interesting case is given by the three-
dimensional target sound field due to a single monopole-like source, hereafter referred to
as wvirtual source. In fact, any sound field of practical interest, which is due to sources

contained in a bounded region, can be represented by the linear superposition of the
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F1GURE 5.1: Sound field generated by a continuous distribution of sources on the
sphere 9A. The secondary source strength a(y) is given by the function Y *(y)/Ra,
and js5(k, Ry) = 0 (k, is one of the Dirichlet eigenvalues of A).

fields generated by a finite or infinite number of monopole-like sources. The equivalent
of such a source for a two dimensional problem is the line source. In this section the
problems are addressed of the reproduction of the three-dimensional sound field due to
a monopole source with secondary sources arranged on a sphere and the reproduction of

the field due to a line source with secondary sources on a line.

5.6.1 Monopole source and concentric sphere arrangement

The field generated by a monopole source with unitary strength 7, that is with volume
velocity quor = (—ipock)*l, was discussed in Section 3.2 and can be described by the
free field Green function (3.6). This equation can be expressed in the form given by
equation (4.2). It is assumed that the monopole generating the target field is located at

q € R3\V. The pressure profile due to that monopole is hence given by

ik|x—q s i
PO = oo = S ()i (bRy) 3D YERYH@?, x€v (5.18)
v=0 p=—v

In view of the orthogonality relation for the spherical harmonics (4.3), we have that

(Y p)ov = Riikhy(kq)ju(kRv)YH(@)* (5.19)
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The representations (4.4) and (4.5) of S and S*, respectively, are given by

(Sa)(x) ZzRVRAkhU)(ky G (k) Z YO (%) (Y/'a)on
v=0 =, Bv R
o0 v YM
(S*p)(y) = Z—ZRvRAk:h (ky)jy(kx) Z ’]:/)BV
v=0 p=—v

5.6.1.1 Existence of the solution - first Picard condition

Given the wave number k,, such that j,(k,Ry) = 0, it can be observed that all functions
of the kind

Vatn(z) = akj, (knRy)Y"(X), |m|<n, a€R, xedV (5.20)

are in the nullspace of S*. In fact, it holds that

o0

v=0
p=—v

Comparing equation (5.20) with the solution of the homogeneous interior Dirichlet prob-
lem for a sphere given by equation (C.2), it can be noticed that span{Vyu,}, that is
the linear space spanned by all functions Vyu,(x), corresponds to the set Dy defined

by equation (5.4).

It can be also observed that, given the wave number k,, and the function Vyu,(x) € Dy,
the orthogonal projection pressure of the profile (5.18) onto the subspace Dy is always
zero. It holds that

o0

(unlp)ov =Y _ iknh{) (knq)ju (knRy) Z V@) G, (kn RV) (Y Yoy =0 (5.22)

v=0 pn=—v

for any function u, € Dy . Hence the pressure profile due to a monopole source located
at any position q € R*\V is in the closure of the range of S. These results are consistent

with what has been discussed in Section 5.2.
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5.6.1.2 Existence of the solution - second Picard condition

We consider the singular system given by equations (4.7) to (4.11). Recall that the

expressions of the singular values o,, and of the singular functions p,(x) are given by

0n = kRyRp|hy(kRp)ju(kRy)|

i) = VIR

It is now possible to obtain the following expression for the second Picard condition
(2.128)

N
Ipn!p av|?
Z 32 Z’ k:RA

This series must converge in order for the second Picard condition to be satisfied.

Z YH(q (5.23)

Considering that |Y2'(q)]? = Y(@)Y£'(@)* , from the spherical harmonic summation

formula (2.53) we obtain

> IYH@P=

p=—v

2v+1
47

2v+1
47

(5.24)

P,,(l)’ =

The last equality is due to the fact that P,(1) =1, v = 1,2,... [Wil99, p.187]. The high

order asymptotic approximation of the Hankel functions (2.40) leads to

o Bk (RANTT
v = () 52

Hence we have that

(5.26)

2
o palpovl? 2wt 1 (RyN
n—oo o2 drq® \ ¢
Given a generic series Y a,, the ratio test for the convergence of a series [WW27| states

that if the limit

Ri= lim 2 (5.27)

n—oo (O,

exists, then the series above converges if R < 1 and diverges if R > 1. We observe that

[(Pns1lp)ov]®  on o 2t 41 (RA>2 _ (RA>2 (5.28)

lim 3 5 = lim

e On+1 [(pnlp)ov| v—oo  2v+1 q q
and the ratio test indicates that the series 5.24 converges if ¢ > R, and it diverges if
q < Rp.

This very important result indicates that the sound field due to a monopole source can be
reproduced by the layer of secondary sources on OA only if the virtual monopole source
is located in the exterior of A. If the virtual source is located in the exterior of V' but

in the interior of A, then the pressure profile p(x) is still in the closure of the range of
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S, but the series (4.19), which should represent the strength of the secondary sources,
diverges. It is clear that in the special case when the virtual source is on the boundary
of A, that is if q € A, we have that a(y) = dga(y — Q).

5.6.1.3 Analytical expression of the solution

The combination of equation (5.19) with equation (4.19) leads to the following expression

for the source strength:

o0

aly) = Z R2h kRA Z YAy (5.29)

Applying the summation formula of the spherical harmonics (2.53) we obtain

Z2v 41 hy(kq)
= P, 5.30
a(y) ot 47TR12X hy(kRA) (COS SOQY) ( )

where cos ¢,y = q - ¥ is the cosine of the angle between the vectors q and y and can
be calculated using equation (2.54). If one of these expression of a(y) is inserted in the
expression (4.4) of S, we obtain the equation (5.18), which represents the target field.
This confirms that the solution is correct and that (Sa)(x) = p(x).

The fact should be highlighted that the control volume V' does not appear in the expres-
sion of the solution. This is due the fact that the latter is computed from the analytic

description of the target field, rather than from data on OV

Figure 5.2 represents the horizontal cross-section of the sound field p(z) generated by an
omnidirectional point source (an acoustic monopole), located at [rq, 04, ] = [2.5 m, 80°, 140°]
and with the wave number k = 6 rad/m. Figure 5.3 shows the reproduced field p(z) for
a virtual source at the same location, with a secondary source layer A corresponding
to a sphere of radius Ry = 1.5 m. The reproduced field p has been calculated from the
expression (4.4) of S, with the density a(y) given by the series (5.29), truncated to the
order N = 13. Figure 5.4 represents the normalized reproduction error en(z), defined as
ol () — ()P

en(z) == ()P 100 (5.31)
It can be appreciated that the normalized reproduction error is close to zero (apart from

the approximation due to the truncation of (5.29)) in the entire reproduction region A.
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FIGURE 5.2: Horizontal cross-section of the sound field due to an omnidirectional
point source (red dot) located at [rq, 04, ¢q] = [2.5 m,80°,140°]. The wave number is
k = 6 rad/m.

F1GURE 5.3: Horizontal cross-section of the reproduced sound field for a virtual source
(red dot) located at [rq,0,, ¢4] = [2.5 m,80°,140°]. The wave number is k = 6 rad/m
and the radius of the sphere is Ry = 1.5 m.
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FIGURE 5.4: Horizontal cross-section of normalized reproduction error (%) for a virtual
source (red dot) located at [rgq, 04, d¢] = [2.5 m,80°,140°]. The wave number is k =
6 rad/m and the radius of the sphere is Ry = 1.5 m.

We have seen that in the case of ¢ < Rj the series given above diverges. This fact
has the physical meaning that if an attempt is made to generate a sound field with a
singularity at q, in the interior of the reproduction region A, then the secondary sources
should generate an infinite amount of energy. The sound field generated by these would
interact destructively in order to generate the target pressure profile p(x), represented

by a bounded function.

In the limiting case when q € 9A, the ratio of Hankel functions in equations (5.29)
and (5.30) equals unity. Hence, for the completeness relation of the spherical harmonics
(2.55), we obtain

a(y) Z Z YAy )* 5('2%(1) (5.32)

v=0 A,u_fu

Given an arbitrary square integrable function f(y) defined on the spherical surface OA,

the property (2.26) of the Dirac delta function can be rewritten in this case as

0o (¥ .

[ 152 Yasty) = [ 1) 2V mase) = 1) 6
A

where f(y) is assumed to be continuous at y = z. This shows that dgp(y — q) =

oy —q)/ R?\. Hence we observe that, consistently with what was argued above, when

q € 0A we have that a(y) = dga(y — q)
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Equation (5.29) could be regarded as a low-pass filtered spherical Dirac delta function.
It has been shown that

Son(y —q) = PfA SN V)Y@ (5.34)
v=0 p=—v

This expression can be interpreted as a generalized Fourier series for the Dirac delta

function. The spatial filter =, is defined by

hu (kq)
2= 5.35
hV(kRA) ( )
Equation (5.29) can be therefore rewritten as follows:
1 0o _ v A N
aly) = 2 D5 30 VAV (5.36)
A y=0 pn=—v

This illustrates that a(y) is obtained by modulating the Fourier coefficients of dga (y — q)
by the filter coefficients =,,.

Figure 5.6 represents the absolute values of =, for different distances ¢ of the virtual

source and Ry =1 m, k = 1rad/m.
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FIGURE 5.5: Magnitude of the coefficients of the spatial filter =, (spherical arrange-
ment) for different distances ¢ and Ry = 1m, k = 1 rad/m

In the case of ¢ > Rj, the high order terms of the series are damped by =,. The function
a(y) is smoother the steeper is the decay of the magnitude of its Fourier coefficients.
This implies that the main lobe of the source strength function a(y), which is infinitely
narrow for the case when ¢ = Rj, becomes broader the further away the virtual source is
from the reproduction region. The limiting case is when ¢ tends to infinity. In this case,

considering the large argument asymptotic approximation (2.43) of the Hankel functions,
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we have that

: v ho(kq)
=, = lim (=) ———*— 5.37
Jim () T (kRa) (5.37)
If the magnitude decay and change of phase are compensated for by multiplying by a
factor 4mge~ "4 the target field, the latter corresponds to a plane wave and the spatial
filter above becomes
4 (—i)”

v = m (5.38)

[1]

What has been discussed is demonstrated by Figure 5.6, which shows the absolute value
and phase of a(y) (computed with series (5.30) truncated at the order N = 100) as a
function of the angle ¢qy, for different distance g of the virtual source and Ry = 1 m,
k =1rad/m.

40 — T

la(y)| [dB]

bqy [rad]

FIGURE 5.6: Magnitude and phase of the density a(y) (spherical arrangement) for
different distances ¢ and Ry = 1 m, k = 1 rad/m.

This has the meaningful consequence that the closer is the virtual source to A, the more
the majority of the energy ||a||? is concentrated in the vicinity of the location identified

by the direction q on JA.

5.6.1.4 Uniqueness of the solution

Applying the operator S, represented by (4.4), to the solution (5.29), it can be observed

that the target sound field is reproduced exactly in the entire reproduction region, that is



Chapter 5 The ill-posedness of the inverse problem 112

(Sa)(z) = p(z), z € A. As discussed above, this holds as long as q ¢ A. Equation (5.29)
determines a unique solution, which allows for the exact reproduction of the target field
in the entire volume A. The expression of this solution is completely independent of the

control region V.

It has been mentioned that, in the case under consideration, the calculation of the so-
lution has been computed from the analytical expression (5.18) for the target pressure
profile. In the more general case, however, the calculation of (4.19) is computed from
a set of data describing the acoustic pressure on the control boundary dV. This might
lead to a nonuniqueness problem. In order to demonstrate this, we assume that the
wave number is one of the Dirichlet eigenvalues k,, for the domain V. As shown in
Appendix C, this implies that j,(k,Ry) = 0 for a given n. In this case the functions
Y (y)/Ra, |m| < n could be interpreted as zero efficiency modes. They are not singular
functions of S, they span its nullspace. This implies that the series (4.19), representing
the general solution, does not include the terms with v = n. Therefore equation (4.19)
represents in this case one of the exact solutions to the integral equation (3.19), but all

solutions of the form

Z Z ,,“(y) (Y p)ov + Z am Y™ (¥), am € C

Pt ikR2 R0 (kRy)j, (kRy) =

are also correct solutions. It can be noticed that the last sum represents an element in

the nullspace of S.

Formula (4.19) does not give in this case the correct source strength for the reproduction
of the target field in the interior of V', but only on its boundary. It can be actually seen
that (4.19) does not allow for the computation of the term

2n+1 hy(knq)
P,
A R2 B (knRy) (008 Pay)

in the series (5.30) for the given n, which identifies the Dirichlet eigenvalue k,.

It is important to emphasize that this nonuniqueness problem is due only to an unlucky
combination of the radius Ry and the wave number. Assuming that the operating
frequency is given, only the size of the control region V is responsible for this problem.
These relevant considerations are in perfect agreement with the results presented in
Section 5.5.

As an example, we assume that the target field, generated by a monopole source in q, is
measured on the sphere OV with radius Ry such that jo(kRy) =0 (k = 4 rad/m,Ry =
0.7854 m). This arrangement is illustrated in Figure 5.7. The pressure profile is given
by the usual expansion (5.18). We observe that the first term of the series, v = 0, equals
zero: this implies that the function Yoo(y), y € OA is in the nullspace of S, and is not
one of its singular functions. Figure 5.8 shows the field (amplified by a factor 4 for better
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visualization) given only by the term v = 0 of series (5.18), that is
po(z) = ikho(kq)jo(k2)YR(X)YP(Q)*, z€R? 2<q (5.39)

It can be noticed that OV corresponds to a nodal surface of the field, namely po(x) =
0, x € V. Nevertheless pp(z) # 0 in most of the other locations in A. A solution a(y) is
computed from equation (4.19) (truncated to the order N = 7). Clearly, the series does
not include the first term. The orthogonal projections (p,|p)gy have been computed via
numerical integration on the sphere V. The latter is performed as described in Chapter
7. V is divided into 144 Dirichlet cells, following the sampling scheme proposed by
Fliege [Fli|, [FM96]. The field (Sa)(z) and the normalized reproduction error are shown
in figures 5.9 and 5.10, respectively. Not surprisingly, the error approaches zero in the

vicinity of OV, but it is large in the rest of A.

F1GURE 5.7: Horizontal cross-section of the field generated by an omnidirectional point

source (red dot) located at [rq, 04, ¢q] = [2.5 m,80°,140°]. The sphere represents the

control boundary dV. The wave number is k = 4 rad/m and the radius of the sphere
is Ry = 0.7854 m.
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FIGURE 5.8: Horizontal cross-section of the field (SY{)(z). The two spheres represent

the control boundary OV (smaller sphere) and the secondary source layer JA. The

wave number is k¥ = 4rad/m and the radii of the spheres are Ry = 0.7854 m and
Rp = 1.5 m, respectively.

FIGURE 5.9: Horizontal cross-section of the reproduced field for a virtual source located
at [rq,0q, ¢q] = [2.5m,80°,140°]. The density a(y) was computed with series (4.19),
without the terms with v = 0. The two spheres represent the control boundary 0V
(smaller sphere) and the secondary source layer OA. The wave number is k = 4 rad/m
and the radii of the spheres are Ry = 0.7854 m and Ry = 1.5 m, respectively.
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FIGURE 5.10: Horizontal cross-section of normalized reproduction error (%) for a vir-

tual source (red dot) located at [rq, 04, ¢¢] = [2.5 m, 80°,140°]. For better visualization,

the color scale is clipped at 10% and is different from that used in Figure 5.4. The

two spheres represent the control boundary OV (smaller sphere) and the secondary

source layer OA. The wave number is & = 4 rad/m and the radii of the spheres are
Ry = 0.7854 m and Rp = 1.5 m, respectively.

5.6.2 Line source and parallel line arrangement

The case is now considered when the secondary sources are arranged on an infinite line
OA € R?, as shown in Figure 4.22, and it is assumed that the virtual source is a line
source with unitary amplitude, located at q = [q1, 0, ¢3] and perpendicular to the plane
identified by dA and 9V, as shown in Figure 5.13. The pressure profile due to a line
source is described by equation (3.7). This equation can be expressed in the following

form, analogous to equation (4.93):

ei”(zl 7‘]1) Z‘eiC(”)dO
27 2¢(k)

p(x) = %HS”(klx —q) = /R dk, x €V (5.40)
where dj is the distance between q and the line V. As discussed in Chapter 4, the
expression above gives the representation of the field due to a line source by means of
propagating and evanescent plane waves. In this case, the operator S is not a compact
operator, as A and V are unbounded domains. We can not therefore apply the criteria
introduced in this chapter for solving the integral equation considered. We can however

provide an expression for the solution in the form of equation (4.102), and then discuss
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this result. We firstly recall the following expressions from Section 4.4:

oy) = 7|2 )

OkVk
Z‘eig(n)d
OkVe =
) 2(x)
() = VB

It can be observed that, in view of the orthogonality relation (2.76) and of the property
of the Dirac delta function (2.26), the following equation holds:
ieig(n)do e_iﬂql

(Fp)(k) = RO (5.41)

Inserting this result into the expressions for a(y) and o7, given above, and considering

that dy — d = —q3, we obtain

(e
aly) = | F T ar (¥) (5.42)

This solution can be expressed explicitly as follows

etr(y1—a1)

— —iC(k)gsZ 4
a(y) /Re o dk (5.43)

As for the case of the spherical geometry, the solution does not depend on the control

boundary 0V, since a(y) has been computed from the analytical expression of the target

field.

Alternatively, the solution can be computed using a convolution approach, and defining
the spatial filter

(5.45)

one obtains
(5.46)

The spatial filter Z(k) is a complex exponential with unitary absolute value for |k| < k
and is an exponential with real argument when |k| > k. If dy > d, that is if the virtual
source is more distant from AV than A, then the spatial filter decays exponentially
with increasing k. Conversely Z(k) increases exponentially if dy < d. In the limiting

case when dy = d, we have that Z(k) = 1 and a(y) = é(y1 — q1)-
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Figure 5.11 shows the absolute value and the phase of the spatial filter Z(x) for different
values of dy —d = —q3 and k = 1 rad/m. It can be observed that, as discussed in section
4.3.1, the values for |k/k| < 1 corresponds to propagating plane waves (in two dimen-
sions), characterized by zero magnitude and non-zero phase. Conversely, the values for
|k/k| > 1 correspond to evanescent waves, with zero phase and exponentially decreasing

magnitude.

(k)| [dB]
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FIGURE 5.11: Magnitude and phase of the spatial filter Z(x) (linear geometry), for
different values of —g3 = dyp — d

Figure 5.11 shows a plot of magnitude and phase of a(y), computed with equation (5.43)
for different values of dy —d = —¢q3 and k = 1 rad/m. The integration was performed
—100k < k < 100k and dk = 0.1k.

What has been shown here is analogous to the case of the spherical geometry discussed
above. In fact, the source strength function can be interpreted as a spatially filtered
Dirac delta function. If dy > d, the spatial spectrum of the solution a(y) exhibits the
decay imposed by the exponentially decaying spatial filter Z(k). Henceforth, a(y) is
smoother the further away the virtual source is from A and its main lobe gets broader.
If q € A, then a(y) corresponds to a Dirac delta function and its spatial spectrum is
flat. If dy < d, that is if g € A\V, the spatial filter Z(k) increases exponentially with
K, thus leading to a divergent solution. It can be therefore deduced, that the inverse

problem addressed is not solvable for dy < d.
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la(y)| [dB]

FIGURE 5.12: Magnitude and phase of the density a(y) (linear geometry) for different
values of —q3 = dy — d

In view of the orthogonality relation (2.76) and of the property of the Dirac delta function
(2.26) we can observe that
eiﬁ/ (yl —Q1)

1 ; .
(asla)on = /8A Eeﬂ”yl A s )(d‘)*d)Tdﬁ/ dy: (5.47)

_ i¢(k")(do—d) e—iHItH (/ i i(’ﬂ/_”)yld ) drx!
= e e Y
/R V2m \Jaa 27 .

_ i) do—d) €

Ver

Substituting this result into the expression (4.98) for the operator S, we obtain

—iKq1

(SCL) (X) = /I;Umpn(xxan‘a)aAd’?:/Unpn(x)eiqﬁ)(dod)e\/ﬁ (5'48>

R

_ g _
20 5 —4H0 (klx—q|), xeoV

/ 1eiC(K)do gir(z1—q1) i
R

where the last equality follows from equation (4.93). This shows that the expression
(5.43) for a(y) gives the correct solution of the inverse problem under consideration.

This equation can be extended to any z € R? by simply substituting dy = x3 — ¢3 with
|23| — g3
Figure 5.13 shows the field due to a line source located at [¢1, 3] = [ 0 m, —0.5 m|. The

wave number is k& = 10 rad/m. Figure 5.14 shows the reproduced field for a virtual

source at eh same location, with secondary sources continuously arranged on the infinite
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line OA. The field has been computed using the definition of single layer potential
(3.15) with the 2D kernel (3.7). The infinite line has been approximated by a 20 m
long segment (the plotting area is 16 m?), discretized into 128 secondary sources with
0.1571 m spacing. The source strength a(y) has been computed by applying equation
(5.43). The integral over R has been approximated by a finite integral from x = 10k to
k = —10k, and computed using a quadrature with uniform sampling with (dx = 0.01%.
Figure 5.15 reports a plot of the normalized reproduction error ey (z) (%), defined by
equation (5.31). It can be observed that the reproduced field is symmetric with respect
to OA, and that it reproduced perfectly (apart from approximation errors) the target

pressure profile in the entire A.

FIGURE 5.13: Pressure field generated by a line source (vertical black line) located at
[91,¢3] = [0 m,—0.5 m]. The wave number is k = 10 rad/m
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FIGURE 5.14: Reproduced field for a virtual source located at [g1, g3] = [ 0 m, —0.5 m)].
The wave number is k£ = 10 rad/m

FIGURE 5.15: Normalized reproduction error (%) for a virtual source located at
[71,93] = [0 m, —0.5 m]. The wave number is k = 10 rad/m
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5.7 Summary of parameters affecting the ill-posedness of

the problem

The ill-posedness of the inverse problem given by the integral equation (3.19) is a math-
ematical property of the operator S and of the normed spaces between which it is acting
(here L?(OA) and Uy ), and represents a sever barrier to the determination of a sensi-
ble solution. We have seen that the effect of the three different types of ill-posedness
arises for different typologies of sound fields to be reproduced and of the geometrical

arrangement of the problem. More precisely, we have shown that:

e when the desired sound field is given by a virtual source located in the region A\V/,
in the exterior of the control region but within the reproduction area, an exact and

bounded solution a(y) does not exist (nonexistence);

e when the operating frequency of the desired sound field corresponds to one of those
identified by ky,, the Dirichlet eigenvalues of V', the solution of the inverse problem
is not unique, but only one of the solutions allows an accurate reproduction in the

interior of V' (nonuniqueness);

e if the data describing the target field are contaminated by errors, these might
severely compromise the determination of an accurate solution of the inverse prob-

lem, leading to very large errors in the reproduced field (instability).

It is important to emphasize the fact that these effects of ill-posedness of the inverse
problem depend mainly on the relation between the sound field to be reproduced and
the sets A and V.

The theorems proving the existence of the solution can be simply reformulated by the

following intuitive proposition:

A sound field due to a virtual source in the exterior of the reproduction
area A can be perfectly reproduced by an array with an infinite number of

secondary sources, independently of the operating frequency w

or equivalently, the sound field can be represented by the single layer potential (3.15)
in A. This implies that the feasibility of the field reproduction depends only on the
geometry of the array and on the location of the virtual source, but it does not depend
on the geometry of the control region V. This is confirmed by the analytical expressions
(5.30) and (5.43) of the secondary source strength a(y) for a monopole-like virtual source.
These expressions do not include any reference to the control region. In other words,
if we have complete knowledge of the target sound field, the latter can be reproduced

under the condition above.
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A different matter is the determination of the strength of the secondary sources a(y),
provided that we are sure of its existence. When the target pressure profile is described
by data, this process is strongly dependent on the geometry of the control region V'
and on its location in respect to A. We have seen in Section 4 that the asymptotic
exponential decay of the singular values of the integral operator S, responsible of the
amplification of errors, is controlled by the distance between the boundaries A and OV,
for all geometrical arrangements considered. This is analogous to a Near-Field Acoustical
Holography problem, as we need to back-propagate the sound field from V' to JA. In the
limiting case when V' = A, the problem is mildly ill-posed (the linear decay of the singular

values is due to an operation of derivation).

We have also seen in Section 5.4 that the problem of ill-conditioning is related to the
presence of large amount of energy in the high order components of the Fourier series
(pn|p)av representing the pressure profile. In view of the results presented in Section
5.6, we see that the effect of ill-conditioning on the reproduction side is larger, the closer

the virtual source is to A (the best case, in that sense, is represented by a plane wave).
The considerations above can be summarized by the following proposition:

The stability of the solution is governed by the distance between the bound-
aries 0V and OA and by the decay of the Fourier coefficients (p,|p)sy repre-

senting the pressure profile.

In Section 5.5 it has been shown that the uniqueness of the solution is determined by
the Dirichlet eigenvalues k, of V' (hence the solution is unique for unbounded V'), and

not by the Neumann or Dirichlet eigenvalues of A. Therefore it can be stated that

The nonuniqueness of the solution depends only on the geometry of the con-
trol region VV and on the operating frequency w. The problem arises only for
bounded control regions and at an infinite but countable number of frequen-

cies.

In the cases considered in Section 5.6, we have seen that when the solution can be
computed analytically from the explicit expression of the target field, the nonuniqueness
problem does not arise. In these circumstances, the parameters related to the control
region V are not included in the expression of the solution. Henceforth its stability does

not depend on V.



Chapter 6

Methods for dealing with the

i1ll-posedness

In the previous chapter, the ill-posedness of the inverse problem represented by the
integral equation (3.19) has been thoroughly studied. This analysis has clarified that,
although an exact solution exists for the majority of the cases of interest, the solution of
the inverse problem can be severely affected by the problem of ill-conditioning and can

be therefore unstable.

We have also seen that there is a category of sound field of practical interest, for which
an exact solution does not exist. This is the case for sound fields generated by a source
located within the reproduction region. A virtual source lying within this region is

usually referred as a focused sources [AS08c|, [Men09].

In all of these circumstances, it is possible to use some strategies to minimize the effect
of the problems described above (instability and nonexistence), at the price of achieving
an approximate reproduction of the desired field. These strategies usually include the
modification of the operator S or of the target field (these operation provide in many
cases equivalent results). More specifically, some actions are undertaken in order to avoid
or limit the attempt to reproduce those modes p,(x) of the pressure profile, which are
related to small singular values o,. These high order modes have been shown to be
responsible for both the problem of nonexistence and of instability. The first part of this
chapter introduces these strategies, many of which are well known regularization meth-
ods. Their application is discussed in relation to the sound field reproduction problem
addressed here, concentrating initially on the problem of instability and then on that of
nonuniqueness and focused sources. Examples are provided for different geometries of

secondary source layer.

The second part of this chapter is focussed on a remarkable analogy, which links the

problem of sound field reproduction to an equivalent acoustic scattering problem. This

123
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analogy arises from the specific circumstance, in which the control and reproduction
region coincide (V' = A). This case has been demonstrated in the previous chapters
to correspond to a mildly ill-posed problem. The solution of the equivalent scattering
problem defines an alternative method, although equivalent, for computing a solution
to the field reproduction problem, reducing at the same time the potential effect of ill-
conditioning to its minimum (hence the motivation for including this subject in this
chapter). The relevant analogy to Near-Field Acoustical Holography, which we have

begun to draw in the course of the previous chapters, is also discussed here.

6.1 Regularization methods

We have seen in Section 5.4 that the reason for the ill-conditioning of the inverse problem
addressed is mathematically represented by the inversion of very small singular values,
which correspond to non-efficient array modes and which determine the amplification of
errors in the data. One might therefore arbitrarily decide non to attempt the reproduc-
tion of these low-efficiency pressure modes. This choice might on one hand degrade the
accuracy of the reproduced field for an ideal error-free case, but on the other hand it

makes the solution robust with respect to the effect of data errors.

The strategy discussed above is mathematically described by the spectral cut-off of the
operator S. This technique corresponds to the truncation of the series (3.28), giving
an expression for the solution, to a given order N. The approximate solution as¢ (y) is

therefore given by

al 1
dor(y) =) an(y)——(pnlp)ov (6.1)
n=1 n

It is recalled that the singular values are ordered with decreasing magnitude. The smaller
singular values are therefore excluded from the computation of the series above, thus

avoiding the error amplification associated with their inversion.

The spectral cut-off is one of the regularization schemes that are often used in the solution
of inverse problems. This technique is to some extent applied automatically when the
computation of the series is performed numerically (as its order must be finite), and is
often adopted as a consequence of the discretization of the single layer potential into
an array including a finite number of secondary sources. In fact, as will be discussed in
Section 7.1, it is reasonable (although not mandatory) to truncate the series to an order

N which is less or equal to the number of secondary sources included in the array.

We have seen that the inversion of the small singular values might be responsible for large
values of ||a(y)|| (related to the acoustic energy generated by the secondary sources), as
a consequence of the attempt to reproduce low efficiency modes. The spectral cut-off,

as well as other regularization methods, has therefore the effect of reducing the total
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acoustic energy generated by the array. This is obviously beneficial with respect to the

robustness of the system and to its performance in non-anechoic environments.

The sharp spectral cut-off described above could be smoothed by applying to the singular

values of S a tapering window w, , such as

1, n<N
Wp =14 an, N<n<N+N (6.2)
0, n>N+N

where a, is a monotonically decreasing sequence with 0 < a, < 1 and N’ is an arbitrary
integer. Clearly the case of a,, = 0 corresponds to the sharp spectral cut-off described

above. The series (3.28) could be therefore approximated by

s (y) = Y an(y) = pulp)ov (63
n=1 n

The tapering window above is one of the many possible choices. Different kind of windows
and their properties have been widely studied (see for example [CBG10, p.281-303] and
[Har78]). In the case of spherical geometry, this smooth damping technique corresponds
in some measure to the different decoding criteria for High Order Ambisonics (such as
the Max rg or the In-phase criterion), although the derivation is very different. As
shown for example in [DRP98|, these criteria include the use of weights applied to the
encoded signals, in a similar fashion to the weights w, that might be applied to the

Fourier coefficients (p,|p).

The spectral cut-off and damping techniques introduced above are two of the various
regularization techniques, which are extensively discussed in the scientific literature.
A very good tutorial explanation of the link between the mathematical and physical

meaning of the regularization is given by Deschamp and Cabayan in [DC72|.

We mention here what is probably the most widely used regularization technique, known
as Tikhonov regularization (see, for example, [KNHOBO98|, [CK92| and [DC72]), named
after the Russian mathematician Andrey N. Tikhonov. This method can be explained
with respect to the reformulation of the inverse problem in terms of the minimization of
the following function:

1Sa — pII? + Bllal (6.4)

where [ is referred to as the regularization parameter. This approach attempts to mini-
mize the L? distance ||Sa — p|| between the target and reproduced field, requiring at the
same time the solution a(y) to have a small norm. This will in turn have a bounding

effect on the inversion of the singular values. In fact, the solution of the minimization
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problem leads to the following modification of series (3.28) [CK92]:

On
B+o?

)
ar.(y) = an(y) (pnlp)ov (6.5)
n=1
Instead of completely avoiding the reproduction of the low efficiency modes, as in the case
of the spectral cut-off, a reduced energy version of the latter is generated by the array.
The Tikhonov regularization technique has the disadvantage of affecting the reproduction
of all pressure modes, as the regularization parameter 3 is added to all singular values.
However, if the choice of § is made wisely, the effect of the regularization parameter on

the reproduction of the high efficiency modes is negligible.

The regularization techniques described here can be used in order to reduce the effect of
ill-conditioning, by finding an approximate solution, which is more stable and robust with
respect to errors and noise, even though an exact solution might exist in ideal error-free

conditions.

Figure 6.1 shows the horizontal cross-section of the sound field due to an acoustic
monopole located at [rq, 84, ¢4] = [2.5 m,80°,140°] and with & = 6 rad/m. The field
is virtually measured on OA, a sphere of radius Ry = 0.5 m. The measured values
have been perturbed with uncorrelated noise, with mean magnitude equal to 10% of
the maximum of the magnitudes of the measured values. A solution a(y) of the inverse
problem has been computed by applying equation 4.19 (the series is truncated to the
order N = 10). The orthogonal projections (p,|p)gy have been computed as described in
sections 5.6.1.4 and 7.1.2 (V' is uniformly sampled at 144 locations [Fli], [FM96] and the
integral is solved numerically using a quadrature method). Figures 6.2 and 6.3 represent
the reproduced field and the normalized reproduction error defined by (5.31). The sec-
ondary source layer is represented by the larger sphere, having a radius Ry = 1.5 m. It
can be observed that the secondary sources generate a large amount of acoustic energy,
and their fields interfere mainly destructively in order to reproduce the target field, which

is accurate only in the vicinity of the center of the array.

A second solution was computed applying the Tikhonov regularization scheme, described
by equation (6.5). The regularization parameter chosen is 3 = 107° ~ 10~%¢y. The
reproduced field generated by the regularized solution and the related normalized repro-
duction error are shown in Figure 6.4 and Figure 6.5, respectively. As a consequence
of the regularization, the effect of ill-conditioning has been reduced: not only has the
region characterized by a small reproduction error become larger, but also the acoustic
energy generated by the secondary sources and the amplitude of the field in the exterior

of A are much smaller when compared to the non-regularized case.

As discussed in Section 6.2, a regularization scheme may be used also for finding an

approximate reproduction of a sound field, for which an exact solution does not exist.
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FIGURE 6.1: Horizontal cross-section of the field generated by an omnidirectional
point source (red dot) located at [rq, 84, ¢4] = [2.5 m,80°,140°]. The sphere represents
the control boundary 9V'.

FIGURE 6.2: Horizontal cross-section of the reproduced field for a virtual source located

at [rq,0q, ¢q] = [2.5m,80°,140°]. The density a(y) was computed with series (4.19),

without applying any regularization. The two spheres represent the control boundary
OV (smaller sphere) and the secondary source layer JA.
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FIGURE 6.3: Horizontal cross-section of normalized reproduction error (%) for a virtual

source located at [ry, 04, ¢4] = [2.5 m,80°,140°], and for a non-regularized solution.

The two spheres represent the control boundary 9V (smaller sphere) and the secondary
source layer OA.

FIGURE 6.4: Horizontal cross-section of the reproduced field for a virtual source

located at [rq, 04, ¢q] = [2.5 m, 80°,140°]. The density a(y) was computed applying the

Tikhonov regularization,equation (6.5), with 3 = 107°. The two spheres represent the
control boundary OV (smaller sphere) and the secondary source layer OA.
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FIGURE 6.5: Horizontal cross-section of normalized reproduction error (%) for a virtual

source (red dot) located at [rq, 64, ¢4] = [2.5 m,80°, 140°], and regularized solution.

The two spheres represent the control boundary dV (smaller sphere) and the secondary
source layer OA.

6.2 Focused sources

The inverse problem (3.19) involving the reproduction of a sound field due to a virtual
source located within the reproduction region has been proven not to have a solution. It
is however possible to come to a compromise and attempt an approximate reproduction.
This objective can be achieved in different ways, some of which are illustrated in what
follows. Although the strategies presented can be regarded as regularization schemes,
they are not applied directly to the operator and to its singular values, but rather act
on the target sound field, transforming it into a similar field, for which a solution of the

inverse problem exists.

As previously mentioned, the (approximate) reproduction of the field due to a virtual
source located within the reproduction region is referred to as focused source in the
literature on Wave Field Synthesis [AS08c|.

In Section 5.3 it has been shown that the nonexistence of the solution is related to the
decay of the Fourier coefficients (p,|p)sv, which must be steeper than the decay of the
singular values o,,. When this is not the case, the series (3.28) diverges. An intuitive
strategy to prevent this happening is to truncate or damp the series, as illustrated by

the regularization techniques discussed in the previous section.
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With reference to equations (6.1), (6.2) and (6.3), we see that the reproduced sound field

is given by

Ds.d. (X) = Z WnPn (X) <pn|p>8V (66)
n=1

and the reproduction error on 9V (not necessarily in its interior) is therefore

[e.e]

€s.d.(%) = Y (1= wn)pn(x)(palp)ov (6.7)

n=1

which becomes, in the special case of sharp spectral cut-off (w, = 1if n < N and w, =0

if n > N)

o

et (X) = Y pa(x)(pulp)ov (6.8)

n=N-+1

It is now shown how these and other related strategies can be applied to some of the

specific geometrical arrangements introduced in the previous chapters.

6.2.1 Parallel line geometry

We consider the extension of the spectral damping method to the case of linear un-
bounded domains A and V, as described in Sections 4.4. Analogous conclusions can
be drawn for the case of planar geometrical arrangement described in Section 4.3. For
simplicity, we report here equations (4.56), (4.98) (extended to R?) and (5.43) repre-
senting, for the linear geometry, the function o, (analogous to the singular values for S
compact), the representation of S and the expression of the solution for a virtual point

source. These are respectively given by

o~ Im(¢(R)d

Oy = ——— 6.9
S0 (69)
S O s i ayond R? 6.10
(S0)(m) = 5 [ G e laondn, 2 € (6.10)
ik(y1—q1)
— —i¢(r)gs ©
a(y) /Re . dr (6.11)

The integral (6.10), evaluated at z = x € JV, can be split into one part, Sprop., rep-
resenting a superposition of propagating waves (|k|/k < 1 and Im(¢{(x)) = 0), and a

second part, Seyan.representing a superposition of evanescent waves (|x|/k > 1 and
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Re(¢(x)) = 0). This concept is expressed by the following relations:

(Sa)(x) = (Sprop.a) (x) + (Sevan.a) (x) (6.12)
i F 6Z‘|C(H)‘d KT [ 1K
(Sprop.a) (x) = o |, 2] e (e a)ordr (6.13)
1 > ei‘g(n”d IKT1 [ iR
(Sevan.a) (X) = 27r/]C We <€ |a>aAdI€ (614)
1 " €_|C(K)|d 1KT1 [ 1K
* o L e e oo

Considering the results and the discussions reported in sections 4.4 and 4.3, it can be
observed that the inverse operator of Sy, is always bounded, as ||l<()1d/|¢(k)[|| 71 =
|¢(k)| is finite for —k < Kk < k.

It is now possible to deliberately choose to attempt the reproduction of just that com-
ponent pprop.(x) of the pressure profile p(x), which has an orthogonal projection on
the subspace spanned by €1, |k| < k, that is the component of p(x), which can be
represented by the integral (6.13).

The corresponding source strength as (y) (assuming again that the origin of the coor-

dinate system lies on JA) can be expressed similarly to equation (4.101) by

_ k_i2¢ (k) e ir
s ) = [ e S e oy (6,19

Inserting this result in equation (6.10) and considering the orthogonality relation (2.76)

it can be easily seen that the reproduced field is

1

(Sds-t-)(z) = Pprop. (Z) = or

k
/ el ¢ () (2sl=D) ik ) o die, 7 € R2 (6.16)
—k

Note that this solution is also valid for the half space z3 < 0, as (Sa)(z1, z3) = (Sa)(z1, —23)

for this special geometrical arrangement.

Analogously, the reproduction error is given by

1 o —|¢(k)|(2z3— 1KZ K
€5.t.(2) = Devan.(X) = ), eI (z3=d) ginz1 (1K | ) o i (6.17)
1 [k . .
+ 5 e_K(“)|(Z3_d)emzl<em|p>3vd/{, zcV
L — 0o

Pseudo-evanescent and pseudo-propagating fields. ' It is important to clarify
that pprop. does not physically represent the propagating part of the desired sound field,

it rather represents the component of the target field, which can be represented by a

!The author would like to acknowledge Dr. Dylan Menzies for having brought up this important
point in the course of a private conversation.
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linear superposition of plane waves in the half space defined by z3 > ¢3. Similarly, peyan.
does not represent the physical evanescent or non-propagating component of the target
field, but instead it gives the component of p, which can be expressed, in the same half
space z3 > q3, by a superposition of evanescent waves. A clarifying example is given by
the Weyl integral representation of a monopole field, equation (4.54): although the field
of a monopole does not have any evanescent component, its Weyl integral representation
includes both propagating and evanescent waves. In order to avoid any confusion, we will
refer to pprop.(z) and pprop.(z) as the pseudo-propagating and pseudo-evanescent fields,

respectively.

Equations (6.15) and (6.16) can also be obtained with a k-space filtering process: as.¢.(y)
and pprop.(x) can be computed by convolving a(y) (when this is bounded) and p(x),
respectively, by a spatial filter, representing a rectangular window II(x/(2k)) in the &
domain. The expression of the rectangular function II(-) and of its Fourier transform are

given by equation (2.62) and (2.63), and are reported here:

1, |k| < k
K
I (ﬂ) ={ 12, |kl =k (6.18)
0, |k| >k

() 0= e = shethe) (029

Therefore, from the convolution theorem (2.94), we have that

ast (y) = a(y1,0)®§ sinc (ky1) (6.20)

k.
Pprop.(X) = p(azl,wg)@; sinc (kx1) (6.21)

We consider now the case of a focused virtual source, located at z € (A\V), at a distance

g3 < d from OA. In view of equation (6.11), the approximate solution a(y)s.. is given by

ko ik(y1—q1)
as.t.(y) = /ke_ZC(”)%e%d“ (6.22)

For the case of a focused source, the following relations hold for the reproduced and error
field:

3 i [F eiC(r)(lz3|—as3) in(z1—a1) )
(Sast.)(z) = pprop.(2) = 277/—k We 1=k, z € R (6.23)

1 /—ke—cwnws—qg)
2 J oo 2|C(K)|

1 /00 e~ 1¢(#)[(z3—g3) (1 —
+ — —_— A ql)dli, zeV
2m Jy, 2[¢(k)]

Eslt.(z) = pevan.(z) = em(zl—ih)d% (624)
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The sum of the reproduced field and of the error clearly gives the field due to a line

source at q, as expressed by equation (4.90).

Figure 6.6 shows the sound field generated by a line source located at [q1, ¢3] = [ 0 m, 0.5 m],
in the interior of A. The wave number is k¥ = 10 rad/m and the distance between OA
and OV is d = 1 m. Figures 6.7 and 6.8 represent the reproduced field and the nor-
malized reproduction error, defined by (5.31). The source strength was computed with
equation (6.15). The integral was solved numerically, applying a uniform discretization
(dx = 0.010002) of the domain of integration [—k, k] and a quadrature formula. The
field has been computed using the definition of single layer potential (3.15) with the 2D
kernel (3.7). The infinite line has been approximated by a 40 m long segment (the plot-
ting area is 16 m?), discretized into 255 secondary sources with 0.1572 m spacing. It can
be observed that the reproduction error decreases with distance from 0A. A comparison
with Figure 4.14 highlights the fact that the error is due to the pseudo-evanescent field,
as indicated by equation (6.24).

The method presented here is analogous to the spectral cut-off described in the previous
section. It is also possible to attempt an approximate reproduction of the target field, by
applying a regularization method such as the smooth spectral damping or the Tikhonov
scheme to the expression (5.43) of the solution. It is recalled that, without the use of
a regularization technique, this integral would diverge for a focused virtual source. The
application of these techniques (spectral damping and Tikhonov regularization) leads to

the following expression for the approximate solution:

; —ig(r)gs €

asa.(y) = /Rw(/f)e Pk (6.25)
~ eiiC(ﬂ)(B ei”(y1*q1)

ar.(y) = /]Rl+ﬁ4|q(/<a)zelm(<(“))d0 o dk (6.26)

(6.27)

where 3 > 0 is the regularization parameter and w(k) is a smooth tapering window with
w(k) =1 for |k| <k, 0 <w(k) <1fork <|k| <kyand w(k) =0 for |k| > ky > k.

6.2.1.1 Time Reversal Mirror

A technique widely used for the reproduction of a field generated by a focused sound
sources is represented by the so called Time Reversal mirror. This technique was initially
developed in the framework of ultrasonic imaging by Fink et al. [Fin92|, [WTF92],
[TAG*01] and its use has been later extended to audio engineering purposes [YTF03b],
[YTF03a], [Ver97].

The basis of this technique consists of driving the secondary sources with the time re-

versed version of the normal derivative of the target field (or sometimes the field itself),
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measured on OA [Ver97|. We study in what follows the detail of this technique for the

case of linear geometrical arrangement.

First, we rewrite equation (4.90) for a point source located at q and for the case of
y € OA and

i i [ eiryi—aq1) oi¢(k)lg3—ys]

(1) _
Ty —a) = - [ e (6.28)

We see that g3 < 0if q ¢ A, and g3 > 0 if g € A\V, the latter being the case considered

here. It is reminded that & = w/c for the dispersion relation. Considering that we

have assumed that n = [0,0,—1], y3 = 0 and ¢3 > 0, the approximate solution a;, (y)

computed with the Time Reversal mirror technique is given by

wnly) = 2| (Pt —ab) | (6.29)

dn(y) \4
] 0 i((k)(gz—dn iC(K)q: *
= Z/ eit(y1—ar) 1 lim e (r)(as—dn) _ ciC(r)as ik
21 J_ oo ¢(K) dn=0 dn
= ia /OO etrly1—a1) el (1 —i(x)dn) — 1d/-i
27 J_ oo ¢(k) dn
_ L [T i) e gy
2m J_oo

Using the usual orthogonality relation (2.76) and the property of the Dirac delta function
(2.26) and considering that ((—x) = ((k), we obtain

. 1 [ o N . s
(e"aron = o [/ e e T dyy iR g=iC(R) a3 g (6.30)

—oo LJ—o0
= /OO 8(F + r)eFae (R as g — ina g =) e

—00

In view of this result, substituting this expression to the density in equation (6.10) leads

to the following result

i /ei[C(H)Zﬂ—C(H)*%] .
R

(Se.r)(z) = 5 ) -0 g g c R? (6.31)

As discussed in the previous section, we can split this integral in two parts

(Satﬂ“-)(z) = pprop.t.r(z) +pevan.t.r.(z) (6.32)
i k oiC(k)(|z3|—gs3)
_ € ik(z1—q1) 2
Pprop.t.r. (Z) o /_k QC(H) e dr, z € R (6.33)
L F olelzal+as)
— - ir(z1—q1)
Pevan.t.r. (Z) o /OO 2|C(I€)‘ e dk (634)

00 o—I¢(k)[(lzal+q3)
! / e—em(zl_ql)dm, z € R?
k

2n 2|¢(x)]
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A comparison of these results with equations (6.23) and (6.24) shows that the reproduced
field (Say.,.)(z) is the sum of a first field pprop.t.r.(z), which is the pseudo-propagating
component of the desired field, generated by a line source at q, and of a second field
Devan.t.r.(z), which is not the pseudo-evanescent component of the desired field, but it is
the pseudo-evanescent field of a virtual mirrored-source in respect to the line 9A (namely
located at Qumirr = [q1,92, —¢q3]). This is quite a remarkable result, which sheds some
light on the reproduction error given by the time reversal technique for focused sources.
This method allows a simpler calculation of the driving function relative to the method
described in the previous section, and could be also regarded as a regularization method.
Analogous results can be derived with similar passages for the three dimensional problem

and a geometrical arrangement with infinite planes.

Figures 6.9 and 6.10 report the reproduced field and the normalized reproduction error,
respectively, for a focused source in the location [g1, ¢3] = [ 0 m, 0.5 m], in the interior of
A. The wave number is £ = 10 rad/m and the distance between JA and 9V is d = 1 m.
The source strength was computed with equation (6.29). The numerical integrations for
the computing a(y) and p(z) have been performed with the same method used for Figure
6.7.

FIGURE 6.6: Pressure field generated by a line source (vertical black line) located at
[q1,¢3] = [0 m, 0.5 m]. The wave number is k£ = 10 rad/m
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FIGURE 6.7: Reproduced field for a focused source located at [¢1,q3] = [ 0 m,0.5 m].
The wave number is £ = 10 rad/m and the distance between JA and 0V is d = 1 m.
The source strength was computed with equation (6.15).

FIGURE 6.8: Normalized reproduction error (%, clipped at 10%) for a line source
located at [q1,¢3] = [ 0m,0.5 m]. The wave number is k¥ = 10 rad/m and 9V is
d =1 m. The source strength was computed with equation (6.15).
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FIGURE 6.9: Reproduced field for a focused source located at [g1,¢s] = [ 0 m,0.5 m].
The wave number is k¥ = 10 rad/m and the distance between A and 0V is d = 1 m.
The source strength was computed with the time reversal technique, equation (6.29).

10

FIGURE 6.10: Normalized reproduction error (%, clipped at 10%) for a line source
located at [g1,¢3] = [ 0 m, 0.5 m]. The wave number is £ = 10 rad/m and 0V isd = 1 m.
The source strength was computed with the time reversal technique, equation (6.29).



Chapter 6 Methods for dealing with the ill-posedness 138

6.2.2 Parallel plane geometry

Results analogous to those presented for the parallel line geometry can be obtained for
the three dimensional case, with the infinite plane geometry introduced in Section 4.3.
The most relevant difference is that the integral (4.84), which gives the solution, should
be limited to the disk By, := {k € R? : |k| < k} rather than to the interval [k, k].
With mathematical passages analogous to the case of the linear geometry, we derive the
following solution for a focused virtual source in 3D:

B *ic(lﬁ) gin'(y_q)
as.t.(y) :/B (& qSWdS(K/) (635)
k

where the simplifying assumption has been made that OA = {y € R3 : y3 = 0}. The
reproduced field is given by inserting this equation into expression (4.59) for S, thus
obtaining

; (%) (1251 as)

(Sasye) (z) = 87'r2/B Tei[m(z1*q1)+n2(z2*q2)]d5(n)7 z € R? (6.36)
k

This expression clearly resembles the Weyl integral (4.53), with the relevant difference

that the integration is now limited to |x| < k.

Figure 6.11 represents the sound field due to a monopole source at the location [q1, g2, ¢3] =
[0, 0, 0.5 m]. The square plotting area has a side length of 2 m and the distance be-
tween OA and OV (the latter drawn for reference only) is d = 2 m. The wave number
is k = 12 rad/m. Figures 6.12 and 6.13 show the reproduced field and the normalized
reproduction error (5.31), respectively, for a focused virtual source in the same location
q. The density as. (y) was computed from equation (6.35). The integration was limited
to the ball |k| < k—0.10002 (in order to avoid the singularity at |x| = 0), and performed
by applying a quadrature formula, with a regular sampling of dx; = drke = 0.10002.
The field has been computed using the definition of the single layer potential, equation
(3.15), having limited the integration to the square of size [—=5 m,5 m| X [—=5 m, 5 m] and

applied a discretization dy; = dyo = 0.176 m.

A comparison of the reproduction error in Figure 6.13 with the analogous plot for a
linear geometry, Figure 6.8, highlights the presence in the former field of an elongated
area of inaccurate reproduction, perpendicular to dA and directed towards q. This error

was absent in the 2D case. In fact, the reproduction error is given by

i (%) (|23]=q3)
— _ - 1[“1(21—(]1)""/42(22—(]2)}
€s.t.(2) ) /Ili|>k %) 2 dS(k), ze A (6.37)



Chapter 6 Methods for dealing with the ill-posedness 139

The error along the half line £ := {z € R?: 21 = q1, 22 = qo, 23 > ¢3}, orthogonal to OA

directed towards q, can be expressed applying to the integral above the substitution

—i(k) = —iVk?—kr2=t,
Kk = VEk2+t2,

kdrk = tdt,
dr
dS(k) = A dt do, =t dt doy
leading to
L[ o tlzsl-as)
— - —t(|z3|—q3
€s.t.(2) 52 . dy, /0 e dt (6.38)
1 e—t(zsl—gs)|™ 1 ,
= _—— = 3 Z E
Tl |, An(zl - o)

This result was derived by Menzies [Men09|, who also pointed out that this error has the
same decay with distance (1/r) of the fundamental solution. Therefore, unlike the two
dimensional case, the error can not be regarded as being limited to the near-field of the
secondary sources. The analysis of the error on £ shows that the latter may be reduced by
increasing the radius of the integration disk By, thus including some evanescent modes

in the computation of a(y).

FIGURE 6.11: Pressure field generated by an omnidirectional point source located at
[91,G2,93] = [0m, 0 m,0.5 m]. The wave number is k¥ = 12 rad/m
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aA

FIGURE 6.12: Reproduced field for a focused source located at [q1,¢2,q3] =
[0m, 0m,0.5m]. The wave number is k¥ = 12 rad/m and the distance between 9A
and 0V is d = 2 m. The source strength was computed with equation (6.35).

FIGURE 6.13: Normalized reproduction error (%, clipped at 50%) for a focused source
located at [g1,¢2,93] = [ 0 m, 0 m,0.5 m]. The wave number is k = 12 rad/m and OV
is d = 2 m. The source strength was computed with equation (6.35).
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6.2.3 Concentric sphere geometry

The case is now considered of a focused source for the arrangement of concentric spheres
discussed in Section 4.1. We consider the target sound field due to a virtual point source
located at g € A\V. As mentioned previously, no exact solution exists for this target
field, but it is possible to seek an approximate solution. One attempt can be made by
applying the spectral cut-off described by equation (6.1). In this case, considering the
results shown in Section 5.6.1, the approximate solution @, the reproduced field (Sa)(z)

and the error e(z) are given respectively by

N

~ hy(kq) 2v+1 o

s = P,(y - 6.39

st.(y) ;)R%hy(kRA) P (6.39)
al 2+ 1

(Sasi)(z) = Y ikhy(kq)jn(kz) P,(2-q), z€ A (6.40)
v=0
> 2v 41

ci(z) = S ikhy(kq)ju (k)= P(z-4), 7€, 2 <q  (641)

v=N+1 dm

This technique is implicitly used in High Order Ambisonics, since the order of the series
above is finite. It is not always well understood that the nonexistence of the solution
and to the second Picard condition are actually related to what is sometimes referred
to as the bass boost effect for focused sources. This phenomenon corresponds to a large
amount of energy generated by the secondary sources at low frequencies and to severe
reproduction artifacts in the region A\V (see figures 6.16 and 6.17). The denseness of the
range of S, discussed in Section 5.2, ensures the fact that an arbitrary small error can be
achieved on dV (and consequently in its interior, but not in its exterior) by letting the
order N become arbitrarily large. This has the side effect of increasing the norm of a(y)
and making the system more and more unstable, with serious reproduction artifacts in

the exterior of V.

A similar method includes the smooth damping of the spectrum of the operator, as shown

by equation 6.3. This leads to

. > hy(kq) 2v+1 .
Qs.t. = Wy P,(y- 6.42
(Siee)(z) = S wyikhy(ha)u(b2) 222 Py (5 4), m e A (6.43)
v=0
> 2w +1
er(z) = S (U= w,)ikhy(kq)j, (k2) 2= P,(2-&), 7€ A, = <q (6.44)
v=0

As already mentioned, the smooth spectral damping technique is widely used in Am-
bisonics, although the use of this technique for focused sources has been suggested only

recently by Adriaensen, in the form of private communications.
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Results analogous to equations (6.39)-(6.44) can be obtained from the equations shown

in Section 4.2 for the concentric circle geometry.

Figures 6.18 and 6.19 show the reproduced field for a focused virtual source, located at
[7q:0q, &q) = [1 m,90°,0°]. The boundary JA is a sphere of radius Ry = 1.5 m and the
wave number is £ = 12 rad/m. The density of the potential was computed with equation

(6.42) and a tapering window w, such that

, v<5h
(I0—-v), 5<v<10 (6.45)
, v>10

Wy =

O u= =

A different method for calculating an approximate solution can be obtained from the
expression of the field due to a monopole-like source given by the Weyl integral 4.54,
with the integration domain limited to |x| < k, similarly to the linear geometry shown
above. An analogous idea was recently developed by Ahrens and Spors [AS08¢| for the
circular array geometry. The extension is shown here to the case of spherical arrays.
Results analogous to those presented here can be found in a recent work by Menzies
[Men09|, which has been of significant inspiration in the derivation of what is presented

here.

We consider a source located at q = [0,0, —d] and the half space I'_4 := {z € R3 : 23 >
—d}, as illustrated by Figure 6.14.

FIGURE 6.14: Horizontal cross-section of A, illustrating the source location q and the
half space I'_4.
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We have seen that the field due to a point source can be expressed in I'_; by the Weyl
integral 4.54, reported below for clarity

o etklz—dl i eiC(r)(z3+d) —_ .y 6.46
(Z’q)_47r|zq|_8772/RzC(n)e (k), 23> — (6.46)
The domain of integration is now limited to the disc
By :={k € R%: |k| < k} (6.47)
thus obtaining
Clz,q) = - / T dS (k) R (6.48)
Z,q) = — ———e"™?%dS(k), z € :
872 Jp, (k)

As observed above, this field is due to a superposition of propagating plane waves, and
this is the field we want to reproduce. é(z,q) is defined in all R3, but it gives an
approximation on I'_; of the field due to a monopole source at q. Following the passages
illustrated in Appendix D, we obtain the exact solution as(y) for the inverse problem
(3.19) with G(z,q) as the target field. This is given by

ag(y) = i (Z‘; ii”jn(kd)(2n+ 1)1%) MPV(COS 0,) (6.49)

=0 =0 ikRihl,(k:RA)
where
1 21/1—1-1 [V = n]
Py = / P,(a)Pp(a)da = 0 [V —nis even, v # 1]
0 (71)%<V+"71)1/!n!

2”+n71(l/—n)(n+1/+1)[<%)! (%4)']2 [n even, v Odd]

(6.50)
or equivalently (see Appendix D)

A i (2v +1)
a(;(y) = 2(471/0 eikd Py(x)d:c> WPV(COS%) (6.51)

This solution has been derived for r4 = d, 6, = 7, but it can be extended to any other
virtual source location by substituting P, (cos §,) with P,(—y-q) and j,(kd) with j,(kq).
This leads to

SN TN y v (2v + 1 .
a@(Y) = ;}(MYZE:OZ ]n(kQ)(2n+1)Pnu> Méhl,(kR)A)Py(_q'y) (6.52)

A comparison of this result with expression (6.42), giving the approximate solution ob-
tained with the smooth spectral damping technique, shows that as could be also in-

terpreted as an approximate solution obtained with the same technique and a distance



Chapter 6 Methods for dealing with the ill-posedness 144

dependent tapering window w,(d) given by

1

wy(d) := (k)

ii”jn(kd)(%z +1)P,, (6.53)

n=0
In view of the spherical harmonic summation formula (2.53), we observe that

. o0 . A
Ari Y (—q)*
ik )m (=9) (6.54)

(Y/agon = (;'”%(’“d)@”“)p ™ | ik (kRy)

47

ik (Y 4V Y (—q)*
= (= hdrp (Vg | ———

(477/0 c (z) x) ikhy (kRy)

Note that from the Jacobi-Anger expansion (2.56) we have that
Ami" Y} (=Q)" o (k) = (Y9 g (6.55)

which corresponds to the coefficients of a plane wave traveling in the direction q. From

this result and from expression (4.4) of S, we obtain

(Sag)(z) = Y ikh{D(kRa)ju(kz) Y V(@)Y ag)on (6.56)
v p=—v
oo ik 1 o , A N
= VZ::O <47r/0 ezkdey(I)d$> 4mi" 5, (kz) Mz_:y YH(2)YH(—q)
3 /l:k; 1 i x -V - A ~
= VZ::O <47r/0 etkd Py(flﬂ)dw) 1 jV(kRV)(QV + 1)P1/(_q ) X)

This result shows that the reproduced field can be interpreted as the field due to a plane
wave traveling in the direction q (again, see the Jacobi-Anger expansion (2.56)), whose
Fourier coefficients have been modulated by the term in the brackets in the equation

above.

Figure 6.15 represents the field due to an acoustic monopole located at [rq, 0y, ¢q] =
[1 m,90° 0°], in the interior of A. Figures 6.16-6.21 report the reproduced field and
the normalized reproduction error (5.31) for a focused virtual source located at q. The
source strength functions have been calculated with the different methods discussed
above, namely equations (6.39), (6.42) and (6.52). In all cases, the series were truncated
to the order N = 20, although the smooth spectral damping solution can be regarded
as truncated to the order N = 10 for the effect of the smoothing window (6.45). The
boundary 0A, reported in the figures, is a sphere with radius Ry = 1.5 m, while the wave

number is k = 12 rad/m.

It can be observed that the simple spectral cut-off (figures 6.16 and 6.17) allow for a very

accurate reproduction within the ball B, := {z € A : z < ¢, while the reproduction error
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is very large in the exterior of this region. The large amplitude of the reproduced field
indicates that the secondary sources generate a very large amount of acoustic energy.
The smooth spectral damping (figures 6.18 and 6.19) allows for the computation of a
much more stable solution, which also leads to a smaller error in the exterior of B,;. On
the other hand, the normalized reproduction error is larger within B,. Finally, figures
6.20 and 6.21 illustrate the performance of the method given by equation (6.52). The
average error is small in the majority of the half space I'_g4, but the reproduction is
inaccurate in a long and narrow region through the center of the array. This result is in

accordance with what has been discussed in section 6.2.2 and in [Men09].

FIGURE 6.15: Horizontal cross-section of the field generated by an omnidirectional
point source (red dot) located at [ry, 04, ¢d¢] = [1m,90°,0°]. The wave number is
k = 12 rad/m. The sphere represents A and has a radius Ry = 1.5.
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FIGURE 6.16: Horizontal cross-section of the reproduced field for a focused virtual
source located at [rg,0,, ¢4 = [1 m,90°,0°]. The source strength a(y) was computed
with equation (6.39).

FIGURE 6.17: Horizontal cross-section of normalized reproduction error (%) for a
virtual source located at [rq,0,, ¢4 = [1 m,90°,0°]. The source strength a(y) was
computed with equation (6.39).
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FIGURE 6.18: Horizontal cross-section of the reproduced field for a focused virtual
source located at [rg,0,, ¢4 = [1 m,90°,0°]. The source strength a(y) was computed
with equation (6.42).

FIGURE 6.19: Horizontal cross-section of normalized reproduction error (%) for a
virtual source located at [rq,0,, ¢4 = [1 m,90°,0°]. The source strength a(y) was
computed with equation (6.42).
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FIGURE 6.20: Horizontal cross-section of the reproduced field for a focused virtual
source located at [rg,0,, ¢4 = [1 m,90°,0°]. The source strength a(y) was computed
with equation (6.52).

FIGURE 6.21: Horizontal cross-section of normalized reproduction error (%) for a
virtual source located at [rq,0,, ¢4 = [1 m,90°,0°]. The source strength a(y) was
computed with equation (6.52).
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6.3 Strategies for overcoming the nonuniqueness of the so-

lution

In Section 5.5 we have studied the problem of nonuniqueness of the solution, which might
arise when solving the integral equation (3.19). We have seen that this problem arises
when the operating wave number k corresponds to one of the Dirichlet eigenvalues k,, of
the control region V' (not of the reproduction region A). In fact, it has been shown that
in this case the nullspace of S is non-trivial, and given a solution a(y) of the integral
equation under consideration, the function a(y) + ao(y) is also a solution, where a(y)
can be any function belonging to the nullspace of S. On the other hand, only one of
these solution allows for the reproduction of the target field in the interior of V (recall
that, in view of the uniqueness of the interior Dirichlet problem discussed in Section 3.3,

the sound control effort has been restricted to the boundary of the control region).

In what follows, several strategies are briefly presented, which allow the uniqueness
problem to be overcome. As an example, we will consider the simple case of spherical
geometry (the control region is a sphere of radius Ry ) and the wave number equal to
the Dirichlet eigenvalue ko, that is & = ko and jo(koRy) = 0. In view of the results

presented in Section 5.6.1.4, we see that all functions of the form

o0 14 Yyﬂ(y) 0 A
a(y) = (Y pov +aYy(y), a € C  (6.57)
; E_:V ikR2 RXED (kR ) g, (kRy) °

are solutions of the integral equation under consideration, but the reproduced field equals

the target field in the interior of V' for only one choice of the parameter a.

6.3.1 Changing the shape of the control region

Since the nonuniqueness problem is associated with the Dirichlet eigenvalues of V', and
since these depend in turn on the shape of V', it is reasonable to change the shape of
this region in order to overcome the nonuniqueness issue (see [BR0O7| for related method
applied to spherical microphone arrays). Clearly, this technique can be applied only in a
limited number of cases, namely when the shape of the control region is not imposed by
physical constraints (such as the shape of a microphone array). On the other hand, this
simple strategy proves to be very effective when the solution of the problem is computed

from numerically simulated data.

In the example above, we can modify the control region and choose a sphere of radius
Ry # Ry, such that jo(kl?v) # 0. With this modification, the solution can be computed
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with the usual formula (4.19), reported here in the form

B> Q) YVilplov (6.59)

== kR, B2 (kRp) G, (KRy)

6.3.2 CHIEF points

Another method, frequently used in applications of the Boundary Element Method, con-
sists of including some additional control points in the interior of V. The determination
of the number and location of these so-called CHIEF points depend on the problem un-
der consideration. This method was introduced by Schenck, who proposed in 1967 the
so-called Combined Helmholtz Integral Equation Formulation (CHIEF) for the solution
of radiation problems [Sch68].

In the case of the example above, an additional control point is introduced at the center
of the coordinate systems, and the target field has at this location the value p(0). Using
the results presented in Chapter 4 and especially equation (4.4), it can be shown that

p(0) = ikjo(0)ho(kR)(YS|a)on (6.59)

Recall that 7, (0) = 0 if v # 0. Combining this result with the expression (6.57) for the

solution a(y), we have that

_ p(0)
ikR3 jo(0)ho(kRA)Y(0)

(6.60)

6.3.3 Scattering object

A further strategy is given by introducing (physically or by simulation) a scattering
object in the interior of the control region, and by formulating the inverse problem using
the sum of the target and scattered field (namely, the total field) in place of the target
field only. This leads to the following equation

pr(x) = (Sa)(x) + ps(x), x € OV (6.61)

where p;(x) is the field scattered by the object in the interior of V' and measured on 0V,
and pr(x) = p(x) + ps(x) is the total field. If this object is such that we can compute
the scattered field for a given incident field, it is possible to calculate the source strength

a(y) from the equation above.

We assume that, in the case of the example above, we introduce a rigid (sound-hard)

sphere of radius Ry < Ry n the interior of V. Using equation (4.4) it is possible to show
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that the reproduced field p(x) = (Sa)(x) can be expressed by the form

(Sa)(x) = iikh,(,)(kRA)jy (kRy) Z VAR (Y a)or (6.62)
v=0 pn=—v
= ZJV kRy) Z A Yl (%

pu=—v

With the manipulations presented in [Wil99], analogous to those reported in Appendix
C for the sound-soft sphere, it can be shown that the scattered field is given by
) . v
kR .
ps(x) = —Mh,,(mv) 3 A (@)YER) (6.63)

2 h(kR,) s

Combining the three equations above, the inverse problem under consideration is refor-

mulated by
pr(x) = Z::,) <j,,(kRV) - m (kRy) >,;VAW (6.64)
= sz (ju(kRv )h)/ (kRs) — jJ/ (kRs)hy(kRy)) Z”,((IZ};A; Z (YHa)opr Y (X)
v=0 v S p=—v

Following mathematical manipulations analogous to those presented in Chapter 4, we

obtain the following expression for the solution

Bk R)YE ) (Y pr)ov
;)M_ZV RER I, Gk (k) — 3 kR bR ) B R

It can be observe that despite jo(kRy) = 0, the denominator of the fraction above does

not equal zero for v = 0.

In the special case when R; = Ry, we can apply the Wronskian relation (2.38) to
equation (6.65), thus obtaining

Z > - RzZR‘;ﬁ);Z)(y) (Y pr)ov (6.66)
v=0 p=—v

This technique is often used for microphone arrays, in which the capsules are flush
mounted on a rigid structure. A typical case is represented by spherical microphone

arrays mounted on rigid spheres (see for example [Pol05]).

The method presented above can be also applied to scattering objects with different

boundary conditions (such as sound soft objects or with impedance boundary conditions

[CK92)).
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6.3.4 Impedance boundary condition

It is also possible to describe the target sound field on 9V by a linear combination of the
pressure field p(x) and of its normal derivative V,p(x). This represents an impedance

boundary condition [CK83, p.97|. The inverse problem under consideration becomes

0(Sa)(x)

f(x) = p(x) +inVap(x) = (Sa)(x) + MGTX)’ x e dV (6.67)

In view of the definition (3.16) of the operator S, the equation above is rewritten by

_ : y)
F(x) = /a ) [G(x,y) +ing e | ay)as(y). x e ov (6.68)

It can be easily understood that the function p(x) can be interpreted, in practical terms,
as the target field measured by a continuous distribution of ideal omnidirectional mi-
crophones arranged on dV. Analogously, the function f(x) = p(x) + inVyup(x) can be
regarded as the measurement of the target field with a continuous distribution of ideal
directional microphones. In fact, directional microphones can be regarded as devices
capable of measuring a combination of the pressure field and of its spatial derivative in

a given direction.

For the example with spherical geometry considered above, using equation (4.4) we can

rewrite equation (6.68) as

fx) = ikh{) (kRA)(ju (kRv) + inkjy) (kRy)) Z Y& (Y a)an, x € OV (6.69)
v=0 p=—v

Applying again manipulations analogous to those presented in Chapter 4, we obtain the

following expression for the solution

Y/'(©)
zxzjo uzu ikR% R3 (ju(kRy) + inkj)(kRy)) hy(kRy) (Y fav (6.70)

As in the previous case, although jo(kRy) = 0, the denominator of the fraction above

does not equal zero for any v.
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6.4 Analogy with NAH and with the theory of acoustic scat-

tering

6.4.1 Sound field reproduction and Near-Field Acoustical Holography

In Section 5.7 it has been argued that the stability of the solution a(y) depends also
upon the distance between the boundaries 0V and dA. More precisely, the larger is the
distance between the two surfaces (or contours for the 2D problem), the steeper is the

decay of the singular values o,, of the integral operator S.

A further insight into this phenomenon is provided by an analogy with Near-Field Acous-
tical Holography (NAH). We assume that we want to determine the normal particle ve-
locity w(y) of the acoustic field on JA from a set of measurement of the field p(x) on
OV. It is assumed here that a continuous measurement of the pressure field on 9V is pro-
vided. As described by Williams [Wil99], this operation can be achieved by constructing
an inverse velocity propagator. This operation is expressed explicitly for the spherical

and planar geometry respectively by 2

. N kjL(kRy) o
w(y) = zpockZR%,g,, R 2 Z Y)Y pov (6.71)
i) = | ;ﬁﬁffd] (6.72)

We want to compare now these equations with the expression for the solution a(y)
provided by (4.19) and (4.85), respectively. It can be observed that, apart from the term
ipock arising from the Euler’s equation (see, for example, [Wil99, p.19]), equations (4.85)
and (6.72) differ only for the factor 2 (which hides, as we will see later, a very important

meaning).

The term (ikR3h,(kRA))™! in equation (4.19) is substituted in equation (6.71) by the
term kj.,(kRp). Considering the high order expansion of spherical Bessel and Hankel
functions given by equations (2.39) and (2.40), respectively, we observe that

y _ d (kRa)” \ _  (kRa)”
Rip(RRA) - = ViR v o) TV Ra@ ey VT (6:73)

1 1 i(kRp)"H! (kRp)
_ — (4N (6.74
ikR?\h](jl)<kRA) ZkR% (2v — D! ( )RA(2V+1)!! ( )

In comparison with Equation (7.13) in [Wil99], the factor R} in the denominator of (6.71) has been
added, as (-|Yo = (-|-Yov / R}, where Q is the unitary sphere. Also, the factor k. appearing in Equation
(3.4) in [Wil99] has been substituted by ((x) and the argument of the exponential ik.(z — z5) has been
substituted by —il(x)d.
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We observe that the asymptotic expression for the radial term in equation (6.71), after

having removed the singular functions normalization factor(RxRy )~ !, is given by

kj! (kRn) v <RA>V
—_— = [ = vV — 00 6.75
R%/Jy(kRV) RV RV ( )

This compares well (although it is not identicall) with the inverse of the large order

approximation of the singular values given by equation (4.15) and that is repeated here:

1 2041 Ry \"
S A 7
- Ry <Rv> vV — 00 (6.76)

These considerations shows that the ill-conditioning of the sound field reproduction prob-
lem addressed here, determined by the decay of the singular values of S, is analogous,
though not identical, to the ill-conditioning of the Near-Field Acoustical Holography
problem of determining the normal particle velocity on A from measurements on 9V
More specifically, if we consider the forward velocity propagator to be an operator, we
can observe that its singular values exhibit an exponential decay identical to the singular
values of the inverse operator S~!, and this exponential decay is governed by the distance
between 9V and JA. It should be noticed that the linear part of the two decays is differ-
ent: in the spherical geometry, we have 1/v for the velocity propagator and 1/(2v + 1)
for S, while for the planar geometry we have |((k)| and 2|((k)|, respectively.

In view of these considerations, it is reasonable to address the following problem: what
happens when the control region and the reproduction region are the same (V = A)? In
this case, the asymptotic decay of the singular values is dominated by a linear factor,
and the problem is therefore said to be mildly ill-posed. As is clear from the holography
problem discussed above, the linear decay of the singular values is due to the operation

of taking the derivative of the field in order to obtain its normal derivative.

At this point, it could be intuitively argued that the source strength a(y) and the normal
derivative of the field on OA are strictly related. This is not surprising, if we consider
the first Rayleigh integral (see equation (6.88) or [Wil99]). We will see that a relation

actually exists, but it is not an identity.

6.4.2 Jump relation and simple source formulation

We consider the case when V' = A. In chapter 5 it has been shown that any sound field
due to a source outside the reproduction region can be reproduced exactly, or in other
words it can be represented by the single layer potential (3.15) in JA. We define the
sound field generated by the potential in A the interior field p;(z), and the field in the
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region R™\A, m = 2,3 the exterior field p.(z). In mathematical terms this reads

pi(z) = (Sa)(z), z€ A (6.77)
pe(z) = (Sa)(z), ZGR?)\K (6.78)

If the density a(y) is continuous, the single layer potential (3.15) is continuous throughout
R™ m = 2,3 [CK92|, implying that

pi(y) = pe(y), y €A (6.79)

p; and p. represent two different fields, defined on different domains and each with a
different physical nature. Even though the two fields have the same value on JA, the
values of their normal derivatives V,p; and Vp. are in general different. The difference,
or jump, between the normal derivatives is physically due to the presence of the layer of
secondary sources on JA, which determine a discontinuity in the gradient of the single
layer potential (3.15). This difference is given by the jump relation (2.102), which is

reported again here in the form

a(y) = Vapi(y) — Vape(y), y € OA (6.80)

If we choose the interior field p;(z) to be equal to the desired sound field p(z) in A, then
the jump relation provides the expression for the secondary source strength function a(y),
which allows a perfect reproduction of the desired field in A. It is therefore possible to

write the following expression

p(Z) = oA G(Z7y>[vnpi(Y) - Vnpe(y)]dS(Y)a z€A (6'81)

This result is perfectly consistent with the Simple Source Formulation presented in
[Wil99]. The arguments presented here represent a different method for obtaining the
same result. In order to obtain the source strength from the complete knowledge of

the desired sound field, we need to compute the normal derivative of the exterior field,

vnpe(y)-

6.4.3 Equivalent scattering problem

We assume now that dA does not represent anymore the secondary source layer, but
it represents instead the boundary of an impenetrable scattering object. If the de-
sired sound field p(z) impinges on this scattering object, a scattered sound field ps(z)

is generated. This field is a radiating solution of the Helmholtz equation [CK92|, thus
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representing the solution to an exterior problem. The sum of the (incident) field p(z)
and of the scattered field ps(z) gives the total field pr(z).

The scattering object A is assumed to be a sound soft object, or in other words an idealized
object with pressure release boundaries. In mathematical terms, this corresponds to the

following boundary condition:
pr(y) =0, y€oA (6.82)

This means that the acoustic pressure of the total sound field equals zero on the boundary
of the scattering object. As we have seen, this condition is referred to as the homogeneous

Dirichlet boundary condition.

Under these assumptions and given a target/incident field p(z), it can be easily seen that

ps(y) = —ply), y €0A (6.83)

Recalling the definition of the exterior field given above, in view of equation (6.79) and

of the uniqueness of the exterior Dirichlet problem [CK83|, it can be easily seen that
ps(z) = —pe(z), x € R™A, m=2,3 (6.84)

In view of this result and of the definition of pp(z) given above, it is possible to rewrite

equation (6.81) as follows

p(z), xeA

—ps(z), xERNA (6.85)

G(z,y)Vapr(y)dS(y) = {
OA

This meaningful result can be summarized by the following sentence:

Given a desired field p(x) and a continuous distribution of monopole-like
sources on JA, we wish to compute the function a(y), representing the strength
of these sources, which allows for an exact reproduction of the desired field
in A. This function is equal to the normal derivative of the total field pr(y)
on JA, which is generated by the scattering of the desired field by a sound
soft object with the shape of A.

This result completes the discussion on the analogy with Near-Field Acoustical Holog-
raphy, since it shows that the source strength a(y) is not exactly equal to the normal
derivative of the target field on A, but it is rather equal to the normal derivative of the
total field (incident+scattered) on A.

Equation (6.85) represents also an important result with respect to the exterior field:

The sound field generated by the layer of secondary sources in the exterior
region R™\A, m = 2,3 equals to the scattered field, with phase shifted of 180°.
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For the case of A being a sphere with radius Ry, the total scattered field on OA is derived
in appendix C and is given by

in Z Z Zkth Y“(y) (686)

v=0 pu=

where, assuming that j,(kRp) # 0 (namely, k in not one of the Dirichlet eigenvalues for
V), Au is given by [Wil99]
(Y p)oa

A = -2
" R3jy(kRy)

(6.87)

As expected, this expression coincides with the expression for a(y) given by equation
(4.19) for the case of Ry = Rj.

We consider the case of A being an infinite plane and we study the acoustic scattering
by a pressure release infinite plane 0A. We assume that the incident field is due to
a monopole source with strength m at a distance d, say, from the plane. It can be
seen that the scattered sound field is equivalent to that generated by a mirror source,
specular in respect to the scattering plane to the monopole source generating the incident
field, but with phase-reversed strength —n. This scattered field satisfies the pressure
release boundary condition pr = 0 on the scattering plane. From simple geometrical
considerations it follows that the normal derivative of the scattered acoustic field equals
the normal derivative of the incident field. Therefore, the normal derivative of the total
pressure field, Vyupr, equals twice the normal derivative of the incident field. This
argument can be extended to any sound field of interest. If this result is substituted
into the jump relation (6.80), we see that the single layer potential reduces to the first
Rayleigh integral formula [Wil99]:

p(x) = ” G(x,¥)2Vap(y)dS(y) (6.88)

This result is perfectly consistent with the expression of a(y) given by equation(4.85).

In view of equation (6.72) and assuming that n = [ 0, 0, —1], we can indeed observe that
[ O]
2Vap(y) = —2(ipock)io(y) = =27 |(Fp) 7554 | (V) = aly) (6.89)

where the last equality is due to equation (4.85).

6.4.4 High frequency scattering and the Kirchhoff approximation

The result derived for the infinite plane proves to be useful also for different geometries
involving a compact and convex set A when the wave length considered, A = 27 /k, is
much smaller than the characteristic dimension of A. The characteristic dimension can

be thought as the radius of the smallest sphere that fully encloses A.
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In this high frequency case, as suggested by Colton and Kress [CK92, p.54], it is possible
to solve the scattering problem using the Kirchhoff approximation of the total field. As
a first step, we divide the boundary 9A into the so called illuminated region OA_ and
the shadow region OA,. They correspond to the portions of JA which are illuminated
and not illuminated, respectively, by the incident field. For example, in the case of an
incident plane wave traveling in the direction k, these two regions correspond respectively
to [CK92]

ON_- = {y€odA:y-k<0} (6.90)
0Ny = {y€odA:y-k>0} (6.91)
In the specific case of A being a sphere, these two regions correspond to two hemispheres.

Two relevant approximation are made:
e In the shadow region 9A, the total field pr(y) and its normal derivative Vyupr(y)
equal zero.

e In the illuminated area OA_, the scattering object can be considered locally as a
plane. Therefore, as shown in Section 6.4.3, the normal derivative of the total field

Vapr(y) equals twice the normal derivative of the incident field Vyp;(y).

These approximations can be expressed mathematically as follows:

2Vup(y), y € OA_
Vapr(y) = oY) (6.92)
0, y € 8A+
Inserting these formulae in equation 6.85, we obtain the following result:
p(x) ~ G(x,¥)2Vap(y)dS(y), x €A (6.93)

OA_
In practical terms, this meaningful result implies that:

If the wavelength is much smaller than the size of the reproduction region,
the solution of the sound field reproduction problem can be computed by
applying the Kirchhoff approximation. This implies that only the secondary
sources in the illuminated region are active, and that their strength equals

twice the normal derivative of the target field.

This result is analogous to the Wave Field Synthesis approach with an analytical sec-
ondary source selection criterion, proposed by Spors [Spo07], derived from the Kirchhoff-

Helmholtz integral.

As mentioned above, this result is a high frequency approximation of the more general

result given by equation (6.85), and does not produce an accurate reproduction of the
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desired field when the wavelength considered is comparable to the size of A. On the
other hand, this approach allows for an explicit and simple computation of the source
strength function a(y) in terms of the normal derivative of the incident field, with no

need to solve a (usually non trivial) scattering problem.



Chapter 7

Towards the practical realization of

a sound field reproduction system

The theoretical results presented in the previous chapters have been derived under two

relevant assumptions, namely:

e An infinite number of secondary sources is continuously distributed on the bound-

ary of the reproduction area.

e The operating frequency w and therefore the wave number k are fixed.

Although these two assumptions have proved useful for deriving the results shown in the
previous chapters, they need to be removed when these theoretical results are applied
to real multi-channel audio systems. Such systems clearly include a finite number of

secondary sources, and they usually operate on a broad range of audio frequencies.

In the first section of this chapter the consequences are studied of the discretization of
the secondary source distribution. It is clear that the use of a finite number of secondary
sources instead of a continuous distribution generates reproduction artifacts. These
artifacts are studied in detail, with special attention to the problem of spatial aliasing.
This and other phenomena described below are well-known and discussed also in the
literature dedicated to sampling theory (see for example, [Higd6| and [Mar01]). The

cases of spherical and linear geometry are analyzed with a greater level of detail.

The second section of this chapter is dedicated to an alternative method for solving the
sound field reproduction problem under consideration. This technique may be regarded
as a Boundary Element Method and involves directly the discretization of the single layer
potential S, which assumes the form of a matrix, and of both the source strength a(y)
and the pressure profile p(x), which are therefore represented by vectors. The solution

of the problem involves a matrix inversion. It is demonstrated that in the limiting case

160
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of a continuous distribution of sampling points on 0V and dA, this method is equivalent

to the solution of the integral equation discussed in the previous chapters of this thesis.

The last section of this chapter is concerned with the extension of the sound field re-
production problem to sound fields characterized by a broad-band frequency content
rather than by a single frequency. This analysis leads to the formulation of time domain
functions, corresponding to the signals driving the loudspeakers of a real sound field re-
production system. In some special cases, such as the reproduction of the field generated
by a single motionless source, these signals can be obtained by convolving a single signal
with a set of FIR filters, one for each loudspeaker. Explicit expressions for these filters

are derived for the special cases of spherical, circular, linear and planar geometry.

7.1 Discretization of the driving function

We assume now that the continuous distribution of secondary sources on 0A is substituted
by an array of L < oo secondary sources on JA. This passage implies that the single

layer potential (3.15) is substituted by the following sum

L
pz) =) G(z,y) iy, z€R> (7.1)

(=1
Recalling the definition of m given in Section 3.2, we observe that the my is the strength
of the ¢-th secondary source, located at y, € A, and plays here the role that a(y)dS(y)
plays in the single layer potential (it is recalled that a(y) is actually defined as the source
strength density). Equation (7.1) clearly represents the linear superposition of the sound

field generated by the L secondary sources.

7.1.1 Sampling scheme

We refer to the arrangement of the L secondary sources on 0A, that is the set of locations
ye, as the sampling scheme. Assuming JA bounded, it is possible to associate to the
sampling scheme a partitioning of JA into Dirichlet (or Voronoi) cells Dy. These are
defined by [SK97]

Dyp:={y € OA:|ly —yellon = min [ly —y;lloa}, ¢=1,2,..L (7.2)
1<5<L

where ||y — y¢||aa defines the distance on OA between y and y,. It holds that [SK97]

L
U Dy = 0A
/=1

Dy U Dy has empty interior.
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These expressions mean that the regions Dy cover all A and that they do not overlap.

Each Dy has a surface (or length, for the 2D problem) equal to ASy. It is clear that

L
> AS, = /(M ds (7.3)
/=1

This formula represents the area or length of A.

7.1.2 Quadrature of S and sampling of a(y)

Expression (7.1) can be interpreted as a quadrature formula of the integral representing
the single layer potential. In order to show this, we subdivide the surface A into the L
Dirichlet cells defined above. We then assume that

G(z,y)a(y)dS(y) = G(z,ye)a(ye)AS;, £=1,2,..L, z€ A (7.4)
D,

If this approximation is accurate, we see that the single layer potential (3.15) can be

rewritten in the following form:

L
(Sa)(z) = | Glzyay)dS(y) ~ > " Gz ye)alye)AS (7.5)
/=1

A comparison of this expression with equation (7.1) leads to the following result:
e = a(yr) AS (7.6)

which shows a possible expression of the source strength 7, as a function of the source

strength density a(y) and of the sampling scheme adopted.

We can derive the same expression using the single layer potential (3.15), but substituting

the density a(y) with the sampled density as(y) given by

L
as(y) =Y a(y)doa(y — yeo)AS, (7.7)
=1

Using this formula as the density of the single layer potential S and in view of the

property (2.29) of the Dirac delta function we obtain the following result:

L

(Sas)(z) = » G(z,y)as(y)dS(y) = > _ G(z,yo)a(yr)AS, (7.8)
/=1

This shows that substituting the density a(y) with its sampled version as(y) is equivalent
to applying the quadrature method given by equation (7.5).
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If the single layer potential Sa with continuous density provides an exact reproduction
of the desired field, this is generally not the case for the single layer potential Sas, with
sampled density. As we have seen, the accuracy of the reproduction depends on the
accuracy of the approximation given by equation (7.4). This is a very critical step of the
quadrature method, which might or might not lead to a sensible approximation of the
target field. The validity of the approximation (7.4) depends clearly on the functions a(y)
and G(z,y) and on the sampling scheme adopted. It is possible that the approximation
is accurate for some cells Dy and/or for some locations z € A, while it might not be
accurate for others (this is usually the case for strongly non-uniform sampling schemes).

If this approximation is very inaccurate, serious reproduction artifacts might occur.

The approximation given by equation (7.4) can be justified by arguments analogous to
those presented, for example, by Rayleigh [Ray97|: if the characteristic dimension of Dy
is small in comparison to the operating wave length A = 27/k and in comparison to the
distance |y, —z|, then the kernel of the integral in the left hand side of (7.4) can be taken

out of the integral, thus obtaining

G(z.y)a(y)dS(y) ~ G(z.y2) / a(y)dS(y) (7.9)

Dy D,

where y, is assumed to coincide with the centroid of the cell D, (this assumption is
accurate for a uniform sampling scheme). This expression can be further reduced to
(7.4) under the assumption that a(y) is almost uniform over D,. This clearly depends
on the smoothness of the function a(y), which is in turn related to the wave number k
(and hence to w) and to the characteristics of the target field - as it has been observed
in Section 5.6, a(y) is smoother the farther is the location q of the virtual source. These
considerations lead to the intuitive consequence that the accuracy of the approximation
depends largely on the operating frequency w as well as on the denseness of the sampling

scheme adopted (that is the number of cells per unit of area or length).

7.1.3 Spatial aliasing and sampling reproduction error.

We have seen that the discretization of the single layer potential, or equivalently the
sampling of its density, might lead to reproduction artifacts. In what follows, the analysis

of these errors is presented.

We define the sampling reproduction error €4(z) as the difference between the target and

reproduced sound field:

es(z) = p(z) — p(z) = (Sa)(z) — (Sas)(z), z€ A (7.10)
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We want to express this error by means of the singular system oy, a,(y), pn(x) of the

operator S. In Section 3.5.3 it has been shown that the representation

an X)On an|a> (7.11)

(corresponding to equation (3.24)) is generally valid only for x € V. It can however be
extended to A for arrangements including separable geometries, such as those discussed
in Chapter 4, for which the Helmholtz equation can be solved by separation of variables.
We will consequently limit the error analysis to the pressure profile p(x), x € 9V for
the general case, and will extend the study to the entire reproduction region A for some

special geometries.

As a first step, we consider the sampled version of the solution given by equation (3.28),

which is given by

L
= dor(y = o) (Z an(y pn|p>av> ASy (7.12)
/=1

We are assuming that a continuous description of the target pressure profile is provided
(p(x) is not sampled). The scalar product of a5 with the singular function a,, is therefore

given by

(anlashon = /6 oy a(y)ds

—~~

y) (7.13)

( |ty = yian(y) an(y)asty >) AS,

1
P (Pm|p)ov

1 m

I
M8

3
[

1

hE
|-
Mh I Mh

(Pm|PYov Y an(ye) am(ye)ASe

i
—
~
Il
-

where the last equality has been derived by applying the property (2.29) of the Dirac

delta function.

7.1.3.1 Orthogonality matrix

We define the orthogonality matriz R as follows:

L
Rom =Y an(ye) am(ye) ASe (7.14)
=1

It can be noticed that this formula is the discretized version of the orthogonality relation
(2.111) of the singular functions, that is (an|am)on = Onm. We can observe that R

is Hermitian, since R, ,, = R} and that both of its dimensions are infinite. This

m,n?

matrix contains the information on whether the sampled singular functions preserve
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their orthogonality or not. More specifically, the elements of R can be interpreted as
the scalar products of one sampled mode a,, s with a non-sampled mode a,,. In fact, we

observe that

L
ams(y) = > am(y)ooa(y — ye)AS (7.15)
=1 )
(anlams)on = /az\ an(y) ; am(y)0on(y — ye)ASe dS(y) (7.16)

L
= D an(y0) am(y) AS; = R

If R is an identity matrix, then the orthogonality of the modes is preserved. On the
contrary, the presence of non-zero off-diagonal terms R, ,, # 0, n # m indicates the
lack of orthogonality between sampled modes. In simple terms, the modes can no longer
be controlled independently of one another. This phenomenon is hereafter referred to
as modal leakage. As we will see soon, this is strictly connected with the phenomenon
known as spatial aliasing. The matrix R is sometimes referred to as the modal correlation

matriz. Clearly, R depends strongly on the sampling scheme adopted.
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FI1GURE 7.1: First 40x40 elements of the orthogonality matrix. JA is a circle sampled
at 10 uniformly arranged locations and kRy < 1.35.

Figure 7.1 represents the example of an orthogonality matrix, with A being a circle
sampled at 20 uniformly distributed samples, and kRy < 1.35 (without this condition,

the singular values and functions may need to be re-ordered). The singular functions are
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given by equation (4.38), that is

eil’ny
(y) = 7.17
ly) = o (7.7

vy = enwlvglw (7.18)

The very regular pattern of R suggests that some sampled modes have a unitary orthog-
onal projections on a given set of different modes. This can be seen by inserting the
definition (7.17) of the singular functions into the definition (7.14) of R and observing
that ASy = 2nRp /L and y; = [R cos ¢y, Rp sin ¢y|, where ¢y = (¢ —1)27/L. This yields

L L—-1
1 . ™
Rum = e D €0 9eaS, = 1 37 el 4 (7.19)
=1 =0

This is a geometric series, whose sum gives

11— t(Vm—vn)2m 1 1— i(Vm —vn)2m
Rym = — e. 2r T .e o (720)
’ L1 _ pitvm=ra)E L1 _ gilvm—vntal)?F

B 1, vpn=vm+al
0, vn#vm+al

, a€Z (7.21)

The same arguments can be used in order to prove the well-known periodicity of the
Discrete Fourier Transform, which clearly shares with the problem considered here the

very same mathematics. In view of (7.18), we observe that

n—1 is odd
%:{ 2 MO (7.22)

" .
-4, mniseven

The combination of the results above leads to

an:

)

{1, n=m+2al or n=—-m-+2aL+1, a€Z (7.23)

0, otherwise
This relation describes the regular aliasing pattern shown in Figure 7.1.

Figure 7.2 represents the absolute values of the elements of the orthogonality matrix for
a spherical surface and a sampling scheme given by the 20 vertices of a regular dodecahe-
dron. The singular functions a,(y) are given by equation (4.8) and are proportional to
spherical harmonics. The condition kRy < 1.9 is imposed, in order to avoid reordering
the singular values. In this case, no simple derivation of the values of the matrix element
is derived. Indeed, the sampling theory for functions defined on a sphere is a complex
topic, whose detailed presentation lies beyond the scope of this thesis. Much research
effort has been dedicated to the determination of sampling schemes for a sphere, with

the aim of obtaining the largest number of independent modes for a given number of
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FIGURE 7.2: Absolute values of the first 40x40 elements of the orthogonality matrix.
OA is a spherical surface and the sampling scheme adopted corresponds to the 20 vertices
of a regular dodecahedron, and kRy < 1.9.

sampling points. The reader can refer, for example, to [SK97|, [RWBO07]|, [Raf05] and
[Zot09] for a greater insight into this subject.

We can observe that in the orthogonality matrices of both the circle and the sphere
there is a square sub-matrix which equals an identity matrix. This is identified by the
red dashed contour line and corresponds to low orders n, m. This indicates that no modal
leakage occurs between low order modes, which are therefore independent of one another
(but they are not orthogonal to higher order modes). This situation is usual for regular
or almost regular sampling schemes. The number of independent modes is related to the
number of sampling points. We observe that for the circle, the number of independent
modes equals the number L of the secondary sources. For the spherical geometry we have

that the number of independent modes is less than the number of secondary sources.

7.1.3.2 Modal cross-efficiency

We go back to the expression of the sampling reproduction error €; and we insert equation

(7.13) in the expression (7.11) of S with sampled density as, thus obtaining

Sas Z Z pn pm|p aviRn m (724>

n=1m=1
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Given the expression (7.11) of Sa with continuous density, and assuming that (Sa)(x) =

p(x), we obtain the following expression for the reproduction error:

() =D > palx) (Pm|p>aV% (Snm — Rnm) (7.25)

n=1m=1

The term o, /0, represents the ratio between the efficiency of the mode a,(y) and the
mode a,(y), and is thus referred to as modal cross-efficiency. This ratio modulates the
energy of the modal leakage, given by matrix R. As the singular values are ordered with
decreasing magnitude, we see that the contributions which are most likely to generate
large errors correspond to those elements of the series with small index n and large index

m.

The modal cross-efficiency does not depend on the sampling scheme adopted, but on
the geometrical arrangement. We see that the spread of the singular values o,, which
is the reason for the generation of a large modal cross-efficiency, is also responsible of
the ill-conditioning of the problem. In light of the results presented in Chapter 6, it can
be argued that the values of o,,/0,, are closer to unity when A and V coincide and the
problem is mildly ill-conditioned. For example, in the spherical geometrical arrangement
(Section 4.1), the modal cross-efficiency has the following asymptotic value (see equation

(4.15))

On W +1 [(Ry\"m
2 oA , , 7.26
Om  2vp+1 <Rv> Yo Pm T 09 (7.26)
When the control and reproduction region coincide (Ry = Ry), this approximation

reduces to v, /vy, in this case the modal cross efficiency is large for large v, and small
vy, (although the singular values may need to be reordered with decreasing magnitude).
Analogously, in the case of planar and linear geometry (sections 4.3 and 4.4), in view of

equation (4.57) we observe that

SR | mm(¢(w)~Im(¢(w)))d (7.27)

This is the exact value (not asymptotic). If V' = A and therefore d = 0, the above
expression clearly reduces to |((x")] / [{(k)|.

The modal cross-efficiency is therefore representative of a given choice of A and OV.
Its value does not describe the reproduction error in the interior of A, but only on the

boundary 0V, also in the case of separable geometries.

7.1.3.3 Spatial aliasing

The loss of orthogonality of the sampled modes discussed above is known as spatial

aliasing, from the Latin word alius (other, among many). As we have seen, the aliasing



Chapter 7 Towards the practical realization of a sound field reproduction system 169

error (used here as an equivalent term for the sampling error) actually represent the fact
that, when attempting the reproduction of a given pressure mode p,,, several modes other

than the desired mode are unintentionally reproduced.

The expression for the sampling reproduction error can be reformulated after having

introduced the aliasing matriz E, defined by

o
Enm = — (6pm — Rnm) (7.28)

Om
As for matrix R, the dimensions of E are both infinite, but in contrast to R, matrix E

is not Hermitian.

An alternative definition of the aliasing matrix might not include the factor oy, /o, in
which case the aliasing matrix would correspond to the difference between the identity

matrix and the orthogonality matrix R.

Equation (7.25) can therefore be rewritten as follows:

Z Z pn pm‘p 8VETL m (729)

n=1m=1

Figure 7.3 represents the absolute values of the aliasing matrix, in a logarithmic scale
(dB), for the same spherical geometry and sampling scheme adopted for Figure 7.2.
The radii of the reproduction and control regions are Ry = 1.5 m and Ry = 0.1 m,
respectively, while the wave number & = 6 rad/m. It can be noticed that the elements
with larger magnitude correspond to small values of the index n and large value of m,
as mentioned above. Clearly, this configuration of the aliasing matrix depends upon the

given choice of Ry, Ry and k.

7.1.4 Spectral truncation and truncation error

A common strategy to limit artifacts due to spatial aliasing lies in the exclusion of the
high orders modes from the computation of the secondary source strength. This can
be achieved by truncating the series of Fourier coefficients (p,,|p)sv, representing the
pressure profile, to a given order M. The mode truncated version of the target profile is

therefore given by

Ps.t.( Z Pm (%) {(pm|p)ov (7.30)

The truncation error, that is the difference between the target pressure profile and its

mode truncated version, is clearly given by

o0

st ()= Y pm(X)(Pmlp)ov (7.31)

m=M-+1
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FIGURE 7.3: First 40x40 elements of matrix E (dB scale). OA and OV are spheres
with radii Ry = 1.5 m and Ry = 0.1 m, respectively, while £ = 6 rad/m. The sampling
scheme adopted corresponds to the 20 vertices of a regular dodecahedron.

It can be observed that this expression is identical to equation (6.8), which describes
the reconstruction error associated to the application of the spectral cut-off. Indeed, this
regularization technique discussed in Section 6.1 (and equivalently the spectral damping)
is an effective method for reducing the reproduction artifacts caused by both spatial

aliasing and ill-conditioning.

When we operate the truncation we are actually trading the sampling error with the
truncation error. The truncation should be therefore applied once we are sure that, in
the region where an accurate reproduction is desirable, the consequent truncation error
will be smaller than the aliasing error we are going to avoid. The orthogonality matrix
is often such that its first N rows and columns define an identity matrix, as shown for
example by the red dashed lines in figures 7.1 and 7.2. Choosing this N as the truncation
order appears therefore to be a sensible option, although it is not necessarily the best

one for every situation.

7.1.5 Pre-aliasing and post-aliasing

The application of the spectral truncation described above implies that the order of one of
the two series in the expression (7.29) of the sampling reproduction error (corresponding
to one of the dimensions of matrices R and E) is M instead of infinity. As discussed
previously, this method corresponds to the exclusion of the high order modes from the

computation of the density a(y). This strategy can be regarded as a pre-aliasing filtering.
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Pre-aliasing error can be avoided by a simple modal truncation of the solution, provided
that the latter has been computed from a continuous description of the pressure profile.
If p(x) was sampled, as in the case when it is measured by an array of real or virtual
microphones, much care should be taken in order to avoid artifacts caused by pre-aliasing

(see discussion in Section 7.2.1).

In any case, the order of the second series in (7.29) is still infinite. This is due to a
physical reason, namely that the finite number of secondary sources is generating all
pressure modes p,(x), including modes of order higher than the truncation order M (see
for example the expansion of a monopole field provided by equation (4.2)). This happens
in spite of the fact that no attempt is made to control the high order modes and that
they are excluded from the computation of the secondary source strengths. Ideally, this
could be avoided by constructing an arrangement of secondary sources (in practice, a
loudspeaker array) which does not generate high order pressure modes. In a way, this
effect is implicitly generated by the physical distance between A and 9V, when these

do not coincide.

The reproduction artifacts due to the projection of the modes of order m < M onto the

higher modes is referred to as post-aliasing error, and is given by

€s,post = Z an pm|p 8VEnm (732)
n=M+1m=1

Analogously, the pre-aliasing error is given by

€s,pre *= Z Z Pn(2z)(Pm|p) ovEnm (7.33)

n=1m=1

Although the post-aliasing can not be controlled by applying signal processing strategies,
its effect is limited by the decay of the singular values o, representing the nominator
of the fraction o, /0, included in equation (7.28). The effect of pre-aliasing might also
be limited by the fact that the orthogonality matrix R is often likely to be diagonal (or

close to diagonal) for low orders n, m and almost uniform sampling schemes.

7.1.6 Reproduced field and total reproduction error

In light of the results presented, we are now able to derive an expression for the repro-
duced field and for the total reproduction error. The expression for the reproduced field

reported below includes the effects of both spatial sampling and spectral truncation:

(Sa8+5 t. Z Z pn pm|p Zn Rn7m (734)

n=1m=1
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The total reproduction error, including both aliasing and truncation errors, is given by

€s+s.t.(z) = Z an pm|p 8VEnm+ Z p] <pj|p>8\/ (7-35)

n=1m=1 j=M+1

= Z Z pn pm|p 8VEnm

n=1m=1

The last expression is analogous to equation (7.29), with the difference that the terms
E,, m have been substituted by the elements of the modified aliasing matrix E, defined
by

On

B = (5an — Ry H (m — M)) (7.36)

Om

where the function H(-), similar to the discrete Heaviside (step) function, is given by

1, m<M

(7.37)
0, m>M

ﬁ(mM):{

Figure 7.4 illustrates a diagrammatic representation of equation (7.35) and of matrix
E. The geometrical arrangement is the same as that used for Figure 7.3. The regions
shaded with blue, green and yellow identify the elements contributing to the pre-aliasing,
post-aliasing and truncation errors, respectively. The gray scale represents the absolute

values of E in dB scale.

7.1.7 Separable geometries

The results presented in Chapter 4 indicate that, in the case of the separable geometries
considered, the singular functions and singular values corresponding to different choices
of control volume V are related by simple mathematical formulae. More specifically, it
has been shown that the singular functions corresponding to different choices of V' may
differ by a complex factor of unitary magnitude (v,, v,) and by a normalization factor
(R‘_/i\’_l/ 2). The singular values for different V' are given by identical functions with

different arguments, and may also differ by a normalization factor.

Using these relations, it is possible to extend the expression for the reproduction error
from OV to the entire reproduction region A. It should be considered that the expression
for the modal cross-efficiency oy, /0y, includes in the numerator the singular value related
to the estimation point z € A, and in the denominator the singular value related to the
control boundary 0V. Consequently, the aliasing matrix becomes a function of z. In the

light of these considerations we can write the following expression, valid for separable
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FIGURE 7.4: Diagrammatic representation of equation (7.35) and of the first 40x40

elements of matrix E. A and 9V are spheres with radii Ry = 1.5 m and Ry = 0.1 m,

respectively, while k& = 6 rad/m. The sampling scheme adopted corresponds to the 20

vertices of a regular dodecahedron. The gray scale represents the absolute values of E in

dB. The regions shaded with blue, green and yellow identify the elements contributing
to the pre-aliasing, post-aliasing and truncation errors, respectively.

geometries:

€s+s.t.(z) = Z an pm‘p 8VEn m( ) (7'38)

n=1m=1
. on(z) -
— ;mzlpn )(PmlP)o m(én,m—Rn,mH(m—M)), zeA, xedV

7.1.8 Reproduction error for spherical geometry

The results presented above are now calculated for an arrangement including concentric
spheres, with reference to the results presented in Section 4.1, and more specifically with

reference to the expressions (4.7)-(4.11) of the singular system.

The relevant fact is highlighted that the relation (4.11) between the index n of the

singular values/functions and the indices v, i of the spherical harmonics, Bessel and

21

Hankel functions, namely v = [/n— 1], p=n—1—v —v* ! | is valid only for small

Tt is recalled that the symbol [-] indicates the ceiling operator (rounding up to the next integer).
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values of the product kRy. For higher frequencies or larger radii of the control region,
this relation is no longer valid as a consequence of the oscillating behavior of the Bessel
functions (see Figure 4.2) Hence, the singular functions and values should be reordered
according to the magnitude of the latter. This would in turn require a permutation of the
rows and columns of the orthogonality matrix R, which would therefore have an irregular
pattern. The independent modes, identified by the red dashed contour line in Figure 7.2,
would in this case no longer correspond to the lower order modes. This would make
the choice of the truncation order more complicated. For these reasons, the choice was
made not to reorder the singular values and functions, but rather to keep them ordered
consistent with the indices v and pu, as indicated above. Analogous considerations hold

also for the concentric circle geometry.

Given a generic sampling scheme {y,} of the surface A and considering equation (7.34),

we derive the following expression for the reproduced field:

(Sastst.) ( Z Z Z Z Y1 (z) / Y (%) p(x d;gv’d (7.39)

v=0 p=—vn=0m=—n

. L
Ju(kz)hy, (kRy) ASy
YH(y A
Jn(kRv)hp(ERA) Z )R2 2 e

where N = /M — 1, so the total number of singular functions is M (see the discussion
on the degeneracy of the singular functions in Section 4.1). This expression takes into
consideration the effects of both sampling and spectral truncation. The sampling repro-
duction error in A is derived from equation (7.29), including only the first M terms of

the second series (with variable m). This leads to

Z E Z Z Y (z) Y,Z”(&)*p(x)di(zvx) (7.40)

v=0 p=—v n=0m=—n

. L
jy(kz)hy(kRA)) <5n vOm, ZY“ )ASZ), zcA

jn(k Ry Yhn (kR Y I

The terms of the first series with 0 < v < N give the pre-aliasing error, while the terms
with N +1 < v < oo give the post-aliasing error. The truncation error is calculated from

equation (7.31) and is given by the following expression:

€ss(z) = Z sz Ju(kz) Ylf‘(fc)*p(x)ds(x) (7.41)

2
v=N+1p=—v kRV) RV
= Y Y we) [ e, aea

v=N+1pu=—v Q2 o

In what follows, the example is provided of a spherical array of 40 secondary sources,

having a radius of 1.8 m. This is the same array used for the experiments presented in
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Chapter 8. The locations of the secondary sources, which define the sampling scheme

adopted, are reported in Appendix E.

Figure 7.5 shows the orthogonality matrix for this configuration (with Ry = 0.1 m and
k = 6 rad/m). As the sampling scheme is only approximatively uniform, almost all modes
are not orthogonal one to another . Though many of the elements of the orthogonality

matrix have small values, the large majority of them differs from zero.

FI1GURE 7.5: Absolute values of the first 100x100 elements of the orthogonality matrix.

OA and OV are spheres with radii Ry = 1.8 m and Ry = 0.1 m, respectively, while

k = 6 rad/m. The sampling scheme adopted corresponds to that reported in Appendix
E.

Figure 7.6 reports the absolute values of the elements of matrix E (dB), for two different
choices of Ry and for the truncation order N = 5 (corresponding to (N + 1)? = 36
modes). Figure 7.7 reports the absolute values of matrix E for the same two values of
Ry but for the truncation order N = 15 (corresponding to (N + 1)? = 256 modes).

The attempt is made to reproduce the sound field due to a virtual source located at
[7q:0q, &q) = [2.5 m,80°,140°] and wave number k£ = 6 rad/m. The target sound field
is reported in Figure 5.2. Figures 7.12 to 7.17 represent respectively the reproduced
field (equation (7.39)), the normalized reproduction error (equation (5.31)), the pre- and
post-aliasing errors (equation (7.40)) and the truncation error (equation (7.41)) in the
region of the space given by

Ap:={z€A:z3=0} (7.42)

that is the horizontal cross-section of the reproduction region. Two different orders of

truncation N = 5 and N = 15 have been used, while all the infinite series have been
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ki'i =
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(a) (b)
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FIGURE 7.6: Absolute values of the first 440x440 elements of matrix E (dB scale), with

truncation order N = 5. A and 9V are spheres with radii Ry = 1.5 m, Ry = 0.1 m

(a) and Ry = 1 m (b), respectively, while k¥ = 6 rad/m. The sampling scheme adopted
is reported in Appendix E.

-100 -50 0 50 100

FIGURE 7.7: Absolute values of the first 440x440 elements of matrix E (dB scale), with

truncation order N = 15. 9A and 9V are spheres with radii Ry = 1.5m, Ry = 0.1m

(a) and Ry = 1 m (b), respectively, while k¥ = 6 rad/m. The sampling scheme adopted
is reported in Appendix E.
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approximated with finite summations up to the order N = 20 (corresponding to a total
of 441 terms).

A further proof of the validity of the calculation was provided by the fact that the
sum of the sampling and truncation errors on Ag proves to be equal to the difference

between the target field and the reproduced field (namely €, pre(2) + €5 post (2) +€s.6.(2) =
p(z) — p(z), z € Ao).

The dashed circles in figures 7.14 and 7.16 identify the boundaries of the ball By
defined
By i={z € R®: 2 < N/k} (7.43)

It can be observed that, in the case of N = 5, the post-aliasing and truncation errors
are approximatively confined to the exterior of this region. Recall that these errors are
generated by the contributions of pressure modes of orders higher than N. This result is
consistent with the "rule of thumb" proposed by Ward and Abhayapala [WAO01]|, which
suggest a truncation order N > kR for an accurate reproduction within a sphere of radius
R. An identical relation was proposed by Rafaely [RWBO07], [Raf05] in the framework of
spherical microphone arrays. This is a consequence of the fact that the closer z is to the
origin, the smaller is the contribution of high order modes to the reproduced sound field
p(z). This is clearly related to the interpretation of the operator S as a spatial low pass

filter, proposed in Chapter 4.
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FIGURE 7.8: Reproduced sound field of a virtual source located at [rg,0,, ¢4 =
[2.5 m,80°,140°] and k = 6 rad/m with a discrete array of 40 secondary sources. The
field was computed from equation (7.39) with the order of truncation N = 5.

FIGURE 7.9: Reproduced sound field of a virtual source located at [rg,0,, ¢4 =
[2.5 m,80°,140°] and k = 6 rad/m with a discrete array of 40 secondary sources. The
field was computed from equation (7.39) with the order of truncation N = 15.
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FIGURE 7.11: Normalized reproduction error (%) computed from equation (5.31) and
N =15.
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The L' norm of a function f(x) on a subset D of its domain is defined by:

£ llp = /D FX)]dS(x) (7.44)

This measure, applied to the reproduction error, provides the value of the average of the
absolute value of the error (multiplied by the area of D). For this reason, it is used here
instead of the usual L? norm. Figure 7.18 reports the L! norms (on Ag) of the different

errors, normalized by the norm ||p|[1,a, of the desired field.

It can be observed that for N = 5 the pre-aliasing error is low, while the post-aliasing
and truncation errors are large. The opposite holds for the case of N = 15. This fact,
in combination with the considerations on the spatial distribution of the truncation and
post-aliasing errors mentioned above, provides a greater insight into the different spatial

distributions of the normalized reproduction error depicted in figures 7.10 and 7.11.

0.9 \

Total Pre-aliasing Post-aliasing Truncation

FIGURE 7.18: L! norm of the different reproduction errors on Ay, for N = 5 and
N = 15. The values represent the norm of the errors on Ag, normalized by ||p||1,a,

In order to better understand the effect of the order of truncation N, we present a brief
analysis of the behavior of the source strength density function a(y) for the two different
choices of N reported above. Figure 7.19 shows the plots of |a(y)| calculated from the
series (5.30) truncated to N = 5 and N = 15, respectively, and as a function of the angle
pqy between the vectors q (the location of the virtual source) and y (the location of the
secondary source). The virtual source location is always [rq, 04, ¢4] = [2.5 m, 80°,140°]
and £k = 6. It can be clearly noticed that the amplitude of the solution with N = 15
(red line in the figure) has a broad, large main lobe in the direction of the virtual source

(pqy = 0°), while the solution with N =5 (blue line in the figure) is characterized by a
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narrower main lobe with smaller amplitude, and side lobes with considerable magnitude.
These side lobes are caused by the truncation of the infinite series (analogous plots for
the case of N = oo is shown in Figure 5.6). A large lobe of less than 20 dB smaller
than the main lobe appears at ¢qy = 180°. This has the remarkable consequence that
acoustic energy is generated by the secondary sources arranged in the direction opposite
to the virtual source. This might result in an unwanted effect if the field reproduction is

performed, for example, for audio purposes.

The width of the main lobes is controlled by the distance of the virtual source and by the
order of truncation. When N = oo, as it has been discussed in Section 5.6.1, only the
main lobe is present and it becomes progressively narrow when the virtual source gets
closer to OA (if q € OA, a(y) is a Dirac delta function). On the other hand, the narrower
is the lobe, the larger is the magnitude of the high order terms in the generalized Fourier
series representing a(y). It can be argued that, when the virtual source is far away,
the shape of the truncated solution resembles of the solution computed with an infinite
series. When the virtual source gets closer, the width of the main lobe gets narrower, and
when the width of the lobe is too narrow for being represented with the finite number of

terms IV, side lobes begin to appear.

la| [dB]

10

180

|af [dB]

270

Gay [rad]

FIGURE 7.19: Absolute value of the secondary source density a(y), given by series
(5.30) truncated to N =5 (blue line) and N = 15 (red line). The left hand side of the
figure shows a plot with Cartesian axes, while the right hand side shows a polar plot.

7.1.9 Reproduction error for linear geometry

Results analogous to those presented in the previous sections can be extended also to the
cases of linear and planar geometry for which, as has been mentioned more than once,
the integral operator S is not compact. In this section, the reproduction error for linear

geometry is analyzed.
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The case is considered of A and JV being two parallel lines, as described in Section
4.4. In order to keep the notation simple, since all y € dA are such that y = [y1, 0, 0],
we substitute here the vector y € JA with the scalar y = y; (which can also be negative
and does not represent in this case the absolute value of y). A sampling scheme {y} is
defined on JA, with Dirichlet cells of length AS,;. The sampled density as(y) is therefore
given by

L
Y) D> 8y — ye)ASe (7.45)
(=1
where the continuous density is assumed to exist and is given by equation 4.102, reported
here
1| 2€
a(y) =F jeicd (fp) (y) (7'46)

where ¢ = ((k) = Vk% — k? and d is the distance between the two lines A and 9V

The reproduced field p(z) = (Sa)(z), z € R? can be derived from the extension of
equation (4.69) to R?, namely

1 i€i<|z3|

2¢

B etra1 4iC(r) 2 e~ iKY 2 () CiRY o
B /R o1 2((k) [/R \/72511 Ye) Nye (/W 27T(.7-“p)(/<a)d/s> dy] dk

etha1 C 'L((n |z3] . AZJZ
= //R\/ﬂ C(n) K (Fp)(x) <Ze( e =8 dk'dr

Recalling the definition of o, and 7, given by equations (4.94) and (4.95), respectively,

(Sas)(z) = |7~

(fas)] (z) (7.47)

and having defined the function R(x’ — k) similarly to matrix R by
_ i~y DY 7.4
(K — k) Z e 5. (7.48)

we can rewrite equation (7.47) as follows:

iRzl , M & — k) dx'dk
(Sem = [ /Rm R I -

This expression can be interpreted as an extension of equation (7.24), in which the two

sums have been substituted by integrals.

In view of the definition of convolution (2.92) and of the identity R(k — k') = R(k' — k)*,

the equation above can be expressed as follows:

I B I G 1)) O e
(Sas)(z)—/Rm w(23) 7k (23) aﬁ(d)%(d)‘@R( )*| d (7.50)
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7.1.9.1 Uniform sampling

The special case is considered of a uniform sampling scheme, that is to say AS, = Ay
and yp = Ay({ — 1 — (L — 1)/2), where the number of secondary sources L is assumed
to be odd (this implies that y; = —Ay(L — 1)/2 and y;, = Ay(L — 1)/2). In view of the
definition of the rectangle function II and of the comb function I given by equations
(2.62) and (2.30), respectively, we observe that

L—1

11 (i’y) I (LAy> ; Sy — tAy) Dy (7.51)

===

The comb function represents the effect of sampling, while the multiplication by the
rectangular function implies truncation of the series above to a finite sum. The sampled

density (7.45) can be therefore expressed by

as(y) = F ! Lfﬂ (y) 111 <Ayy> I (LyAy> (7.52)

The Fourier transform of this function can be computed from the convolution theorem
(2.94) and from equations (2.31) and (2.63) and is given by

2””) % LY sinc (LAyg) (7.53)

U,gy,i 2

(-
- 12 5 e (i (o)

OkVk

(Fas)(r) = Z
%

Equation (2.61) shows that

L i sinc (L <gAy - mr)) = W = csincr, (Ay k) (7.54)

n=—oo

In view of this result, equation (7.50) is rewritten as follows:

(Sas)(z) = /Ri;; 04(23) 7k (23) [(}% ® % csincy, (Ay n)] dk (7.55)

It is now clear that, in the case of uniform sampling,

R(x) = % esiney, (Ay k) = \/12? []—' 1 <Ay> 1 (LAy)] (k)  (7.56)

This result can be simply derived also by applying the property (2.59) of the circular

sinc function to equation (7.48).

It can be observed that R(k) is a real valued, even and periodic function, with period
ke = 2m/(Ay), with zeros at k = £kr,n/L, n/L ¢ N. R(k) depends on the number of
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secondary sources L and on their spacing Ay, but it is independent of the wave number k.
More specifically, the distance Ay between the secondary sources determines the period
of R(k), while the width of the lobes at k = +nk, is inversely proportional to the product
LAy, that is the aperture of the array. Figure 7.20 shows a plot of the function R(k) for
L =11 and Ay = 0.1 m (the array aperture is LAy = 1.1 m).

=

—Ka O Ra

FIGURE 7.20: Function R(k) for L =11 and Ay = 0.1 m.

Using formulae (2.60), (2.32) and (2.57) the following relations can be derived:

: _ - _ - ikl Ny Ay
LILIIOlO R(k) = n:E_OO 0 (k —nkge) = ezg_oo e o (7.57)
) Ay sin (Sgak/2)  San . K
1 - Y - K _
gm R = 5 = e se(mg) 08
LANy—Sap

The second of these formulae represents the case of a continuous distribution of sources
on a finite segment of length Syp. It indicates that the restriction of the continuous
source distribution to a finite subset of OA introduces smearing of the spectrum of the

reproduced field (a Dirac delta function becomes a sinc function).

The first formula above clearly resembles equation (7.48) and involves an infinite number
of secondary sources, with spacing Ay between one another. This result demonstrates

the well known phenomenon that the sampling of the continuous density a(y) generates
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periodic repetitions of the spectrum of the reproduced field, namely

oA

plz) = G(zy[ Z Sy — m@/)Ay] (7.59)
f=—00

znzl K — nlia) iC(K)|23|
- Z /]R \/ﬂ [ ) e (k—nka)d (‘7:‘]9)("i - nna) dk

n=—oo

It should be noticed that these are not simple periodic repetition, as they are modulated
by the ratio o, /0x4nk, (the term within square brackets), analogous to the modal cross

efficiency defined previously.

7.1.9.2 Example with plane waves

We consider now the case of a target field given by a single plane wave (either evanescent

or propagating) of the form
p(z) = 7K = gl1ital®l 2 e R2 R eR (7.60)

We observe that, for z € 9V (namely z3 = d)
—ik21 ~ o
(Fp)(r) = / O A Oz, = /o ) s R (7.61)
R T

Meaning that the spatial spectrum of the target field is a single Dirac delta function.
From equation (4.101) we have that

aly) = —i2¢(k)e™Y (7.62)

The reproduction is attempted initially with an array including an infinite number of
uniformly arranged secondary sources. Inserting (7.61) in equation (7.59) and applying

the usual properties of the Dirac delta function, we obtain

A C(’%) Z[Zl(l{+’nlia)+|23|<(l€+nﬂa)] 2
Pz Z GRS , z€ER (7.63)

n=—00
Since ((k + nkq) could be either a real number or a purely imaginary number, the
reproduced field is a superposition of an infinite number of evanescent waves (| +nkq| >
k) and potentially also propagating waves (|k + nk,| < k). We will refer to the elements
of the series above such that n # 0 as aliased waves. Each aliased wave is modulated
by a factor given by the fraction in the formula above (analogous to the modal cross-

efficiency).

It is reasonable to consider the propagating aliased waves to be the most dangerous

reproduction artifacts, since their effect is not limited to the near field of the array. Such



Chapter 7 Towards the practical realization of a sound field reproduction system 189

waves are generated when the condition |&k + nk,| < k is verified. This happens when at
least one n € {+1,+£2,43,---} exists such that

(nkq — k) <k < (nkq + k) (7.64)

Figure 7.21 shows a diagrammatic representation of this condition, for x, = wk. If the
spectral line §(k — &) lies within one of the regions shadowed in yellow, then the aliased
field generated by the discrete array will include propagating plane waves. The red and
green arrows in the figure represent two target fields consisting of a single evanescent
wave (K = —kq4/b =~ —2.51 k) and of a propagating plane wave (ki = k,/4 ~ 0.79 k),
respectively, for which the aliased field includes (red arrow) or does not include (green
arrow) propagating waves. In the first case, the fact is remarkable that, in spite of the
target field being an evanescent wave, the reproduced field might include propagating

waves.

—h—& A —h—

FIGURE 7.21: Diagrammatic representation of equation (7.64), for x, = wk. The red

arrow represents an evanescent wave (& ~ —2.51 k), the reproduction of which generates

both propagating and evanescent aliased waves. The green arrow represents a propa-

gating plane wave (kK ~ 0.79 k), whose reproduced field does not include propagating
aliased waves.

Observing Figure 7.21 it can be noticed that, when both k and |%| are smaller than k, /2,
all aliased waves are evanescent, regardless of the target field being a propagating or an
evanescent wave. When either |R| > k,/2 or ko/2 < k < K, the aliased field might or
might not include one or more propagating waves. If both k£ and |%| are larger than k,/2
or if k > k, then at least one propagating aliased wave is generated. The worst situation
occurs when k/2 < k < |g|: in this case the target field is an evanescent wave, while
the reproduced field includes propagating components, which are aliased waves with a

potentially large amplitude factor ((&)/{(k + nkq).
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The number of secondary sources is now limited to the finite number L. The expression

for the reproduced field is given by inserting (7.60) into equation (7.55), thus obtaining

p(z) = /ei[mﬁa")lzﬂ <C(H) = csiner, (Ay (k — i%))> dr (7.65)
R ((k) 2m

Note that when L — oo this equation coincides with (7.63) for the relation (2.60).

The formula above can be regarded as a linear superposition of an infinite number of

evanescent and propagating plane waves, with the amplitude of each wave given by the

function within brackets.

The magnitude of the Fourier transform of the reproduced field p(z), z3 = 0.01 m,
computed with formula (7.65), is shown in Figure 7.22. The following choices of the
parameters have been made: L = 201, k = 20 rad/m, Ay = 0.1 m (hence k, = 7k). The
target fields are the two plane waves illustrated by Figure 7.21, with & = r,/4 (Figure
7.22 a) and K = Kk, 4/5 (Figure 7.22 b). The area highlighted in yellow corresponds to
|k| < k, that is the region of propagating waves. It can be observed that, in the second
case (b), the peak associated with the aliased propagating wave (k = 4/5k, + Kq) is
larger in magnitude than the peak corresponding to the target evanescent wave, even
though the reproduced field is measured at just 1 cm away from the array of secondary

sources.

30 T T

201 f= 2Tk 4

| 7| [dB]

7] [dB]

o l ]
-10 1 1 L 1 1 1 (b)
-4 - -

0
sk

FIGURE 7.22: Absolute vale (dB scale) of the Fourier transform of the reproduced field

p(z), z3 = 0.01 m. The target fields are a single propagating wave with & = x, 4/5 (a)

and an evanescent wave with & = k,/4 (b). The area highlighted in yellow represents
the propagating wave region.

The target and reproduced fields discussed above are shown in figures 7.23 and 7.24 (for
R = kq/4) and in figures 7.25 and 7.26 (for kK = —k,5/4). The total plotted area spans
a square region of 2x2 m?, while the aperture of the array is LAy = 20.1 m. In both
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figures 7.24 and 7.26 the reproduced field is generated by the 201 infinite line sources (a
limited number of them are represented by the vertical lines) and is computed applying

directly formula (7.1) with source strength m, computed with equation (7.6).

The target field represented in Figure 7.23 is a propagating wave of the form given
by equation (7.60), with & = kw/4. The corresponding reproduced field, shown in
Figure 7.24, is accurate and does not include large energy propagating aliased waves.
Propagating aliased waves with small energy, mainly traveling in a direction parallel to
OA (that is with k = k, as illustrated in Figure 7.22 b), are present due to the limited

aperture of the array.

The target field in Figure 7.25 is an evanescent wave. The field in the region z3 > 0,
although very small in magnitude, is not zero. The corresponding reproduced field,
reported in Figure 7.26 clearly shows the high energy aliased propagating wave, with
Kk =K + Kq (see Figure 7.22).

These considerations lead to the following conclusions: the reproduction of the pseudo-
evanescent component of the target field (see Section 6.2.1) is a risky task, since spatial
aliasing might determine the occurrence of aliased propagating waves. To be on the safe
side, it is possible to limit the spatial spectrum of the target field to |x| < k, —k, provided
that k < K, (if this is not the case, propagating aliasing components can not be avoided).
This condition avoids the generation of propagating aliased waves, but on the other hand,
it does not allow for the reproduction of the pseudo-evanescent component of the target
field and allows for the reproduction of only part of its pseudo-propagating component.
In Section 4.3 we have seen that, for || < k, the direction of propagation of a plane
wave of the form (7.60) in respect to the perpendicular to dA is given by sin™!(x/k).
In light of this, we observe that the condition |k| < k4, — k requires the direction 9 of
the intensity vector of the reproduced field to be constrained by [9| < sin~!(xq/k — 1).
This condition could sometimes represent a serious limitation, and it might be preferable
to substitute it with the milder condition |x| < k, obviously at the cost of generating

propagating aliased waves.

In the literature on Wave Field Synthesis, the two anti-aliasing conditions k < k,/2 =
7m/(Ay) [DNMO3] and |k| < kq/2 [Sta97] are often reported. Both are a direct application
of the well known Shannon sampling theorem [Mar01], and are clearly different from the
requirement |k| < kK, — k above. In fact, the condition k < k,/2 is too stringent since
it does not take into consideration the fact that no aliasing artifacts are present in the
far field also for the component of the target field with |k| < kg — k < Kq/2 < k
(Figure 7.21 might help visualizing this situation). On the other hand, the condition
|k| < Kq/2 may prove too loose in the case of k, — k < |k| < Kq/2 < k, or too strict
when k < kq/2 < |k| < ko — k (although in this case only the reproduction of the

pseudo-evanescent component of the target field is penalized).
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Finally, it is important to remark that, under any of these conditions, the field reproduced
with a discrete linear array does always include aliasing artifacts. In the best of cases,

these artifacts include only evanescent waves and their effect is limited to the near field

of the array of secondary sources.

Al \\ 8

FIGURE 7.23: Sound field due to a propagating plane wave with & = 20 rad/m and
R =mk/4.

FIGURE 7.24: The field of a propagating plane wave with & = 20 rad/m and & = 7k/4
reproduced by an array of 210 vertical line sources with spacing Ay = 0.1 m. The
vertical lines represents a portion of the secondary sources.
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FIGURE 7.25: Sound field due to an evanescent wave with k¥ = 20 rad/m and & =
—7k4/5. Although very small in magnitude, the field in the region with z3 > 0 is not
zZero.

FIGURE 7.26: The field of an evanescent wave with k¥ = 20 rad/m and # = —7wk4/5

reproduced by an array of 210 vertical line sources with spacing Ay = 0.1 m. The

vertical lines represents a portion of the secondary sources. The field is dominated by
the propagating aliased wave with kK = K + Kq.
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7.2 Numerical solution of the integral equation

In Chapter 3 the sound field reproduction problem has been formulated as an integral
equation of the first kind (equation (3.19)). Its solution has been derived by means of
the singular value decomposition of the integral operator involved. We have seen that
this approach provides a powerful method to derive analytically an explicit expression of
the solution a(y) once the singular system of the operator is known. The singular value
decomposition (or, more generally, the spectral decomposition of the integral operator)
is clearly not the only method available for the solution of the integral equation (3.19). A
widely used approach is provided by the numerical solution. This involves the discretiza-
tion of the single layer potential (3.15), which is represented by a matrix, and of the
two functions p(x) (the pressure profile) and a(y) (the source strength density), which
are represented by vectors. This technique can be by all means regarded as a Boundary
Element Method (BEM), seeking the solution of an interior problem (since V' C A) and
using an indirect-implicit formulation (following the classification suggested by Valdivia
and Williams [VWO04]). For the case under consideration, the boundaries A and 9V are
generally not coincident. This has the advantage of avoiding the singularity of the Green
function (equations (3.6) and (3.7) with z = y). On the other hand, the solution can not
be derived by direct application of the jump relation (6.80), as discussed in Section 6.4.

Boundary element methods have been widely studied, and the interested reader can refer
to the extensive literature on this subject (see, for example, [CZ92|). In what follows, a
brief presentation of the simple technique introduced above is given. It should be made
clear that this method is not the only method available, nor it claims to be the most
accurate. Most of the points on the discretization process brought in Section 7.1 are of

relevance for this subject too.

As a first step, we define two sampling schemes {y;}, ¢ = 1,2,...L and {x3}, k =
1,2,...K for the boundaries 0A and 9V, respectively, with the corresponding Dirichlet

cells of area/length ASy, ASj. Then we approximate equation (3.19), that is

p(x) = (Sa)(x) = /a Glxy)at)is(y). xeov (7.66)

using the following discretized version 2

p =SAa (7.67)

or equivalently
L

P =Y SkearApp, k=1,2,..K (7.68)
/=1

2 An alternative definition would include matrix A into the definition of matrix S, and matrix A into
matrix Sin,. This would lead equations (7.67) and (7.70) to become p = Sa and a = S;,,p, respectively.
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where the matrices S and A and the vectors p and a are given respectively by

Ske = G(xr,y0), 1<k<K 1<(<L
pe= p(xx), 1<k<K (7.69)
ag:=  a(yy), 1</<L '
A = diag{ASl, ASl, ASL}
We want to compute the matrix S;,,,, such that
a=SiAp (7.70)
where A is defined by
A = diag{ASl, ASl, ASK} (771)

Note that S;;, is not the inverse of S, but is simply related to the latter by the following
relation

Sine = (ASA)_l = A1g1A? (7.72)

obtained by multiplying both sides of (7.67) by A. This holds when the inverse matrix
S~ exists. If this is not the case, it is possible to substitute S~! in the equation above

with the Moore-Penrose pseudoinverse matrix ST given by

st = (8*S)"!'S*, if the columns of S are linearly independent (7.73)
St = 8*(SS*)™!, if the rows of S are linearly independent (7.74)

The first of these equations provides a least squares solution of the inverse problem,
that is the approximate solution a that minimizes |SAa — p| (analogous to the L? norm
[|Sa — pl||), and is typically used when K > L. The second equation is generally used
when L > K and the inverse problem has multiple exact solutions. Formula (7.74) gives
the solution with minimum norm. If an exact inverse of S does not exist, equation (7.70)

provides an approximate solution a.

It is possible to choose a sampling scheme for A, which is consistent with the discrete
distribution of the secondary sources. In this case, once S;,, has been determined, it is

possible to define the strength of the secondary sources 7, as follows

K

7.7.7,@ = Z Sinv,k:,ﬁ Pk Akvk’ € = 1, 2, ...L (775)
k=1

It is clear that the reproduced field is then given by equation (7.1).
This approach is analogous to the sound field reproduction method proposed by Kirkeby
and Nelson [KN93|, with the relevant difference that the target field is sampled only on

the boundary of the control region instead of on its interior. This difference leads to a

considerable reduction of the computational effort.
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The numerical solution of the integral clearly coincides with the analytical solution when
both L and K tend to infinity and consequently AS, and AS; tend to zero. The ill-
posedness of the inverse problem discussed in Chapter 5 is still an issue. More specifically,
matrix S is generally ill-conditioned, and the problem of non-uniqueness might arise
at the Dirichlet eigenvalues of the control region. The nonexistence issue for focused
sources appears to be removed for the fact that S has finite dimensions and therefore
has a finite number of singular values. This is in practice analogous to the regularization
of the integral operator S by spectral truncation, as discussed in Section 6.1. Other
regularization techniques for matrix inversion, such as the Tikhonov method, can of

course be applied.

7.2.1 Sampling of 0V, spatial aliasing and geometry of the control
volume

The discretization of the integral equation (3.19) involves the sampling of both OA and
OV. This in turns implies, as we have seen in Section 7.1, that the reproduced field is
only an approximation of the desired field. As both functions a(y) and p(x) have been
substituted by their sampled versions, the artifacts in the field reproduction are caused
not only by the finite number L of secondary sources, connected to the sampling scheme
{y¢}, but also by the finite number K of sampling points of p(x), related the sampling
scheme {x}. We have discussed in Section 7.1 that the sampling of a(y) causes aliasing
artifacts, which may potentially severely degrade the accuracy of the field reproduction.
Analogous considerations may be done for the sampling of p(x). In order to avoid the
occurrence of aliasing artifacts, we need to make sure that the sampling scheme {x}
is such that p(x) is unambiguously represented by its sampled values {p(xj)}. This
corresponds to a generalization of the well known Shannon theorem. We require that the
pressure profile can be expressed (at least with good approximation) by a finite sum of
pressure modes py,,(x), generally the low order modes. In other words, we want p(x) to be
spatially band-limited. If this is the case, a finite number of properly arranged sampling
points is enough to describe accurately all relevant pressure modes, thus providing an

accurate representation of p(x) and avoiding aliasing artifacts.

What has been said implies that, for a given sampling scheme, we need to make sure
that the target pressure profile is represented only by those modes, which we can observe
without ambiguity. If this is not the case, no signal processing strategy can avoid the
occurrence of aliasing. This problem is simply overcome for sampling of functions of
time by the use of analog low-pass filters (known as anti-aliasing filters), applied to the
signal before it is sampled. The design of spatial low-pass, anti-aliasing filters is not
trivial, if not impossible. On the other hand, in practical cases, the Fourier coefficients
(pn|p)oy of the pressure profile are very small in magnitude for n larger than a given

value N (which of course depends on the given target field). As a matter of fact, we
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have seen that acoustic propagation in space acts as a low pass filter itself. This suggests
that, in the case of a point-like virtual source, the further V is from the source, the
smaller is the presence of high order modes in the pressure profile. This in turn suggests
that the distance of V' from the virtual source would act as a low-pass spatial filter for
p(x). This phenomenon can be easily observed in the geometrical arrangements including
parallel planes or lines: the pressure modes p,(x) that have more rapid spatial variation
correspond to large values of k. When k > k, these modes are evanescent and decay
exponentially with the distance d of 9V from OA. We can therefore choose d to be such
that the energy of all modes corresponding to a x larger than a given value is, in practice,
negligible on V. A similar analysis of the spherical and circular geometries leads to the
conclusion that high order modes are attenuated by making the radius Ry small (for a
given radius Rp). It is therefore possible to avoid spatial aliasing artifacts determined
by the sampling of p(x) by wisely choosing in combination the number of samples K and
the control region V. These considerations clearly hold provided that all virtual sources

lie in the exterior of A.

It is evident that the mechanisms that determine the decay of the high order modes
is the very same one that is responsible for the ill-conditioning of the inverse problem.
For this reason, it is important to apply in combination strategies for avoiding spatial
aliasing and ill-conditioning. A sensible strategy may be the following: given a number
of samples K (usually determined by the computational capabilities of the system), and
given a sampling scheme for V', which is as uniform as possible, we can determine the
number N of pressure modes, which are unambiguously described by the given sampling
scheme. This can be performed by observing the orthogonality matrix given by equation
(7.14). We may then define the appropriate parameter of V' (d for planar and linear
arrangements, Ry for spherical and circular arrangements), for which the energy of
modes of order larger than N is small. Finally, we may apply a regularization strategy
(typically spectral damping) in odder to avoid the ill-conditioning artifacts caused by
the inversion of the singular values o, with n > N. The choice of the ‘anti-aliasing’
parameter of V' depends generally on the operating frequency w. It is therefore a sensible

option to choose a frequency dependent control volume, when this is possible.

As a final remark, the fact is recalled that the aliasing issues arising from the sampling of
p(x) may occur only if the integral equation (3.19) is solved numerically, or in general if no
continuous description of the pressure profile is available (as in the case of measurement
with a microphone array). These issues are therefore not relevant in the case when the
solution a(y) is computed by the analytical singular value decomposition discussed in
Chapter 3. It is also worth mentioning that, if the sampling schemes {y,} and {x;}
are uniform (or almost uniform) and no significant spatial aliasing effect occur for the
sampling of p(x), simulations show that the computations of the source strengths 7,
with the analytical and numerical solution of the integral equation give nearly identical

results.
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7.2.2 Singular Value Decomposition of matrix S

It is possible to calculate the numerical Singular Value Decomposition of S. It is expected
that, in the limit of K, L — oo, the discrete singular system U, 3, V, such that S =
UuxvH (see Appendix A), can be expressed in terms of the singular functions and values
Ons an(Y), pn(x). In [FNOT7c| the authors have shown that this is the case for spherical
geometry. Considering the singular system (4.7)-(4.11) and assuming a regular sampling,
such that AS = 47R% /L, and AS = 47 R} /K,Vk, in the limit of K, L, N — oo we
have that

vKL . . on
™ ASAS
47 .
Vi = | V) = VESan(y) (1.77)
4 . =
Uk = f’yyYV“(xk) = V ASp, (xx) (7.78)
. ) T
Y, = exp [z (arg (hy(kRA)ju(ERv)) + 5)]
v = [vn—1], p=n—-1-v—1?
This is proven by the following relations:
N v
. H . A . ~ Nk
Am (UxVY),, = ]\}EHOO;“;y’YVYVM(Xk)kfju(kRv)hu(kRA)\YVM(W) = G(x,ye)
K 47
. H _ . V(s VoA M/ Lo W , , — ,
Klgnoo (U U)n,n’ KIEHOO ; VY2 (Xk) Y, (Xk) K v 5u,u On,n
N 4 4
. H _ . B VA V(R Vo — — X)) —
N}l(rgoo (UU )k,k’ N}l(goo Vz:l“z_:y WY, (xk)/yuyu (Xk ) K Klgnoo 6Q(Xk Xk ) K
lim (VHV) = lim ZY“ GO 5y = B
L—oo n,n’ L—oo L e i
N 47 47
: H — 3 (5 K / * — 1 —_ 7 ) —
N,lLHBoo (VVH),, Nvlizlm;uz_:u YH(yo) Y (50) 7 = Jim da(ye —ye) 7

The first of these results is due to equation (4.2), the second one and fourth one to the
orthonormality relation of the spherical harmonics (2.52) and the third and fifth results
are derived from the completeness relation of the spherical harmonics (2.55) and from

definition of the Dirac delta function.



Chapter 7 Towards the practical realization of a sound field reproduction system 199

7.3 Sound fields with broadband frequency content and fil-

ter design

Up to this point we have considered that the wave number k and consequently the
frequency w are fixed. This assumption has proved to be useful for the derivation simple
expression of the solution a(y). In the general case, however, the desired acoustic field
is not monochromatic, meaning that it does not include the contribution of a single
frequency, but it is rather a function of w. We restore therefore the dependency of the
field p(z,w) on the frequency w, which we had removed at the beginning of Chapter 3 in
order to keep the notation simple. This dependency holds also for the source strength
density a(y,w), for the source strengths my(w), for the Green function G(x,y,w) and
also for the singular system o, (w), an(y,w), pn(x,w). It is clear that any function f(k)
can be equivalently expressed as f(w/c), as long as the speed of sound ¢ is uniform on

R™, m = 2,3, namely, if the sound propagates in a non-dispersive medium.

The expression of all functions above can be derived by performing the Fourier transform
(2.89), reported here:

pw) = (FiP)(w) = \/12? /_ Pt (7.79)

The time-domain transformed function is here represented by the upper-case of the cor-
responding lower-case letter representing the frequency domain function, when this does
not lead to any ambiguity (as for example in the case of the Bessel functions). In par-
ticular, in view of the results presented previously, we have that time domain source

strength M;(t) is given by the following expression:

My(t) = AS, /R e\;% [Z “”0_(3’(3") /8 () (FP)(x,w)dS(x) | dw - (750)
n=1 n

Clearly the application of regularization techniques discussed in Chapter 6 can be in-
cluded in the expression above. The latter corresponds to the signal driving the sec-
ondary source located at y,, which in practical cases corresponds to the electrical signal
driving a loudspeaker. Therefore we will also refer to Mg(t) as the secondary source sig-
nal. The determination of these signals is the final goal of the digital signal processing of
a practical sound field reproduction system. The equation above provides a very general
formula which can be applied to an arbitrary arrangement (provided, clearly, that an
expression for the singular system is given). In this section we determine the expression

of these signals for some of the special arrangements introduced in Chapter 4.
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7.3.1 Digital filters for a virtual point source

In a large number of cases of practical interest, the pressure profile P(x,t) is such that

it can be expressed by the form

P(x,t) = Ps(x,t) @ V(t) (7.81)
and henceforth
(FiP)(x,w) = VIR(FPy) (@) (FV) (@) = V2 (x,0)0(w) (7.82)

This is the case, for example, of the field due to a motionless point source located at q,
either in the free field or in a reverberant environment. In this example, Ps(x,t) is the
impulse response of the point source in the given environment, evaluated on the control
boundary V. This function can be either expressed analytically, computed numerically

or directly measured. The source signal M;(t) can be therefore computed from
My(t) = Fy(t) @ V(1) (7.83)

where the function Fy(t) is a filter, depending only on the location y, of the corresponding

secondary source and on the location q of the virtual source.

Using a general approach, valid for an arbitrary geometrical arrangement, the filters can
be computed in the frequency domain by substituting P(x,t) with Ps(x,t) in equation
(7.80), which yields (in the frequency domain)

i) = 85, 30 0 [ ) (£, S ) (7.84)

n=1

These filters can be implemented as digital FIR filters. The calculation can be performed
for a discrete set of frequencies {n,Aw}, where n,, = 0,1,2...N,, and Aw is the frequency
resolution. The upper frequency N,Aw is determined by the given practical application
and by the sampling frequency of the digital converters. For audio purposes, we usually
have that N, ,Aw > 20000 Hz. The optimal resolution Aw depends on the smoothness of
fe(w). As the latter is inversely proportional to the length T of the support of (F; ' f,)(t),
which we assume to be finite (namely 7' > 0 exists such that (F; ' f,)(t) = 0, [t—¢| > T/2

for some £ € R), a good estimate of Aw is given by

2
Aw < % (7.85)

This relation is directly related to the well known Heisenberg uncertainty principle. The
values fy(n,Aw) define the coefficients of the digital filter for the secondary source located

at yy, defined in the frequency domain.
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This calculation requires a considerable computational effort since, in the general case, all
functions involved in equation (7.84) depend on w and should therefore be recalculated
for each n,,. In what follows, we will see that simpler relation can be derived for separable

geometries, leading to considerable reduction of the computational cost.

In order to guarantee the causality of the filters, it is recommended to include an extra
delay to the filters (in the experiments presented in the next chapter, a delay equal to
1/4 of the total length of the filter has been included in the calculation of the filters).

7.3.2 Source signals and digital filters for spherical geometry

Equation (4.19), providing the solution a(y) for the spherical geometry arrangement, is

reported here:

>y w) YVElp)ov (7.56)

==, kR, B2 (kRp) G, (KRy)

From the definition of the spherical harmonics (2.51), it can be observed that these func-
tions do not depend on the frequency. The fact that they are complex valued functions
may appear as a problem, but it can be simply overcome by redefining the spherical
harmonics after having substituted the complex exponential with sines and cosines (the
Legendre associated functions considered here are real valued functions). This is accom-

plished by defining >

sgn(p + 0,.0)"
vV 2— 51/,0
\/ V2cos(uds), p>0

V(%) = Y} 0z, 6a) (sgn(u) YL () + (=1)"Y, (%)) (7.87)

v+ D=1 il oo x | 1 i
Al Vasin(|ulés), 1< 0

where the relation Y, (%) = (—1)*Y}'(%x)* [Wil99] has been used and sgn(-) is the sign
function defined by

1, wu>0
sgn(p) =49 0, w=0
-1, u<0

It can be shown that the real valued spherical harmonics Y,/(x) define a complete or-
thonormal set for L2(£2). This substitution of the basis functions is actually not manda-
tory, as the choice of real valued or complex valued spherical harmonics does not affect
the solution that, as we have seen, is generally unique. Despite that, the use of real val-

ued spherical harmonics Y might prove useful for DSP implementation and is preferred

3 Alternative definitions of real spherical harmonics are also given in the literature (see for example
[DNMO3]).
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by some authors, especially in the literature on Ambisonics [Ger73|, [Dan00]|, [DNMO03],
[AE9S).

The secondary source strengths my(w) can be therefore simply computed from equations
(7.86) by

. > 4
e 47TR2 Z Z Y . 1 -

5,20 D (era) s (20)

JREACIGIJIENTES
(7.88)

where the order N of the series can be either infinity or a finite number, if a spectral
cut-off of the operator has been applied. In the time domain, after having applied the

convolution theorem (2.94) this expression becomes

) = Z > T2 T e Pe)a (789

=0 u=—v

where
1 -1 4

n(t) = — | F,
W= |7 izhy) (:Ry) ju (3 Rv)

(t) (7.90)

The fact is relevant that the filter 7,(¢) depends only on the parameter v and does
not depend on the angular location of the secondary source considered. The terms
(Y4 |n,(t) ® P(-,t)) in (7.89) can be therefore computed once for all secondary sources.
On the other hand, the only term depending on y, is a simple scalar (a gain) given
by AS, Y} (¥¢). This is a very simple and powerful method to compute the filters. Its
simplicity derives from the fact that the wave equation (3.1), expressed in spherical

coordinates, can be solved by separation of variables [Wil99].

The filter 7,(t) can be simplified under the assumption that the region of interest for
the reconstruction lies in the far field of the secondary sources. This is usually valid for
frequencies associated with a wavelength much smaller than the array radius Ry. With
this assumption we can insert the large argument approximation (2.43) for the Hankel

function, thus obtaining

1 . Y47 R, o—i Ry
R N R 2 Ry
= 7= [ jil, (éRv) (t) ® RAS (t+ - >

While the first term in the convolution above is a filter depending on Ry, the second
term is a combination of a simple delay and a gain, which compensate for the radius of

the array. In many circumstances of practical interest, this term can be neglected.
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7.3.2.1 Digital filters for virtual point source in the free field

The filters fy(w) introduced above can be computed by inserting the impulse response
Ps(x,t) in place of the target field P(x,t) in equation (7.88) (or in equation (7.89) for
the time domain). In the case of a virtual source in the free field located at q € R3\A,

the solution a(y) is given by equation (5.30) and the filters are therefore

(2 E,(w)P, y 7.92

where =, (w) is the spatial filter defined by equation (5.35), namely

hy (%4)

o (5 F) (7.93)

E(w) =

This filter could be expressed also in a different form, having considered the following

expansion of the spherical Hankel functions, derived from [GR65, p.925 eq.8.466.1]

€TSS\ (n+g) 1
ho() = i 1:62(2) mﬂ (7.94)

This result yields

Z,(w) = Eo(w)E,(w) (7.95)
where
So(w) = Rqui“é@—RA) (7.96)
= Yo ui/ (wa)
R VARV, T
£ = (;) mcﬂ (7.98)

The results above imply that the filter =, (w) can be implemented as a simple gain Rp/q
and a simple delay §(t — (¢ — Ra)/c), both depending on the distance of the virtual
source from A, combined with the more complicated function =, (w) (the latter reduces
to unity in the far field, that is when ¢, Ry > N/w). In light of the convolution theorem
(2.94), we obtain

1= R q— R —1~
(F1E)(t) = 7A 5 (t -1= A) ® (]—"t :y) (t) (7.99)
and
fo(w) = 47TR2 Z (20 + 1)Z,(w) P, (4 - §¢) (7.100)

A p=0
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The secondary source signals are given by the following expression:

P o) [2u+1)(ft )()®RqA5< q_CRA>®V(t)]
(7.101)

where the term in square brackets is independent from ¢ and can be calculated once

47TRA o

for all secondary sources. In many practical applications it is possible to neglect the
convolution by Ra/q (¢t — (¢ — Ra)/c). It can be observed that the summation above
includes only N + 1 terms, while the summation (7.88) includes (N + 1)? terms.

The expression above can be further simplified under the assumption that the control
region is in the far field of both the virtual source and the secondary sources. This
hypothesis is usually satisfied at high frequencies and is identical to the assumption that
q = R, that is the virtual source is on JA. In these circumstances, as discussed in Section
5.6.1, 2, = 1 for the large argument approximation of the Hankel functions (2.43) and f;
corresponds to a Dirac delta function d(y — q) (up to a multiplication factor) when the
series (7.92) is not truncated. This would imply that, if the location of the virtual source
does not coincide with the location of one of the secondary sources, the reproduced field
is zero. This effect could be possibly regarded as an extreme consequence of spatial
aliasing. However, if the spherical harmonic series is truncated to the order N < oo,
chosen in accordance with the considerations discussed in Section 7.1, the expression for
the filter is

AS Pn(4-ye) — Pnia(4-9e)
fo= 47TR2 Z 24+ 1)P,(q-3¢) = oy (N +1) — (7.102)

where the Christoffel summation formula (2.48) has been used. It can be observed that
this expression of f, gives a real valued function, which is independent of frequency,
and can be therefore implemented by a simple gain rather than as a digital filter. This
formula can be expressed as a function fy(¢qy,) of the angle ¢qy, between the vectors q

and yy. This function is referred to as a panning function.

In light of these results, we have that

ASy

P,(q-y¢) — Poy1(q-ye)
47TR?\ y

My(t) = (N +1) V(t) (7.103)

It is recalled that if the sampling scheme of OA is uniform (or almost uniform), the term
AS;/(47R%) in all the expressions above can be simply substituted by 1/L (where L is

the number of secondary sources).

Figure 7.27 shows a plot of the panning function above for different truncation orders N =
3,5,8. In order to normalize this function, the assumption is made that AS,/(4rR%) =
1/(N + 1)2, corresponding to a number of secondary sources L = (N + 1)? in the case
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of ideal uniform sampling. It can be noticed that the larger the truncation order N, the

narrower is the width of the main lobe, and that the panning functions has 2N zeros.

¢q}'z

FIGURE 7.27: Panning function fy(¢qy,) for spherical geometry, provided by equation
(7.102), for different truncation orders N. In order to normalize this function, the
assumption is made that AS,/(4rR3) = 1/(N + 1)

We now remove the far-field assumption which has been introduced above and we study
the behavior of the filters fy(w) with the aid graphical representations. Figure 7.28 and
Figure 7.29 represent the magnitude (dB) and the phase, respectively, of the filters fy(w)
as a function of both the frequency w and the angle ¢qy,, between the vectors q and
ye. The filters have been computed from equation (7.100), but without including the
factor Zg(w) in the calculation. The series has been truncated to the order N = 5,
and the assumption is made that AS/(4mR%) = 1/(N + 1)? (that would be the ideal
case of 36 uniformly arranged secondary sources). The secondary sources are assumed
to be arranged on a sphere of radius Ry = 1.5 m. The filters have been computed for
various distances ¢ of the virtual source, namely 100 m, 3 m, 1.5 m and 1 m, the latter
corresponding to the case of a focused source (see Section 6.2). The magnitude and
phase of the filters for ¢qy, = 0 rad and ¢qy, = 7/2 rad, identified respectively by the
continuous and dashed horizontal black lines in figures 7.28 and 7.29 are reported in
Figure 7.30.

Figure 7.31 reports the filters F;(t) in the time domain, for ¢qy, = 0rad and ¢qy, =
/2 rad and for various distances of the virtual source. The impulse responses of the
filters have been calculated from an inverse discrete Fourier transform of the filters com-

puted in the frequency domain. The FFT size is 1999 points with frequency interval
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df = 20.02 Hz (the symmetry of the filters has been deployed and the computation has
been performed for half of the FFT points).

The filter coefficients for 53.37 Hz and 533.7 Hz as a function of the angle gy, are
identified respectively by the continuous and dashed vertical line in figures 7.28 and 7.29

and are reported in figures 7.32 and 7.33.

Figures 7.34 to 7.39 illustrate the same data as in the figures 7.28 to 7.33, with the
difference that the filter computation has been carried out with a truncation order N =
10.

We observe now the behavior of the filters for a large distance ¢ > Rj of the virtual
source. At low frequencies, the filters exhibit smooth variations of both amplitude and
phase with respect to the variation of the angle ¢gqy,, since they are dominated by the
low order terms of the series (7.100) (see also the considerations presented in Section
5.6.1). When the frequency w increases, the contribution of high orders of the series
becomes progressively more relevant, and the number of phase oscillations from 7 to —m
with varying ¢qy, increases, up to the limit of 2V oscillations imposed by the truncation
order N. This limit determines the generation of the 2N lobes clearly shown in figures
7.32, 7.33, 7.38 and 7.39. In the high frequencies limits, the filters exhibit a constant
behavior, which is given by the panning function (7.102).

Considering now the effect of the virtual source distance ¢, we observe that the latter
does not affect the filters at high frequencies, apart from the factor Zy(w) not considered
here. On the contrary, at low frequencies, the filters are largely influenced by the dis-
tance of the virtual source: we have seen that for large g the secondary sources signals
are characterized by smooth variations with ¢qy,. When the virtual source gets closer,
the contribution of the high order terms of the series becomes larger, and the number of
phase oscillations of the filters with gy, increases progressively, up to the limit of 2V
oscillation, which is reached when ¢ = Rj. It has been observed that for this distance ¢
the filters are independent of the frequency. When q decreases further we observe that,
while the phase oscillations with ¢qy, are limited by the truncation order, the magnitude
of the filters increases progressively, as a consequence of the high order explosion respon-
sible for the nonexistence or the instability of the solution, widely discussed in Chapter
5).
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FIGURE 7.28: Magnitude (dB) of the filters f;, as a function of the frequency and

of the angle ¢qy,. The filters have been computed from equation (7.100), without the

term Zg(w) and for several values of the distance ¢ of the virtual source, while the radial

distance of the secondary sources is Ry = 1.5 m. The series has been truncated to the
order N = 5.
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10’ 10° 10° 10
frequency [Hz]

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

e L e—

FIGURE 7.29: Phase of the filters f;, as a function of the frequency and of the angle

©qy,- The filters have been computed from equation (7.100), without the term Zo(w)

and for several values of the distance ¢ of the virtual source, while the radial distance

of the secondary sources is Ry = 1.5 m. The series has been truncated to the order
N =5.
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¢aqy, =0 1ad (—) and pqy, = 7/2 rad (- -)
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frequency [Hz]

10

FIGURE 7.30: Magnitude and phase of the filters f;(w) for ¢qy, = 0 rad (continuous
line) and ¢qy, = 7/2 rad (dashed line). The truncation order is N = 5.
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FIGURE 7.31: Filters Fy(t) (time domain) for ¢qy, = 0 rad and ¢qy, = 7/2 rad. The
truncation order is N = 5.
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FIGURE 7.33: Magnitude and phase of the filter f, at 533.7 Hz as a function of the
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FIGURE 7.34: Magnitude (dB) of the filters f;, as a function of the frequency and

of the angle ¢qy,. The filters have been computed from equation (7.100), without the

term Zg(w) and for several values of the distance ¢ of the virtual source, while the radial

distance of the secondary sources is Ry = 1.5 m. The series has been truncated to the
order N = 10.
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FIGURE 7.35: Phase of the filters f;, as a function of the frequency and of the angle

©qy,- The filters have been computed from equation (7.100), without the term Zo(w)

and for several values of the distance ¢ of the virtual source, while the radial distance

of the secondary sources is Ry = 1.5 m. The series has been truncated to the order
N = 10.
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FIGURE 7.36: Magnitude and phase of the filters f;(w) for ¢qy, = 0 rad (continuous
line) and ¢qy, = 7/2 rad (dashed line). The truncation order is N = 10.
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FIGURE 7.37: Filters Fy(t) (time domain) for ¢qy, = 0 rad and ¢qy, = 7/2 rad. The
truncation order is NV = 10.
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FicURrRE 7.38: Magnitude and phase of the filter f, at 53.37 Hz as a function of the
angle ¢qy,. The truncation order is NV = 10.
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FIGURE 7.39: Magnitude and phase of the filter f, at 533.7 Hz as a function of the
angle ¢qy,. The truncation order is N = 10.
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7.3.3 Source signals and filters for circular geometry

The expression of the secondary source signals Mg(t) for the circular geometry can be
obtained through mathematical manipulations analogous to those discussed above. In
view of the results presented in Section 4.2, and especially of equation (4.42), reported

here
N eiyy o
aly) = Z ( (e"*p)av (7.104)

. 1
oy im Ry RaAH ) (Rp).Jj (R

we can derive the following result:

N

. _ AS( e 2 2w v, £p .

) 2l V:Z—:Ne inH{)) (£Ry) Jj) (£Ry) /0 TR G
(7.105)

.. N

M(t) = %RA Z MO [7j() @ P(¢r, 1)) (7.106)

) = —— | 2 (t) (7.107)

/o~ to 1) /. .
2 irH,} (:Ra) Jiv| (:Rv)
where yy = [Rj cos ¢y, Rp sin ¢] and Q' is the circle with unitary radius, which can be
also regarded as the one-dimensional unitary sphere. As in the case of the spherical
harmonics, in order to deal with real valued basis functions, it is possible to substitute
the complex exponentials above with sines and cosines (real valued functions), multiplied

by a normalization factor.

For a virtual line source orthogonal to the plane on which A lies at q € R?\A and in the
free field, following again passages analogous to those presented in Section 5.6.1 and in

the previous section we obtain the following expression of the filters

1) (w
Folw) = ivj Hy, (2q)
27rRA St HI(:I) (2R,)

e (de—0q) (7.108)

In the far field assumption or equivalently if ¢ = Rp and considering N = oo and the

Poisson sum formula (2.32), we have that

B o O S
fo= RN d e =3 5(de — ) (7.109)

V=—00

These coefficients are independent of the frequency, and can be therefore implemented
by simple gains. The function fy(¢¢ — ¢4) can be referred to as a panning function. If
the sampling is uniform, we have that AS;/(2rRy) = 1/L, where L is the number of

secondary sources. If the series above is truncated to the order N = (L —1)/2 (assuming
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L even), from equation (2.59) we obtain

(L,
P 1sin (i (¢ ¢>q)) _ 1 csiner, (dg — ¢g) (7.110)
2

~ Lsin (3¢ —¢g) L

An analogous result has been derived by Poletti, who presented strategies for the design
of encoding functions for two-dimensional surround sound systems [Pol96| (in this Paper
panning functions also for an even number L of secondary sources are discussed). Figure
7.40 shows a plot of fy, given by the formula above, as a function of the angle ¢, — ¢,
with L = 11. The angle Ap = 27 /L defines the angular spacing between neighboring

secondary sources.

Il Il Il Il Il Il Il Il Il Il
—5Ay —4Ay —3Ay —2Ay —Ay 0 Ay  2Ay  3Ay  4Ay  5Ay
b0 — ®q

FIGURE 7.40: Panning function f;(¢, — ¢q) for circular geometry. The number of

secondary sources is L = 11 and these are uniformly arranged on the circle, with
angular spacing A¢ = 2w/L. The z-axis of the graph includes values in the interval
[—m, 7.

It is interesting to notice that the zeros of the function fr(¢y — ¢4), the latter correspond-
ing to the secondary source arranged at ¢y, are equally spaced (this is not the case for
the spherical geometry) and correspond to the location of the other secondary sources,
when these are arranged uniformly. In fact, as suggested by Poletti [Pol96], the panning
function acts as an interpolant between the sampling points defined by the secondary
source locations. This implies that if the angular coordinate of the virtual source ¢,
coincides with the location of one of the secondary sources, only that secondary source
will be active and the strength of all the other sources will be zero. On the other hand,
if ¢4, does not coincide with any of the secondary source locations, all secondary sources
will be active and will contribute to the reproduced field. Nevertheless, the signals of
the secondary sources arranged in the vicinity of the location of the virtual source will

have larger amplitude than the other secondary source signals.
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It may be possible to regard also the spherical panning function (7.102) as an interpolant
for an ideally uniformly sampled function on a sphere (see for example [Hig96, p.37],
where a function analogous to (7.102) is regarded as a reproducing kernel). It should be
noticed, however, that apart from the case of N = 1, the zeros of the spherical panning
function do not occur at constant angular spacing. This can be observed qualitatively

in Figure 7.27.

7.3.4 Source signals and filters for linear and planar geometry

The expression of the secondary source signals M (t) for planar and linear geometry can
be derived from the results presented in sections 4.3 and 4.4. Formula (4.85), which gives

the expression of the source strength density a(y), is reported below:

o) = 7| 2| (.11)
(k) = Vk%— k2 (7.112)

The source strengths 1my(w) can be calculated by discretizing the source strength density

function, namely

AS, [ 2 o
() = St /R 2 ng(“j;zl RV (FP) (5, w) dS(K) (7.113)

where the operator F defines the Fourier transform for both domains of space and time

and is given by:

[ ][9]

(FP)(k,w) := (;ﬂ) ’ /R P(x,t) et Ix—wt] g5 (x) di (7.114)

For uniform sampling, AS; equals the distance between two consecutive secondary sources
for a two dimensional problem, or the square of this distance for the three dimensional

problem.

As for the previous cases, an expression of the digital filters f(w) for a motionless virtual
source can be obtained by substituting P(x,t) in the equation above with the impulse

response Ps(x,t) of the virtual source, measured on the control boundary oV'.

In order to gain a better understanding of formula (7.113), we study the simple case of

a propagating impulse with planar wavefront of the form

Pyi(z,t) =6 <t K Z) (7.115)

C

where the real valued vector k = [cos ¢ sin Oy, sin ¢y, sin Oy, cos O] has unitary magnitude

and identifies the direction of propagation of the pulse-wave. We make also the following
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simplifying assumptions:

A={zecR®: 23>0} (7.116)
V={zcR%: 23> d} (7.117)

For the usual properties of the Dirac delta function we observe that

3 «
(.7:_P61~()(n7w) = <21> / 5 (L‘ — kx—i—cosﬁkd> o ilrx—wi] dS(x) dt
’ s R3

- (&)

= V2reiicostid 5 (n - ff{) (7.118)
C

N

/ 6i€ cos 0yd ei;kx e—z‘n~x dS(X)
R2

where k = sin 0j[cos ¢, sin ¢y, 0], implying that k-x = k-x, x € 9V and k-y =

k-y, y € dA. In view of these results and considering the relation

C(gl},w> = g\/1 —sin? 6, = gCOSG;C
c c c

the expression for the filters fy(w) given by equation (7.113) becomes

el‘%l@yg

V2r

This formula provides a fairly simple expression for the filter, which as expected is inde-

folw) = AS, (—iwi cos 9k> (7.119)

pendent of the distance d between A and 0V. Taking a closer look at this expression,
we observe that the latter can be divided into two parts: the term in the brackets arises
from the operation of taking the normal derivative of the target field, as we have seen
in Section 6.4. It includes a real factor 2 cos 6y /c, which depends on the direction of the
plane wave, and the linear high-frequency boost filter —iw, corresponding in the time
domain to the operation of taking the time derivative (see formula (2.80) and Section 2.3
- the minus sign is due to the time convention chosen). The second part is the complex
exponential, which represents a simple time delay of Aty sec given by

Aty==k-y, (7.120)

ol

The fact should be highlighted, that this is the only part of the filter that depends on
the location y; of the secondary source considered. The filter can be therefore split into
a first filter which applies to all secondary sources, and then a delay that applies to
the single secondary source considered. Consequently, the secondary source signals for
a target field of the form P(z,t) = V(1) ® P (z,t) = V(I - k- z/c) can be computed
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using the convolution theorem (2.94), which yields

icky —L_;.
M(t) = AS, [ftl e\;% (1) ® %COS 9kw ® V(t)
= AS;§(t— Aty) ® [z cos GkiV(t)] (7.121)

The term between square brackets in the right hand side is independent of the source
index ¢ and can be computed once for all secondary sources, thus simplifying the signal

processing.

We consider now the slightly more complex case of an impulse-like wave with spherical
wavefront, with center in q € R3\A, outside of the reproduction region A. This has the

form

1 q—z
P§7q(Z,t) = mé <t — ‘ - ‘) (7122)

The filters fy(w) can again be derived by inserting Pjq(z,t) into equation (7.113). We

observe that

(FPsq)(k,w) = <1 >g /]R L <t— |q_x|) et 1g(x) di

27 3 dr|q — x| c
1 elela—x| o—ikx 1 jel(rw)(d—gs) p—ir-q

= d5(X) = =5t 2r

V2 Jre dm|lq — x| 27
where the last passage has been obtained from the Weyl integral (4.55). Substituting
this result into (7.113) we obtain

_ AS 1
© 2r4m?

This result is analogous to equation (6.35), with the difference that the pseudo-evanescent

fo(w) / el mwas pr(ye=a) g6 (k) (7.123)
R2

component of the target field is included in the calculation here. Assuming that g3 < 0
(since q ¢ A) and in light of (4.55) the following relations hold true:

1 . . o | 1 ici(r)ys—as) gin-(y—a)
1 [ kweginy-a) — 9 9 d
472 g2 ¢ ¢ Y3 /IR? 2¢(k) 472 S(k)
L y3=0
9 [ eikly—al
= —27 _—
dys | Arly — q|
L y3=0
o [ etk (y1—-01)2+(y2—a2)*+(y3—q3)?
. _27
s | 4my/(y1 — q1)% + (v2 — @2)% + (y3 — 3)? 5=0

1 etkly—al g4 1
_ 1 [k _ ]
2 ly—d| |y —d] ly —q|
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We observe that —g3/|y — q| corresponds to sin gy, where ¥4y is the angle between the
segment joining the points q and y and its projection on JA. In light of these formulae

we obtain the following expression of the filters

AS, elelye—al w 1
= —— 2sin? —_— |-+ — 7.124
fulw) Var Y iy — o | e " lye —ql ( )

We observe that the filter for the secondary source located at y, includes a delay Aty =
|y — q|/c and an attenuation factor 1/(4n|yy, — q|), both proportional to the distance
between the virtual source and the secondary source under consideration. This is not
surprising if we take into consideration the Huygens-Fresnel principle [Huy66]. The
filter includes also a gain factor 2sinqy,, which depends on the angle between the
virtual source and secondary source. This factor is strictly related to the spatial normal
derivative of the target field V,p(y) arising in the Rayleigh first integral formula (6.88)

discussed in Section 6.4.3.

Given the target field P(t) = V(t) ® P5q(z,t) = V(t — |q — z|/c)/(47|q — z|), recalling
that My(t) = [F;1(v/2m v f;)](t), we obtain the source signals

- 2sin v lye — q| 1d V(t)
M,(t) = AS, q”é(t— ® |==V(t)+ 7.125
() drly, —q c cdt ®) lye — g ( )

Observing the term within square brackets we can distinguish two terms: the first is
given by the time derivative of the signal, while the second term is the signal attenuated

by a factor given by the distance between the virtual and the secondary source.

When the distance of the virtual source is very large and we neglect in (7.125) the
attenuation factor 1/(4w|y,—q|) and the delay §(¢t—|y,—q|/c), we have that sinqy, =1
and the second term in square brackets can be neglected. Consequently, equation (7.125)
becomes identical to equation (7.121), with 6 = 0. In fact, the spherical wave reduces to
a plane wave propagating in the direction perpendicular to the planar secondary source
layer OA.

Results analogous to equations (7.119), (7.121), (7.124) and (7.125) are reported in the
literature on Wave Field Synthesis (see, for example, [SRA08]) and are generally derived
from a straightforward application of the Rayleigh first integral (6.88) or of the Huygens-

Fresnel principle (see, for example, [Sta9d7]).



Chapter 8
Experiments

Some of the theoretical results presented in the previous chapters have been validated
experimentally. A loudspeaker array, including 40 transducers arranged on a sphere,
has been designed, manufactured and assembled in the large anechoic chamber of the

Institute of Sound and Vibration Research.

The spherical geometry has been chosen for several reasons. Firstly, the chosen arrange-
ment allows for a full three dimensional control of the reproduced field (rather than the
2D reproduction). Secondly, the single layer potential (3.15) introduced in Chapter 3.1
on the bounded spherical boundary A is a compact operator. This allows for the rigor-
ous application of the singular value decomposition of the integral operator, introduced
in Chapter 3.1. The singular system for spherical geometry has been explicitly derived
in Chapter 4. The analytical expressions for the singular values and singular functions
involve some relatively simple functions, which simplifies the design of the digital filters

included in the signal processing apparatus of the system, as discussed in Chapter 7.3.

The system included 40 loudspeakers, used as secondary sources. The important as-
sumption has been made that the radiation pattern of the speakers is omnidirectional
and that their electroacoustical transfer function in the free field could be represented
by a three dimensional free field Green function, as expressed by equation (3.6). The
choice of the loudspeakers was therefore restricted to transducers which can satisfy this
assumption with reasonable accuracy within the frequency range of interest. We will

come back to this point later in this chapter.

The scope of the experiment was to reproduce a target sound field with the loudspeaker
array and evaluate the accuracy of the reproduced field in comparison to the target field.
The reproduction region was clearly the interior of the sphere on which the loudspeakers
were arranged. The target field was chosen to be the acoustic field generated by an
omnidirectional point source, located in the exterior of the reproduction region. In

spite of the fact that the analytical expression of the target field is given by the three
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dimensional free field Green function, the choice was made to generate and measure also
the target field. The latter was originated by a single loudspeaker (not included in the
array) arranged in the location of the virtual point source. This procedure would help
compensate for inaccuracies of the measurement system, such as errors in microphone
arrangement and microphone phase mismatch (although the microphones underwent a
calibration procedure), since both target and reproduced field were measured with the

same device.

The measurement apparatus was a translating linear array of microphones, which could
span the horizontal cross section of the reproduction region and sample the acoustic field

on a two dimensional uniform lattice.

In what follows, the experimental arrangement is described in detail ' . Then, the
digital signal processing steps adopted for the measurement are presented. Finally, the

experimental results are illustrated and discussed.

8.1 Experimental arrangement

Among the different items of experimental equipment, three main elements can be iden-
tified:

Loudspeaker array (Figure8.8): includes the supporting structure, the speakers, the
power amplifiers and the cables carrying the amplified signals driving the loud-

speakers.

Microphone array : includes the supporting structure, the microphones, the micro-

phone amplifiers and the cables carrying the microphone signals;

DSP and control unit : includes the digital signal converters (DAC/ADC), a com-
puter equipped with PCI card for interfacing with the converters and several soft-
ware packages used for the generation, acquisition, processing and analysis of the

signals.

8.1.1 The anechoic chamber

The entire experiment had been carried out in the large anechoic chamber of the Institute
of Sound and Vibration Research (ISVR), at the University of Southampton. All the
experimental equipment was arranged in the chamber, with the only exception of the
control PC, located in the adjacent control room. Figure 8.1 shows a picture of the

chamber.

!The majority of the photos in this chapter were taken by Jens E.N. Christensen, to whom the author
is much obliged.
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FIGURE 8.1: Large anechoic chamber of the Institute of Sound and Vibration Research.

The following list of specification has been taken from the ISVR website [ISV].

The Large Anechoic Room at ISVR is one of the largest in the country. It was extensively
refurbished during 1995/96 and the original polyurethane foam wedges were replaced
with glass fibre wedges.

Construction Built as a box within a box, it is acoustically isolated from the rest of
the building and adjacent chambers by an air gap all around and is supported on

vibration isolation mounts. The reinforced concrete walls are 305 mm thick.

Wall Lining There are over 8,000 non-flammable glass-fibre cored wedges, extending
910 mm from the walls, floor and ceiling. Free-field conditions exist at frequencies
above 80 Hz.

Dimensions Without wedges the bare chamber is 9.15 m x 9.15 m x 7.32 m, volume
611 cubic metres. The usable space between the wedges is 7.33 m x 7.33 m x 5.50

m, giving a usable volume of 295 cubic meters.
Access Double doors 2.0 m wide x 2.4 m high.

Flooring A grid of removable floor panels can support a spread load of several tons with
a minimum of interference with the anechoic nature of the chamber. An optional
floor of varnished chipboard is available for measurements requiring a free field

above a reflecting plane (hemi-anechoic conditions).
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8.1.2 The loudspeakers

The 40 loudspeakers included in the array are KEF HTS3001. Table 8.1 reports some
technical characteristics of these units. The data have been taken from the product user

manual [KEF|. Figure 8.2 shows a picture of one of the loudspeaker array units.

Model

HTS3001

HTC3001

Design

Driver Unit Array

Frequency Range
Amplifier Requirement
Sensitivity (2.83V/1m)
Maximum Output (SPL)
Impedance

Internal volume

Weight

Dimensions (H x W x D)

Finish

Dispersion

Harmonic Distortion

Crossover Frequency

Bass reflex two-way
115mm Uni-Q®
19mm aluminium HF
70Hz - 55kHz

10 - 100 Watts
88dB

104dB SPL @Im
802

1.75 litres

3kg

198 x 130 x 150 mm

High Gloss Black
& High Gloss Silver

Over 90° arc within 2dB

reference response, both
horizontal and vertical

TBA

2.2kHz

Closed box three-way
115mm UniQ

19mm aluminium HF
2 x 7bmm LF

60Hz- 55kHz

10 - 100 Watts

90dB

106dB SPL @ 1m

80

2.4 litres

6kg

198 x 130 x 150 mm

High Gloss Black
& High Gloss Silver

Over 90° arc within 2dB

reference response, both
horizontal and vertical

TBA

2.2kHz / 500Hz

TABLE 8.1:

Technical specifications of the loudspeakers included in the array
(HTS3001) and used for generating the reference field (HTC3001).

The data have

been taken from the product user manual [KEF]

These transducers are two-way units (2.2kHz crossover frequency) equipped with concen-
tric drivers (implementing UNI-Q® technology). Figure 8.3 (courtesy of KEF AUDIO)
shows an exploded view of the graphic model of the concentric drivers. This technical

solution reduces the variation with frequency of the location the acoustic center of the
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device, and minimizes the presence of destructive interference between the drivers in the
region of the cross-over frequency. The loudspeakers include a port on their back, but
this had been closed with sound absorbing material in order to maximize the uniformity

of radiation.

FIGURE 8.2: Picture of one KEF HTS3001 mounted on the supporting structure of
the array.

ltu 7

FIGURE 8.3: Exploded view of the concentric drivers (courtesy of KEF AUDIO).

The theoretical results presented in this thesis have been developed on the assump-
tion that the secondary sources radiate sound as omnidirectional point sources (acoustic
monopoles). Therefore, as mentioned above, the loudspeakers should exhibit a radiation
pattern which is as omnidirectional as possible across the frequency range of interest.

The choice of the HST3001 was taken in light of a series of experimental measurements of
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the radiation patterns of several loudspeaker models. This work was carried out by Vin-
cent Brunel together with the author and other researchers and is presented in [Bru0§],
[FBNT08] and [FBN07]. The aim of the experiment was to achieve a numerical recon-
struction of the sound field radiated by the transducer from a set of measured transfer
functions between the loudspeaker and a set of omnidirectional microphones arranged
on the surface of a 1.15 m radius hemisphere, at the center of which the loudspeaker had
been arranged (the data on the second half of the sphere were derived from symmetry
assumptions on the radiated field). The field was then reconstructed by applying a holo-
graphic method as shown in [FBNT08] and [Wil99]. In Figure 8.4 (taken from [Bru08|)
the radiation pattern of one HT'S3001 is shown, for various frequencies. This was com-
puted by interpolating the absolute value of the Fourier transform of the pressure impulse
responses of the loudspeaker measured by the microphones arranged as described above.
The interpolation was achieved from the computation of the spherical spectrum (2.73)
of the radiated field, sampled on the hemisphere, and then synthesizing the radiation
pattern by computing a truncated spherical harmonic series (2.72). For the sake of sci-
entific rigor, it should be mentioned that the radiation patterns were not obtained from
a far field propagation of the measured field but rather from a direct interpolation of
the field measured at 1.15m. This implies that some near-field components might be
included in the plots of the radiation pattern, which might be relevant at low frequencies
but negligible at high frequencies. It can be observed that the radiation pattern in the
front of the transducer is quite uniform up to relatively high frequencies (4kHz). Though
smooth decay of energy can be observed (from 0dB on axis up to around -10dB or more
at 90°), no sharp discontinuities in the radiation pattern, such as those generated by
destructive interference between two drivers at the cross-over frequency, are visible at

any frequencies.

The signals driving the loudspeakers were amplified by a set of five eight-channel custom

made power amplifiers, a picture of which is shown in Figure 8.6.

The level of the amplifiers was calibrated as follows. A measurement microphone was
placed in the center of the array and for each loudspeaker, a reference signal was played
back by the transducer and the gain of the corresponding amplifier was adjusted. The
reference signal adopted was white noise filtered with a band-pass filter (100 Hz-1500

Hz) in order to reduce the effect of directionality of the microphone at high frequencies.

The frequency response functions of three loudspeakers, namely units 23, 24 and 26,
were measured and reported in Figure 8.5. Note that the loudspeakers 23 and 24 and
the loudspeaker 26 are driven by two different 8-channel amplification modules. The
delay of the signals have been compensated for in order to better visualize the phase
plots. The measurement were performed on axis at a distance of 1 m from the driver. It
can be clearly observed that the differences of phase and amplitude between the different
units are very small. For this reason, individual calibration filters for the single units of

the loudspeaker array were not used.
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35.1563 Hz 70.3125 Hz 128.9063 Hz 257.8125 Hz 503.9063 Hz

1007.8125 Hz 2003.9063 Hz 4007 8125 Hz 8003.9063 Hz

160078125 Hz

FIGURE 8.4: Radiation pattern of one KEF HTS3001, measured at 1.12m. The

color scale and the radial coordinate of the spheroids represent the magnitude of the

radiated pressure (dB scale, with range -20 dB to 0 dB), for various frequencies. The
IR is normalized in respect to the on-axis response of the loudspeaker (0 dB)

Relative Frequency response

Magnitude [dB]

Relative Phase response

Phase [rad]

10° 10° 10

Frequency [Hz]

FiGURE 8.5: Frequency response function of unit 23, 24 and 26 of the loudspeaker
array.
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FIGURE 8.6: The eight-channels amplifiers driving the loudspeakers (note that in the
right hand side picture, only four units are shown).

8.1.3 The supporting structure

The loudspeakers were arranged on the surface of a sphere of 1.8 m radius (which defines
the secondary source layer OA discussed in the previous chapters of this thesis). The
loudspeaker arrangement was defined as follows: some of the locations are defined by the
vertices of a regular icosahedron. The other locations are defined by the middle points
of the thirty-two edges of the icosahedron projected onto the circumscribed sphere of the
icosahedron. This arrangement defines an almost regular sampling scheme, with angle
between neighboring points of either 36° or 32°. The coordinates of the loudspeaker
layout are reported in Appendix E, while a diagram is reported in Figure 8.7. As shown
in the figure, loudspeakers were not arranged at two of the locations defined above,

corresponding to the base and the entrance of the array, respectively.

The loudspeakers were mounted on a large spherical supporting structure of 4 m diameter,
a picture of which is shown in Figure 8.8. The structure was designed jointly with and
manufactured by The Dome Company 2. The structure included a number of curved,
zinc plated, steel tubes, with external and internal nominal diameter of 26.9 mm and

18.84 mm, respectively, and length of either 1.26 m or 1.12 m.

The tubes were joined by steel connectors, consisting of six or five machined sockets
radiating from a central boss, as shown in Figure 8.9. The loudspeakers were mounted on

these connectors, with the aid of two rubber mounts acting as vibration isolators between

2The Dome Company, Unit 4, Station Yard, Halesworth, Suffolk, IP19 8BZ, UK - T:01986 872175 -
M:07966514046
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z[m]

y [m] xml

F1GURE 8.7: Diagram of the loudspeaker layout. In order to facilitate visualization,
the locations with cartesian coordinate x, < 0 are represented in black, while those
with z, > 0 are in blue.

FIGURE 8.8: Picture of the loudspeaker atty in the ISVR large anechoic chamber.
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FIGURE 8.9: Detail of the loudspeaker mounts.

Main
structure

Rubber mounts

Loudspeaker hase

FIGURE 8.10: Diagram of the loudspeaker mounts.
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the transducers and the metal structure. A diagram of the loudspeaker mounting sketch
is shown in Figure 8.10. Some extra isolating material was added while assembling the

array in order to make the speaker mounts more stable,(see Figure 8.9).

As shown in Figure 8.8, the structure was sitting on the ring at its base, and nine steel

feet were used for better stability of the structure.

8.1.4 Acoustic source for the reference field

The reference sound field was chosen to be the field generated by an acoustic monopole,
located in the exterior of the reproduction volume, that is in the exterior of the loud-
speaker array. This field was generated by a loudspeaker, namely a KEF HTC3001,
arranged as shown in Figure 8.11 at the location of the virtual source. The latter was,
in Cartesian coordinates, [zq,Yq, 24] = [0 m, —2.36 m, 0.64 m]. The loudspeaker adopted
is very similar, though not identical, to those included in the array, and its technical

characteristic are reported in Table 8.1.

FIGURE 8.11: Arrangement of the acoustic source generating the reference sound field.

8.1.5 The microphone array

The microphone array included a set of forty measurement microphones, evenly arranged
on a linear segment with spacing between neighboring transducers of 51 mm. The micro-

phone used pre-polarized free-field Briiel and Kjeer microphones, with half-inch capsules,
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Type 4189. The microphones were fixed, with cable ties, on a supporting structure. The
latter included a length of Dexion, supported by two wooden guides as shown in figures
8.12 and 8.13. The linear array could slide on the guides, thus allowing for the sampling
of the acoustic field on the locations defined by a regular lattice. The construction of the
array was such that all microphone diaphragms were lying on the plane z = 0, with some
degree of approximation due to mechanical tolerances. As mentioned above, the latter
were compensated for by measuring not only the reproduced field but also the target
field.

The spacing between the microphone and the translation steps of the array on the wooden
guide were both equal to 51 mm. Considering the usual limit of at least two sampling
points per wavelength and assuming the speed of sound to be equal to 343 m/s, this
spacing allowed for a higher frequency limit of about 3400 Hz. Above this frequency

limit, the measurement could be contaminated by spatial aliasing artifacts.

For limitations of the electronic hardware (probably due limited speed of writing on the
hard drive the data acquired from multi-channel recordings) a subset of 28 microphones
was used. The array was then translated 28 times and the same sound field was measured,
thus allowing for a total measured region of about 1.4 m x 1.4 m, lying on the equatorial
plane of the loudspeaker array, with geometrical center coinciding with the center of the
spherical loudspeaker array. A diagram of the measured region and of the microphone

positions is reported in Figure 8.14.

Two custom-made multi-channel amplifiers, one of which is shown in Figure 8.15, were
used for supplying power to the microphones and to amplify the acquired signals before

these were routed to the analog to digital converters (ADC).

The microphone array underwent a calibration procedure. A custom made calibration
apparatus was built. The latter included the chassis of a broken pistonphone, inside
which a small loudspeaker was mounted. The calibration apparatus was placed on each
microphone, the latter being connected to the corresponding amplifier and ADC. Figure
8.16 shows this step of the calibration process, performed by Dr. Mincheol Shin. A
reference signal (white noise) was played back by the loudspeaker in the calibration
device, and was acquired by the microphone under test and recorded. The procedure
was repeated for each ensemble of microphone, amplifier and ADC. A set of inverse
filters was then created by inverting the transfer function between each microphone and
a reference microphone, the latter being one of the microphones of the array. Figure
8.17 shows the calibration filters (in the frequency domain, magnitude and phase) for
all the 40 units of the array. It can be observed that the variations in magnitude are
in the range of +2 dB up to 8 kHz, and are probably caused by the tolerances of the
amplifier gains. In the same frequency range, the phase variations are negligible. Beyond
8 kHz, some larger variations and a more erratic behavior of the filters can be observed

for both magnitude and phase. It is believed that these deviations are due to limits of
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FIGURE 8.13: Microphone array.
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FIGURE 8.14: Diagram of the measured region. The black dots indicate the micro-
phone positions, for all translation steps of the linear array.

FIGURE 8.15: One of the two multi-channel microphone amplifiers.

accuracy of the calibration apparatus. In fact, phenomena such as acoustics modes of the
cavity of the calibrator and non ideal radiation of the little driver enclosed may affect the
repeatability and accuracy of the calibration method at high frequencies. However, these
supposed limits of the calibration procedure have a significant effect at frequencies well
beyond the spatial aliasing limit of the array (3.4 kHz), and are therefore not influential

for the proposed experiment.



Chapter 8 Experiments

235

FIGURE 8.16: Microphone array calibration, performed by Dr. Mincheol Shin.
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FIGURE 8.17: Calibration filters for the 40 units of the microphone array.
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8.1.6 The signal processing apparatus

The analog signals feeding the amplifiers of the loudspeaker array and the signals acquired
by the microphone array were converted from and into digital format by a set of five eight-
channel RME ADI-8 DS DAC/ADC converters. The sampling frequency of the system
was 48 kHz, and one of the ADI-8 DS was operating as master clock. The digital input
and output of these devices was carried into ADAT optical cables, capable of carrying up
to eight digital signals at 48 kHz on a single optic fiber cable. These signals were in turn
converted into 2 MADI data streams by a RME ADI-648 ADAT to MADI and MADI
to ADAT converter. Each MADI optical cable is capable of carrying up to 64 channels
at 48 kHz. Figure 8.18 report a picture of the rack including the five RME ADI-8 DS
and the RME ADI-648. Observing the rear side of the rack, we can see the two orange
cables that are the MADI optical cables, while the thin black cables are ADAT optical
cables. The thicker, black, numbered cables on the left hand side carry the analog signals
feeding the loudspeaker array, while the thick, black, numbered cables on the right hand

side carry the analog signals acquired by the microphone array.

The two MADI optical cables (one for all the loudspeaker array signals and one for all
the microphone array signals) were connected to a standard PC desktop, equipped via

an RME Hammerfall DSP (HDSP) MADI PCI card.

The entire digital signal processing was performed in post- or pre-processing with a PC,
using MATLAB software package. The real-time signal reproduction and acquisition was

controlled by Adobe Audition software package.
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FIGURE 8.18: DAC/ADC conversion system, including the five RME ADI-8 DS and
of the RME ADI-648.
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8.2 Measurement procedure and digital signal processing

The target of the experiment was to generate the target acoustic field with the dedicated
acoustic source and to measure it, and then to reproduced and measure the same field
with the loudspeaker array. Figure 8.19 reports a diagram of the reciprocal arrangement
of the loudspeaker array, of the area spanned by the microphone array and of the source

generating the target sound field.

z [m]

x [m]

FIGURE 8.19: Diagram of the arrangement of the loudspeaker array, of the area

spanned by the microphone array and of the virtual source. The location of the latter

is indicated by a red dot, while the black and blue dots represent the location of the
loudspeakers and of the microphones, respectively.

Both the target and the reproduced field were generated using the same reference signal
in the time domain. The ideal signal would be a single pulse (a Dirac delta function in the
time domain). However, for experimental purposes, a sinusoidal chirp with exponentially
varying instantaneous frequency was used, and then convolved with its inverse filter in
order to retrieve the desired impulse response. This technique is presented in detail in
[Far07]. The so-called deconvolution was performed using the Aurora plug-in of Adobe
Audition. The chirp was 10 seconds long and spanned a frequency interval from 50 Hz to
15 kHz. The time series and spectrograms (computed with 16384 FFT points and using
a Blackmann-Harris window) of the chirp, of its inverse filter and of a sample impulse

response are reported in Figure 8.20. This impulse response measurement technique was
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chosen for its capability of rejecting the nonlinearities of the measurement system, such

as the harmonic distortion of the loudspeakers, as discussed in [Far07].

The measurement of the target field was performed by reproducing the chirp signal with
the dedicated loudspeaker, acquiring the signals measured by the microphone array and
saving them in the hard drive of the PC. This procedure was repeated for each translation

step of the microphone array.

The measurement of the reproduced field was performed by playing back forty previously
prepared signals with the corresponding loudspeakers of the array, and by measuring the

reproduced acoustic field with the microphone array.

The signals above were obtained by filtering the chirp signal with a set of FIR filters,
one for each loudspeaker. These FIR filters were computed numerically in the frequency
domain following the steps presented in the previous chapters of this thesis and are
discussed further below. Clearly, the filter coefficients depend on the location of the

virtual source and on the location of the loudspeaker associated to the filter.

The fact should be emphasized that for each translation step of the linear microphone
array, the measurement of the target and reproduced field were taken consecutively, and
then the array was translated to the next measurement position. This procedure was un-
dertaken in order to compensate for the array position and to minimize the measurement

effort and time.

All the acquired signals were then convolved with the same inverse filter of the exponential
sweep, thus retrieving the desired impulse responses. The latter contained all the required
information about the target and reproduced field, and could be analyzed in different

ways, as discussed later in this chapter.

8.2.1 Digital filter design

The filter design technique used in this experiment is based on equation (7.100) truncated
to the order N = 5 and with coordinates of the virtual source being q = [0 m, —2.36 m, 0.64 m].
The filters adopted were not designed following a straightforward application of this equa-

tion but some modifications were introduced for practical purposes.

The first modification is that the delay §(t—(¢— Ra)/c) appearing in equation (7.101) was
removed from the filter computation. This delay corresponds to the difference between
the distances of the virtual and of the secondary sources from the center of the array.
This simple delay does not influence the scope of this experiment. A plot of these digital
filters is reported in Figure 8.21 (note that these are not the final version of the filter

used for this experiment).
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(c2)

FIGURE 8.20: Time series and spectrogram of the exponential chirp (al-a2), of its
inverse filter (b1-b2) and of a sample impulse response obtained from measurement
(c1-c2). Note that the frequency axis (vertical) of the spectrogram has a logarithmic

scale.
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FIGURE 8.21: Digital filters (represented in the frequency domain) obtained by direct
application of equation (7.100). Each filter corresponds to a single loudspeaker of the
array.

A second, more relevant, difference involves dedicated processing for low, middle and
high frequencies. In order to achieve this task, the test signal was pre-filtered using
three filters, more specifically a low-pass filter, a band-pass filter and a high-pass filter.
These did not apply any phase shift to the signal, which means that their coefficients in
the frequency domain are real numbers. These filters are reported in Figure 8.22. The
cross-over frequencies are 100 Hz for low-middle frequencies, and 1.5 kHz for middle-high

frequencies. It can be noticed that the filters exhibit very steep roll-off.

The low frequency component of the signal was delivered equally to all forty loudspeakers
of the array. In this way, only the array mode corresponding to the spherical harmonic
Y (y) was reproduced (refer to chapters 3 and 4 for more detail) . At low frequencies, this
is the most efficient mode. This technique had therefore the consequence of compensating
the low-frequency roll off of the transfer function of the loudspeakers adopted (see Figure
8.5), thus maximizing the sound level at low frequencies at the price of reducing the
accuracy of reproduction of the field. This choice was motivated by the fact that the
system used for this experiment was optimized for audio reproduction, which requires
good performance at all frequencies of the audible range. As a matter of fact, the
application of this technique produced an excess of acoustic energy at low frequencies.
For this reason, the low pass filter shown in Figure 8.22 includes an attenuation of 6 dB.

This value was chosen after subjective evaluation.
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FIGURE 8.22: Low-pass filter, band-pass filter and high-pass filter. The phase of the
filters is identically zero for all frequencies.

This technique had also another relevant consequence. In Section 5.5.1 we have seen
that a given array mode a,(y) does not radiate any energy in the exterior of A if the
operating frequency corresponds to one of the Dirichlet eigenvalues of A, which is related
to that given mode. For spherical geometry, the Dirichlet eigenvalues of A related to the
mode Y (y) are identified by the zeros of the spherical Bessel function j,(Raw/c). For
the spherical array of radius Ry = 1.8 m, such as that under consideration, this occurs
in the vicinity of the frequency w/(27) = 96 Hz. Since at low frequency only the array
mode Y(y) is reproduced, only little or no acoustic energy is radiated outside of the
array at all frequencies in the vicinity of 96 Hz. This phenomenon was not measured but

was clearly noticeable.

The output signal of the band-pass filter was filtered by a set of forty FIR filters de-
signed following a straightforward application of equation (7.100) (removing the delay

mentioned above).

The processing of the output of the high-pass filter was engineered in view of the follow-
ing considerations. As discussed previously, for the case under consideration the linear
superposition of the fields generated by the secondary sources is intended to reproduce
the target field with good accuracy over a region, whose volume reduces progressively
with increasing frequency. As suggested in [WAO1], the radius of this region is r = N/k.
Therefore, outside the region of good reproduction, which is very small at high frequen-
cies, the superposition of the loudspeaker fields generates undesired artifacts. Further-
more, at high frequencies small errors in the arrangement of the array units may lead

to major alteration of the desired interference pattern, resulting in severe reproduction
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errors. It is therefore believed that, at least for audio purposes and for high frequencies,
it is preferable to allow only few loudspeakers to be active, which are in the vicinity of

the direction of the virtual source and which operate in-phase.

In Section 7.3.2 it has been observed that the high frequency asymptotic limit of the
filters designed following equation (7.100) coincides with the panning function (7.102)
(apart from a constant factor and a delay). It has also been observed that this panning
function exhibits a main lobe in the direction of the virtual source and 2N — 1 side lobes.
This implies that loudspeakers arranged far from the direction of the virtual source are
active, and they may operate with opposite phase to that of the loudspeakers in the

vicinity of the virtual source, lying within the aperture of the main lobe.

In view of these considerations, the choice was made to deliberately eliminate the high
frequency components of the signals feeding the speakers outside of the main lobe of
the panning function (7.102). The angular half-width of the main lobe of the panning
function computed for a truncation order N = 5, equals 36.6° (cfr. Figure 7.27), while the
angle between neighboring loudspeakers is, for the case under consideration, either 36°
or 32°. The application of this technique implies that, when the direction of the virtual
source coincides with one of the loudspeakers, six or seven units of the array are active at
high frequencies, but most of the energy is produced by the unit aligned with the virtual
source. When, on the contrary, the virtual source direction does not coincide with any
secondary source, usually only three loudspeakers are active at high frequencies. This
technique produced the desired effect that only few speakers, arranged in the vicinity
of the direction of the virtual source and acting in-phase, generated the high frequency
components of the field. Though developed on different basis, this technique shares some
practical similarities with the Vector Based Amplitude Panning (VBAP), proposed by
Pulkki [Pul97].

The combination of the filters shown in Figure 8.22 and of the signal processing strategies
presented above can be condensed into a unique set of forty digital filters. These are
illustrated in Figure 8.23. The apparent discontinuity of the phase is actually due to the
high frequency attenuation involved in the high frequency processing technique discussed
above. All filters which would exhibit a high frequency asymptotic phase of 7 (opposition

of phase in respect to 0 phase) undergo the aforementioned high frequency attenuation.

It can be easily deduced that the reproduced field was dominated by the contribution
of three loudspeakers. These are the units lying within the main lobe of the panning
function and are numbered 14, 15 and 24 in Figure 8.7. Figure 8.24 reports only the
digital filters associated with these three loudspeakers. It can be noticed that both
phase and amplitude remain almost unvaried throughout the frequency spectrum. The
smooth discontinuity in the vicinity of 100 Hz and the boost of lower frequencies are a

consequence of the low frequency processing technique discussed above.
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FIGURE 8.23: Digital filters (represented in the frequency domain) used for processing
the test signal. Each filter corresponds to a single loudspeaker of the array.
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FIGURE 8.24: Digital filters the corresponding to the three loudspeaker (number 14,
15 and 24) lying within the angular aperture of the main lobe of the panning function.
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8.3 Experimental results

In what follows, the measured reference pressure field is compared with the reproduced
pressure field. The comparison is performed for monochromatic fields, for a set of differ-
ent operating frequencies. These data have been extracted from the measured impulse
responses, acquired with the method discussed above. In order to provide a comparison
with the expected results, analogous data obtained from numerical simulations are re-
ported. Figures 8.25 to 8.38 show these results. Each figure reports the reference and
reproduced pressure field (the real part of a complex valued function), both simulated
and measured, in the region of the space scanned by the microphone array. A plot of the
normalized reproduction error is also reported for both simulated and real case. This
error has been computed with equation (5.31), reported here

p(z) — p(z)|?
STt (8.1)

The color scale represents the percentage value of the error. In several plots of the

en(z) ==

normalized reproduction error, a circle of radius r = N/k ~ 5-54.66/ f is represented, in
order to indicate the region where an accurate reproduction is to be expected. When this
circle is not visible, it means that its radius is larger than the dimension of the plotting

area.

It should be mentioned that all the data acquired with two microphones, numbered 13
and 20 in Figure 8.14, resulted in being unusable. These missing measurements have
been replaced with data obtained by linear interpolation of the data measured with
neighboring microphones. This fact has the implication that the spatial aliasing limit of
3400 Hz is locally reduced to half of that value (1700 Hz).

Figures 8.25 to 8.38 report plots of the measured horizontal components of the intensity
(plotted using the MATLAB function streamslice), for a set of different frequencies. The
intensity component in the direction perpendicular to area scanned by the microphone
array has been imposed to be zero, since these could not be computed from the measured
data. The colored plot of the measured pressure has been superimposed. These intensity
plots are useful in order to gain a better understanding of the direction of the flow
of acoustic energy in the different locations of the measured area. The time averaged

intensity I(z) was computed from equation (3.12), reported here

I(#) = Relplz)v(z)’ (8.2)

The two horizontal components of the velocity v(z) have been computed by applying

the Euler equation (3.9), reported here

Vp(z) = iwpov(z) (8.3)
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where the horizontal components of the gradient Vp(z) have been replaced by a finite dif-
ference between the pressure measured at two neighboring microphone locations, divided

by their distance.

8.3.1 Discussion

A general overview of the results shows a good agreement between the simulated and
measured results in the frequency range considered. For most of the frequencies a dif-
ference of phase can be observed between the simulated and measured field. This is due
to the non linear phase of the frequency response function of the loudspeakers HT'S3001
of the array, shown in Figure 8.5, while the simulated data have been computed under
the assumption of ideal sources (unitary magnitude and zero phase across the entire
frequency range). The accuracy of the reproduced field suggests that the frequency re-
sponse of the loudspeaker HTC3001, used for generating the reference field, exhibits a
phase response identical to the HTS3001.

The reproduced field at frequencies in the vicinity of 100 Hz is dissimilar from the refer-
ence field. In fact, as discussed above, the signal processing applied to the low frequency
components of the signal was not aimed at achieving an accurate reproduction of the
reference field. Figure 8.25 indicates the prevalence of the mode corresponding to the

zero order spherical harmonic (compare this with Figure 4.5).

The frequency range from 200 Hz to 400 Hz is characterized by an accurate reproduction
of the target field over the entire measured region. This is the case also for the intensity

diagrams.

In the frequency range between 400 and 800 Hz, it is evident that an accurate reproduc-
tion of the desired field is achieved only on the area within the dashed circle with radius
r=N/k. The measured error is slightly larger that the simulated one, but measured and

simulated results are still in good agreement.

At 1000 Hz a large reproduction error is measured within the dashed circle, but at 1250
Hz we observe again a reasonably good agreement between simulated and measured data.
This error is unexpected, but does not affect dramatically the direction of the intensity
field within the r = N/k circle.

The intensity plots show that the direction of the reproduced intensity field is still in
good agreement with the target over almost all the measured area. However, at 600 and
800 Hz it can be observed that the direction of the flux lines in the exterior of the circle
starts deviating from the reference. This phenomenon is very evident at 1000 and 1200
Hz, and is believed to be caused by the acoustic field generated by the loudspeakers
located far from the direction of the virtual source. This hypothesis is confirmed by

the fact that at higher frequencies, when the signal processing technique dedicated to
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high frequencies presented above is applied, the direction of the intensity field appears
to be more consistent with the target. It is recalled that the high frequency processing
technique involves the use of only those loudspeakers which are located in the vicinity of

the direction of the virtual source.

Starting from 1600 Hz and beyond, a progressively increasing disagreement between
simulated and measured data is observed. A large reproduction error is present in many
locations of the measured region. This effect is much less dramatic in the intensity
plots, which still do not differ too severely from the target field plots. The two apparent
horizontal discontinuities in the intensity plots are actually due to the local reduction of
spatial aliasing threshold caused by the replacement of the data of the microphones 13
and 20 with data obtained from interpolation. This phenomenon is partially observable

also in the pressure field plots.

At 2500 Hz it is evident that we are approaching the accuracy limit of the system, and
the target and reproduced field differ visibly.

Note on the following figures

In Figure 8.25 to Figure 8.38, the plots on the left hand column represent the simulated

data, while those on the right-hand column represent the measured data.

The first row of plots shows the reference field, while the second row represents the
reproduced field. The colors represents the real part of the complex scalar field describing
the acoustic pressure for the given operating frequency (reported at the top of each
figure). Red and yellow represent positive values, blue and turquoise negative values and

green is zero.

The plots in the last row report the normalized reproduction error defined by equation
(8.1). The color bar at the bottom of the figures indicates the relation between colors and
percentage value of the error (the color bar does not refer to the reference and reproduced
field plots). The dashed circle, when visible, has a radius r = N/k ~ 5-54.66/f (the

region of expected accurate reproduction).

Figures 8.25 to 8.38 represent the measured horizontal components of the intensity, with
the plot of the measured pressure superimposed. The reference field is on the left-hand

side, while the reproduced field is on the right-hand side.
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y — microphones

Frequency 106 Hz
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FI1GURE 8.25: Reference field, reproduced field and normalized reproduction error.
The color bar refers to the error plots. The operating frequency is 106 Hz.
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Frequency 164 Hz

Reference field — simulated Reference field — measured
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Reproduced field — simulated Reproduced field — measured

y — microphones

05 0 0.5 0.5 0 05

X — measurements X — measurements
Normalized error — simulated Normalized error — measured

y — microphones

-0.5 0 0.5 -0.5 0 0.5
X — measurements X — measurements

0 10 20 30 40 50

FIGURE 8.26: Reference field, reproduced field and normalized reproduction error.
The color bar refers to the error plots. The operating frequency is 164 Hz.
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Frequency 199 Hz

Reference field — simulated Reference field — measured

y — microphones
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FIGURE 8.27: Reference field, reproduced field and normalized reproduction error.
The color bar refers to the error plots. The operating frequency is 199 Hz.
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y — microphones y — microphones

y — microphones

Frequency 246 Hz

Reference field — simulated Reference field — measured

y — microphones
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FIGURE 8.28: Reference field, reproduced field and normalized reproduction error.
The color bar refers to the error plots. The operating frequency is 246 Hz.
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Frequency 317 Hz
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FIGURE 8.29: Reference field, reproduced field and normalized reproduction error.
The color bar refers to the error plots. The operating frequency is 317 Hz.
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y — microphones y — microphones
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F1GURE 8.30: Reference field, reproduced field and normalized reproduction error.
The color bar refers to the error plots. The operating frequency is 399 Hz.
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FIGURE 8.31:
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Reference field, reproduced field and normalized reproduction error.

The color bar refers to the error plots. The operating frequency is 504 Hz.
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y — microphones y — microphones

y — microphones

Frequency 633 Hz

Reference field — simulated Reference field — measured
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FIGURE 8.32: Reference field, reproduced field and normalized reproduction error.
The color bar refers to the error plots. The operating frequency is 633 Hz.
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y — microphones y — microphones

y — microphones
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F1GURE 8.33: Reference field, reproduced field and normalized reproduction error.
The color bar refers to the error plots. The operating frequency is 797 Hz.
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Frequency 997 Hz
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FIGURE 8.34: Reference field, reproduced field and normalized reproduction error.
The color bar refers to the error plots. The operating frequency is 997 Hz.
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Frequency 1255 Hz
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F1GURE 8.35: Reference field, reproduced field and normalized reproduction error.
The color bar refers to the error plots. The operating frequency is 1255 Hz.
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Frequency 1606 Hz
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FIGURE 8.36: Reference field, reproduced field and normalized reproduction error.
The color bar refers to the error plots. The operating frequency is 1606 Hz.



Chapter 8 Experiments 260
Frequency 2005 Hz
Reference field — simulated Reference field — measured
0.5 Eaannnanomme
[72] (7]
Q (D)
C C .............
o o ST T e e
e e
o o | TR . L A .
o o Ok
5 5 e
E E .....
| | T ———
> R P i T P
-0.5
-0.5 0 0.5
X — measurements X — measurements
Reproduced field — simulated Reproduced field — measured
[72]
()
[
(@)
e
o
o
O
e
|
>
-0.5 0 -0.5 0 0.5
X — measurements X — measurements
Normalized error — simulated Normalized error — measured

y — microphones

oy
-0.5 0 0.5 -0.5 0 0.5
X — measurements X — measurements

H @ e
0O 10 2

0 30 40 50

F1GURE 8.37: Reference field, reproduced field and normalized reproduction error.
The color bar refers to the error plots. The operating frequency is 2005 Hz.



Chapter 8 Experiments 261

y — microphones y — microphones

y — microphones

Frequency 2509 Hz

Reference field — simulated Reference field — measured
0.5 [anes e |
........... "
(D)
.............. C
........ S
e
NN | Lmummmmmmmy o
0L o
P O
£
.......... |
>
_0.5 AAAAAA
-0.5 0 0.5
X — measurements X — measurements
Reproduced field — simulated Reproduced field — measured
...... TR o o AR | e
T e AU W PO L T AP S YWY T
QS FTSwy __ e 7 - 0.5 """ uy B
AP | AR ST e & 0 P s i NN
PR T T BT N iy GJ e L e O -
L e Y e g L i et
2 T e | S T
0 ?".’;#’iiiii""'iiiiif#" 9 O‘.’;;IZ]"I’..*",‘;,.ZZ"‘;;:‘
*“,..’_,"‘ O ,,{’“"""L‘..,_
",,*iiﬂ"fiiff."'?"’."f"',“‘fiiiﬁg £ iiiiii.“‘!"‘.’iiiiiWﬁi?ii
.................... | . .
' 444444 % i ,...*.,4 . / % > ..... “" 44444 m 44444 *‘1
/ ....................... e - U S ,4“ '_,,,_'
—0.5 Lo W W —0.5 | lOtr o TOREN 3
’ ...... . T o . ,b;.._,,
- ; L L A
-0.5 0 0.5 -0.5 0 0.5
X — measurements X — measurements
Normalized error — simulated Normalized error — measured

microphones

y_

-0.5 0 0.5 -0.5 0 0.5
X — measurements X — measurements

H @ e
0O 10 2

0 30 40 50

FI1GURE 8.38: Reference field, reproduced field and normalized reproduction error.
The color bar refers to the error plots. The operating frequency is 2509 Hz.
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FIGURE 8.39: Intensity plot. The operating frequency is 106 Hz.
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FIGURE 8.40: Intensity plot. The operating frequency is 164 Hz.
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FIGURE 8.41: Intensity plot. The operating frequency is 199 Hz.
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FIGURE 8.42: Intensity plot. The operating frequency is 246 Hz.
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FIGURE 8.43: Intensity plot. The operating frequency is 317 Hz.
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FIGURE 8.44: Intensity plot. The operating frequency is 399 Hz.
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FIGURE 8.45: Intensity plot. The operating frequency is 504 Hz.
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FIGURE 8.46: Intensity plot. The operating frequency is 633 Hz.
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FIGURE 8.47: Intensity plot. The operating frequency is 797 Hz.
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Chapter 9

Conclusions

A general theory has been presented for studying the problem of sound field reproduction
with an array of loudspeakers. Starting with the assumption of a continuous distribution
of monopole-like secondary sources arranged on the boundary of the control region, we
have seen that the problem can be formulated mathematically as an integral equation of
the first kind.

The singular value decomposition of the integral operator involved has been used for
the computation of the solution of the problem, the latter corresponding to the strength
density function of the secondary sources. Closed form expressions for the singular system
have been derived for some geometries, and the method of solution has been extended
also to the case of unbounded planar and linear geometry, for which the operator involved

is not compact.

We have seen that the problem under consideration is in general ill-posed, but it has been
shown that in many cases of practical interest an exact solution exists and is unique,
though it can be unstable. The parameters of the problem that are the responsible
of the different kind of ill-posedness have been identified and discussed. The cases of
target sound fields that do not allow for an exact solution or a unique solution have been
discussed, and strategies have been proposed for overcoming these problems. Special

attention has been dedicated to the reproduction of focussed sources.

An important analogy between the problem of sound field reproduction and the theory of
acoustic scattering has been drawn. It has been shown that, when the control region and
the reproduction region coincide, the reproduction problem is mildly ill-posed and can be
reformulated as an equivalent scattering problem. It has been shown that the Kirchhoff

approximation can be used for solving the reproduction problem at high frequencies.

The effects have been described, which arise from the discretization of the ideally con-
tinuous distribution of secondary sources, and have been studied especially in relation

to the singular system of the integral operator. More specifically, the phenomenon of

267
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spatial aliasing has been analyzed, and some guidance has been proposed for limiting

the effects of this phenomenon.

An alternative solution method has been presented, which involves the discretization of
the boundaries of both the reproduction region and of the control region, and which can

be regarded as a boundary element method.

The problem, initially studied for a single-frequency field, has been extended to sound
fields with broad band frequency content. This has led to the computation of the sec-
ondary source signals for the reproduction of virtual sources. Close form expression for

these signals have been derived for some geometries.

The experiments undertaken to validate some of the theoretical results presented have
been described in detail. The experimental setup included a loudspeaker array with 40
transducers and a translating linear microphone array. These experiments involved the
reproduction of the field generated by a single virtual source located in the exterior of the
reproduction region (the loudspeaker array). Different digital signal processing strategies
for three different frequency bands have been presented and used in the experiment. The

experimental results are in very good agreement with the theoretical results, up to about

2000 Hz.

Several of the results presented in this thesis arise also in other methods for sound field
reproduction, especially Wave Field Synthesis and High Order Ambisonics, and also in
the theory of microphone arrays and antennas. It is the hope of the author that this
work sheds some light on the theoretical link between these techniques and contributes

to laying the basis for a generalized theory of sound field reproduction.

Some of the outcomes of this work might also be of use in other physical problems and
engineering applications. As a matter of fact, we have seen how acoustical problems, such
acoustic scattering, acoustic radiation and acoustic holography, have some fundamental
similarities with the reproduction problem considered here, and may benefit from some

of the results presented in this thesis.

Further work might involve the study of the reproduction problem for other geometrical
arrangements of practical interest. This would involve the derivation of the singular
system of the operator involved. Prolate and oblate spheroids, as well as hemispheres,
are geometries which have been widely studied and might prove useful in many practical
applications. Maury et al. [MEO05], [MBO08| have recently derived the expressions for the
singular system of a similar integral operator and for the case of bounded planar and
linear geometry (namely a rectangle and a segment, respectively). These works pave the

way to the extension of the approach proposed here to the geometries above.

The theory discussed in this work can be improved for the case of unbounded sets. In
fact, the results presented here for integral operators defined over unbounded sets are

simple extensions of analogous results derived for the simpler case of compact operators.
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However, a more rigorous and possibly more general approach could be defined, which
allows for a rigorous formulation of the problem with milder assumptions relating to
the operator (non necessarily compact) and regards the case of compact operators as a

specific case.

Further work can also involve the study of the same reproduction problem addressed
here, but with more general assumption on the characteristics of the secondary sources,
here assumed to be omnidirectional and linear sound sources. The development of the
theory presented here to the case of directional source with first order directivity includes
the use of a combined layer potential (single and double layer) and is a subject of current

research for the author.

Relatively similar to the above is the use of different boundary conditions in the formu-
lation of the reproduction problem. Here we have considered the data of the problem to
be the value of the field on the control boundary (Dirichlet problem) but it is possible
to include different boundary conditions such as the Neumann or impedance (Robin)

boundary conditions [CK92|, as suggested in Section 6.3 of this thesis.

Most of the effort in this work has been dedicated to the problem of the reproduction
of a field, assuming that the latter was known on the boundary of the control region.
Little attention was dedicated to the subject of measurement and analysis of an unknown
sound field. This is an obvious application of microphone arrays, and the extension of
the results presented in this thesis to the study of microphone arrays and related DSP

strategies might lead to novel results and applications.

Finally, as mentioned in the outline of this work, it is recalled that the L? metric has been
used throughout this thesis as a measure of accuracy of the reproduction of the field.
However, sound field reproduction systems are often intended for audio application, and
the L? metric used here might not be the most appropriate measure of the effectiveness
with which a reproduction system is capable of rendering the spatial attributes of a given
sound scene. It would be therefore of great scientific and commercial interest the study of
a new metric, based on both acoustical and psychoacoustics parameters, and which can
suit better the problem of spatial audio reproduction. The reproduction problem could
be therefore reformulated in light of this new metric, and a new reproduction method

might be formulated.



Appendix A

Singular value decomposition of a

matrix

A simple parallel between the SVD of an operator and the SVD of a matrix can be drawn
as follows. Let H be a matrix, transforming a vector a defined on C¥ into a vector p
defined in C™ (b = Ha). H can be expressed as

H=UxVH (A1)

where U and V are unitary matrices and X is a diagonal, real valued matrix. U and
V represent rotations or reflections in a Cartesian space and their columns, the left and
right singular vectors u, and vy, respectively, are orthogonal to each other in respect to

the scalar product (2.4). This means that

(un‘um> = dnm

(Valvm) = Onm (A.2)
Ulu =1
vilv = 1

(A.3)

The vectors u, and v, are orthonormal, meaning that they are orthogonal and that
their norm is unitary. The vectors a and b can describe the state of N and M degrees of
freedom of two systems, respectively. As in the example with sound field reproduction
described in [FNO7b], a can represent the signals of an array of N loudspeakers and p the
signals of an array of M microphones. In this case the columns of the matrices U and
V can be interpreted as modes of the two systems. vy, the first loudspeaker array mode,
is often constituted by identical elements, thus corresponding to all loudspeakers acting

in phase and with the same amplitude. Following this approach, the operation VHa can
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be interpreted as a modal decomposition of the vector a. The coefficients obtained from
the product (or orthogonal projection) (up|a) shows "how much of the array mode vy,

is present in a".

The power of the SVD originates from the fact that each mode vy, is transformed by H
into the mode uy,. This, together with the mutual orthogonality of the modes, implies

that the mode u, depends on the mode v, and on this mode only. It holds that

Hv, = o,upn (A.4)

The singular values o, , real and positive scalars, are the elements of the diagonal matrix
3. In our framework, they represent the amount of amplification or attenuation that
each mode vy, (of unitary norm) undergoes for the transformation H. If the singular
value o, is large, then the mode vy, is efficient, in energetic terms, and it is non efficient

if oy, is small.



Appendix B

Proofs of some theorems

Proof of Theorem 5.1

Let S : L2(OA) — L?(0V) be the integral operator defined by (3.16) and S* its adjoint
operator , given by (3.20). Let Dy be the set of functions defined by (5.4), namely

Dy = {Vau(x)|gy : V2u(z) + k*u(z) =0 z€V, ux)=0 xedV} (B.1)

We want to prove that the nullspace of the operator S* coincides with the set Dy, that
is

N(S*) = Dy

Proof. Considerations about the definition of Dy and about the Helmholtz equation lead

to the fact that if Vu(x) is in Dy, then also its complex conjugate Viu(x)* is in Dy .
(¢ € N(5*) = ¢ € Dv)
Assume that ¢ € N(S*). The single layer potential Syy is defined by

(Sov ™) (z) := G(z,x)p(x)*dS(x), z€R™ m=23 (B.2)

ov

and let uy and u_ be its restrictions to the exterior and interior of V' (including the

boundary), respectively, namely

up(z): = (56V¢*)(Z)|Rm\v (B.3)
u-(z): = (Sovo’)(2)ly (B.4)

Equation (2.99) shows that Spy is continuous throughout R™ and that it satisfies the
homogeneous Helmholtz equation (2.95) in R™\0V. This implies that u4(x) = u_(x)
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on the boundary 0V and

Viu,(z) +k*us(z) = 0, z€R™V (B.5)
Viu_(z) +k*u_(z) = 0, z€V (B.6)

In other terms, uy(z) and u_(z) are solutions of an exterior and interior problem, re-
spectively [Wil99].

For the results above and from the definition of nullspace (2.23), it holds that
0=(5"¢)(y)" = (Sove")(y) = ut(y) y € 0N (B.7)

The analyticity of u4(z) [CK83, p.72] and the uniqueness of the exterior Dirichlet prob-
lem [CK83, p.85] imply that, if u; = 0 on JA, then it is zero also in all of the exterior
of V. Hence

ur(z) = 0 zeR™MV (B.8)
Vaui(z) = 0 z€R™V (B.9)

where the normal derivative Vyu, on the boundary 0V is defined similarly to equation
(2.100).

u_ is a solution (in general not unique) of the homogeneous Dirichlet problem in V.

Using the jump relation (2.102) for the normal derivative of Sy, we obtain that
d(x)* = Vau_(x) — Vaus(x), x€0V (B.10)
and for (B.9) it holds that

$(x)* = Vpu_(x), x €0V (B.11)

Henceforth, ¢(x)* is the normal derivative of one solution of the interior Dirichlet problem

on V, and so ¢(x)* and ¢(x) are in Dy

(¢ € Dy — ¢ € N(57))
Conversely, if ¢(x) = Vyu(x) € Dy, then u(x) =0 on 0V and the Kirchhoff-Helmholtz
integral (2.105) implies that

0 = / G(z,x)Vau(x) — VaG(z,x)u(x)dS(x) =
oV

= /m/ G(z,x)Vau(x)dS(x) = (Spy Vnu)(z), zeR™V (B.12)
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This obviously leads to
0= (SoyVau)(y)" = (S*Vau*)(y), y €0A (B.13)

Therefore, ¢ € Dy implies that ¢* € N(S*). As mentioned above, if ¢* belongs to
N(S*) then the same holds also for ¢. This completes the proof.

Proof of Theorem 5.4

The proof is given that any pressure profile p(x) € Uy is in the closure of the range of
S, where Wy is given by (3.3) and S by (3.16).

Proof. Let Vyu(x) € Dy, defined by (5.4). The Green second formula (2.104) states
that

/ u(x)V2p(x) — p(x)V2u(x)dV (x) = / (%) Vap(x) — p(x)Varu(x)dS(x)  (B.14)
1% oV

Because both u(x) and p(x) are solutions of the homogeneous Helmholtz equation in V/,
it holds that
Vip(x) = —kp(x), x€V (B.15)
Viux) = —ku(x), xeV (B.16)
As a consequence the left hand side of (B.14) equals zero. The field u(x) is a solution of

the homogeneous interior Dirichlet problem in V', and it is therefore identically equal to

zero on OV. In view of these considerations, equation (B.14) can be rewritten as

/ P() Vats(x)dS(x) = (Vat* D)oy = 0 (B.17)
oV

Corollary 5.2 completes the proof.

Proof of Theorem 5.5

We want to prove that, if the wave number £ is not one of the Dirichlet eigenvalues for
V (see Section 3.3), then the solution of the inverse problem Sa = p is unique, when this

exists.

Let the function a(y) belong to the nullspace of S. Then (Sa)(x) =0, ¥x € JV and the
function

u_(z) == (Sa)(z) zeV (B.18)
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is a solution of the homogeneous interior Dirichlet problem for V. If the wave number k
is not one of the Dirichlet eigenvalues for V', then the only solution of the homogeneous
interior Dirichlet problem is u_(z) = 0, Vz € V. This implies that, given a subset
W C V, all derivatives of u(z), z € W are zero. Hence, for analytical continuation,
(Sa)(z) = 0, Vz € A. The continuity of the single layer potential (2.99) implies that
(Sa)(z) = 0, Vz € OA. As a consequence of the uniqueness of the exterior Dirichlet
problem, we have that (Sa)(z) =0, Vz € R™. This leads to

}Lir% n(z) - V(Sa)(z + hn(z)) =0, ze€IA (B.19)
for both h > 0 and h < 0. Using the jump relation (2.102) of the single layer potential,
we have that a(y) = 0, Vy € OA. This proves that, under the conditions mentioned

above, S is injective.



Appendix C

Spherical cavity and scattering by a

sound soft sphere

Solution of the homogeneous Dirichlet problem for the sphere

Let Bgr be the three-dimensional ball defined by
Br:={z € R®:|z| < R} (C.1)

whose boundary €2 is the sphere of radius R.

It can be easily proven that given the wave number k, such that j,(k,R) = 0, all

functions of the kind
un(z) = ajy(kn2)Y,"(2), z€ Br, |m|<n, a€R (C.2)

are solutions of the homogeneous Dirichlet problem (3.18), with boundary condition
f(x) = 0. Using arguments analogous to [Wil99, p.218|, it can be shown that u,, sat-
isfies the homogeneous Helmholtz equation in Bgr. It can be simply verified also that
un(z) = 0 Vz € Qp, which indicates that w,, satisfies the homogeneous Dirichlet boundary

condition.

The frequencies w, = k;,/c identify the resonance frequencies of a spherical cavity with

radius R and pressure release boundary conditions.
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Scattering by a sound soft sphere

As shown in [Wil99], the incident and scattered sound field can be expressed by means

of spherical harmonics and spherical Bessel functions:

S A )i ()Y (@) (C.3)

v=0 p=-v
=3 > Culwh (k)Y (2) (C.4)
v=0 pu=—v

The two equations above can be used for the representation of the field generated by the
single layer potential (6.85). Equation (C.3) can be used for the representation of the
target sound field p(z), corresponding to the field in the interior region A, while equation
(C.4) can be used for the representation of the field in the exterior region R3\A. It
is clear that, in general, A,, # C,,. The homogeneous Dirichlet boundary condition
implies that

pi(y) +ps(y) =0, y € 0A (C.5)

Combining this condition with equations (C.3) and (C.4), and in view of equation (6.79)
that represents the continuity of the single layer potential over the boundary 0A, leads

to the following relation:

Z Z A (W) gy (KRA)Y, Z Z Cou(W)hy, (KRN Y (Y), v € A (C.6)

v=0 p=—v v=0 p=—v

In view of the orthogonality relation of the spherical harmonics (4.3), the previous equa-

tion leads to
]1/ (kRA)

Co() = —3 ey A ) (eXy

This is the boundary condition of a sound-soft sphere (sometimes referred to as the
Dirichlet sphere). The total field is given by the sum of the incident and scattered field

and is given by

Ju(kRA) .
A y = h, Y# .
= 33 Al (b0 - 20 ) e
v=0 p=-v
Its radial derivative is given by

Varr@) = 32 kAl ) (k) - S ) v @) (9

v=0 pu=—v
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For z = Ry, applying the Wronskian relation (2.38) we obtain

in Z Z Zkth Vu(y) (ClO)

v=0 pu=



Appendix D

Solution for a focused source 1n the

concentric sphere geometry

Given the source location q = [0,0, —d], we consider the Weyl integral limited to a ball

By = {k € R?: || < k} given by equation (6.48) and repeated here:

& i ei¢(r)(z3+d) iz g -
(Z7q)_87T2/BkC(/€)€ (k), 23> —

We define
k := [r1, k2, ((K)]

and change the integration variables as shown in [MW95, p.120], namely

k1 = kcos(¢g)sin(6y)
(

ke = ksin(¢y)sin(by)
(k) = kcos(bg)
dj:? —  ksin(0y)dédoy

The integral (D.1) becomes

) 2m 5 . .
G(z’ q) = 812/ do /2 eZkCOSdeezk.zk,Sin(ek)dek
™ Jo 0

(D.1)

(D.2)

(D.3)

This expression can be interpreted as an infinite superposition of propagating plane waves

etlrizitrazetC(r)(zs+d)] whose directions span a hemisphere of radius /(k).

279



Appendix D Solution for a focused source in the concentric sphere geometry 280

The field due to a propagating plane wave e’®? can be expressed by the Jacobi-Anger

expansion (2.56), reported again here as

[e.e]

™% =3 "i"(2n + 1)jin(kz) Po(2 - K) (D.4)
n=0

where z -k = (z - k) /(kz). Analogously, we have that

e}

ek osOd =N " (2n + 1) i (kd) Py (cos O (D.5)
n=0

Considering equation (D.4) and following the passages illustrated in Section 4.1, it can be

shown that the plane wave ¢’ can be represented in the form of a single layer potential

of the form

ik-z AT ~ [ *
= G( ——— Y/ (y)Y} (k)" | dS D.6
¢ | Glz.y) (;WZ AL (9 (k) ) (y) (D)
where A is a sphere of radius Ry and centered in the origin, which defines the surface on
which the secondary sources are arranged. Inserting this result in (D.3) and rearranging

the order of integration and summation we obtain the following result:

G(z,q) = (Sa)( ), 23> —d, 2 < Ry (D.7)
aly) = Y)Y (20 + 1), (kd) (D.8)
Y ;)u_ZVRQh (kRp) ZO J

Recalling the definition of the spherical harmonics (2.51)

N 2+ 1) (v —p)! ;
Yuu(k) = YVM(Hk‘a ¢k) = \/( 47T(I/)—(|- 'u)"u) P# (COS ek) € Kk (Dg)
we observe that )
1 L
_ _lﬂd)kd — 6 D].

and that

/ [ Vi (k)* dqbk] ) (cos O,) sin (6, )dby, (D.11)
0
/0 (cos O, ) Py, (cos 0,) sin (0, )do,
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Applying the following substitution of variables in the integral above

cosl, = «

—sin 0,d0, = do

(D.12)
we obtain [GR65, p.789], equation 7.221.2
1
. 2w+l v =n]
B, :_/ P, (a) Py()do = 0 [V — n is even, v # n]
0 (CDECH D [n even, v odd]
2etntw=m)ntr))[(3)! (511 ’
(D.13)
Finally, inserting these results in equation (D.8), we obtain
it jn (kd) 2v+1)2n+1) o
Z Z R Yo P,(cos0,) Py, (D.14)
v=0n=0 A A

This equation can be reformulated using the Jacobi-Anger expansion (D.4), thus obtain-

ing the following formula:

A7 R2 h,, (kR )

ileda i(2v+1)
( / Jed. pu(w)dx) WPV(COSGy) (D.15)

v=0

aly) = (/ Zz gn(kd)(2n + 1) Py (2 )Pu(x)da:> MPV(COSHZ/)

Il
:Mg

In the special case when d = 0, that is the source location q coincides with the origin of
the coordinate system, we observe that j,(0) = dp, and therefore obtain the following

simpler result:

([ @ ED b
aly) = ;}(/g Py(w)dw> R?\ikhl,(kRA)Py( 0,) (D.16)

From (D.13) and considering that Py(z) = 1, « € [—1, 1] we have that

1 [v = 0]
1 .
/ P,(z)dx = 0 [vis even, v # 0] (D.17)
0 (=120 D
[V odd]

e (T
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Given the following relations

v = 2n+1, n=0,1,2... (D.18)
Cn+ 1! == 1-3-...-2n—1)-(2n+1) (D.19)
_ (2n+1)!
2n)l! = 2-4-..-2(n—1)-2n (D.21)
2n)l!l = 2"nl (D.22)
the expression above can be rewritten as follows:
) 1 [v=0]
| Rtaaz=4 0 [v is even, v 0] (D.23)
0 —1)2=Dyn
41(/(1/171)(1/_1)1! [v odd]



Appendix E

Coordinates of the loudspeaker

layout

Z,
c
=
o
o)
@

b y z Number | x y zZ
1 0 0 1.8 21 -1.7119 0.5562 0
2 0.9463 0 1.5312 | 22 -1.7119 -0.5562 0
3 0.2924 0.9 1.5312 | 23 -1.058  -1.4562 0
4 -0.7656 0.5562  1.5312 | 24 0 -1.8 0
5 -0.7656  -0.5562 1.5312 | 25 1.058 -1.4562 0
6 0.2924 -0.9 1.5312 | 26 1.7119  -0.5562 0
7 1.61 0 0.805 | 27 1.5312 0 -0.9463
8 1.2387 0.9 0.9463 | 28 1.3025 0.9463 -0.805
9 0.4975 1.5312 0.805 | 29 0.4732 1.4562 -0.9463
10 -0.4732  1.4562  0.9463 | 30 -0.4975 1.5312  -0.805
11 -1.3025 0.9463 0.805 | 31 -1.2387 0.9 -0.9463
12 -1.5312 0 0.9463 | 32 -1.2387 -0.9 -0.9463
13 -1.3025 -0.9463 0.805 | 33 -0.4975 -1.5312 -0.805
14 -0.4732 -1.4562 0.9463 | 34 0.4732  -1.4562 -0.9463
15 0.4975 -1.5312 0.805 | 35 1.3025 -0.9463 -0.805
16 1.2387 -0.9 0.9463 | 36 0.7656  0.5562  -1.5312
17 1.7119  0.5562 0 37 -0.2924 0.9 -1.5312
18 1.058 1.4562 0 38 -0.9463 0 -1.5312
19 0 1.8 0 39 -0.2924 -0.9 -1.5312
20 -1.058  1.4562 0 40 0.7656  -0.5562 -1.5312

TABLE E.1: Cartesian coordinates of the loudspeaker layout used for the experiments
presented in Chapter 8
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