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ABSTRACT 

In Ambisonics sound is encoded and stored in multi-
channel sound files and is decoded for playback. In the 
en- and decoding process complicated functions are 
used. In this paper panning functions equivalent to the 
result of en- and decoding are presented which can be 
used for real-time panning in an arbitrary high 
ambisonic order. In the function equivalent to the so-
called in-phase decoding the order of ambisonic 
resolution is just a variable that can be any positive 
number not restricted to integers and that can be 
changed during playback. The limitations and 
advantages of the technique are mentioned, real time 
applications are described and the computational costs 
are estimated. The described procedure offers a new 
intuitive understanding of Ambisonics.  

1. INTRODUCTION 

For a project called Interactive Swarm Orchestra, where 
hundreds of virtual moving sound sources have to be 
rendered in real-time, we have been looking for a 
simplification of the complicated and computational 
costly calculations of Ambisonics. The theoretical 
results were published in an AES paper in October 2007 
[1]. The main results of this paper are recapitulated in a 
less technical stile in paragraph 4. Paragraphs 2 and 3 
give a short introduction to the concepts of panning and 
Ambisonics. In paragraph 5 more practical issues such 
as implementations, limitations and advantages of the 
technique are addressed. 

2. PANNING 

Panning is the technique of the positioning of a single 
(monophonic) source within a stereophonic image. 
Vector Base Amplitude Panning (VBAP) was 
introduced by Ville Pulkki [2] for two dimensions. In 
VBAP loudspeaker arrays are treated as arrangements of 
subsequent stereo pairs or, when extended to three 
dimensions, as triples of loudspeakers. Panning 
normally uses only level differences and feeds only the 
loudspeakers nearest to the virtual sound source.  
In amplitude panning the sound signal x(t) is fed to 
speaker i with the gain factor fi  
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xi(t) = f ix(t) ,       i = 1, …, N                               (1) 

 
In contrast to other panning techniques ambisonic 
panning functions normally produce signals for all 
speakers at the same time. The functions are defined on 

the whole horizontal circle or the whole sphere. The 
sum of all speaker gains equals 1. 
 

3. AMBISONICS 

Ambisonics is a surround-system for encoding and 
rendering a 3D sound field. In Ambisonics the room 
information of the recorded or synthesized sound is 
encoded together with the sound itself in a specific 
number of channels independent of the final speaker set-
up. The encoding can be carried out in an arbitrary 
degree of accuracy. The accuracy is given by the so-
called order of Ambisonics. The zeroth order 
corresponds to the mono signal and needs one channel. 
In first order Ambisonics the components of the sound 
field in the directions x, y and z are encoded in three 
more channels. The interpretation of higher orders is 
much more complicated than that of zeroth and first 
order. 

3.1. Encoding 
 
The formulas for ambisonic encoding are derived from 
the solution of the three-dimensional wave equation in 
the spherical coordinate system where a point P is 
described by radius r, azimuth θ and elevation δ. 
Assuming that the sound waves are plane and that the 
listener is located at the origin of the coordinate system 
the formulas can be simplified dramatically. In practice 
the arising infinite series is truncated and only a finite 
number of components are calculated and saved in the 
so-called ambisonic B-format. After all these 
simplifications a signal S is encoded by multiplying the 
signal with the first spherical harmonics in 3D and with 
the first harmonics in 2D [3][4]. 
The order of resolution m defines the accuracy of the 
encoding and the number of channels in the B-format, 
namely 2m+1 in 2D and (m+1)2 in 3D. 
 

3.2. Decoding 
 
From a B-format file with n channels and a given set-up 
of at least n speakers the signals for the speakers can be 
calculated. They are a weighted sum of the B-format 
channels. The vector S of the speaker signals for 
symmetrical setups of n speakers can be calculated from 
the B-format and the matrix of the B-format of the 
speaker signals C as [3]  
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Since solutions for asymmetrical setups often are 
unusable (for 5.1 surround see [5]) normally this 
symmetric solution is used, even if the speaker set-up is 
not exactly symmetric. 
 

3.3. Corrections 
 
The truncation of the infinite series causes side effects 
such as signals on speakers far away from the original 
sound position and inverted phases (see figure 1). By 
windowing the decomposition i.e. weighting the 
ambisonic channels according to their order these side 
effects can be reduced at the cost of the precision of the 
directivity. Figure 2 shows two level functions for a 
speaker at position θ (sound at θ = 0, order m = 3) the 
first without correction (basic decoding) fbas(θ), the 
second for so-called in-phase decoding finph(θ). The bars 
indicate the levels of 13 symmetrically positioned 
speakers. Thus for a sound source at position θs we get 
the gain for the speaker i at position θi as f(θs-θi). 
               

                

Figure 1. Level functions for basic and in-phase 
decoding. 

Putting the correcting gains into equation (2) yields 
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For symmetric set-ups this equation can be simplified 
and we get the ambisonic panning functions [6] 
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The correcting gains for in-phase decoding are 
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with normalizing factors g0 [3]. 
 

4. AMBISONICS EQUIVALENT PANNING 
(AEP) 

For basic and in-phase decoding the formulas (4) and 
(5) can be simplified.  
 

4.1. Basic Decoding 
 
For basic decoding (i.e. without correcting gains) the 
panning function (4) can be written in the simplified 
form 
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This function is exactly equivalent to ambisonic en- and 
decoding in 2D. For higher orders the number of 
calculations is reduced dramatically with this technique. 
Figure 2 shows the panning function for order 15. 
 

                  

Figure 2. Ambisonic panning function for order 15. 

 
The function depends only on the angle between speaker 
and sound source and so it can also be used in 3D as an 
approximation of the ambisonic panning function [1]. 
 

4.2. In-phase Decoding 
 
In [1] we showed that the panning functions (4) and (5) 
with the gains (6) and (7) are equivalent to the simple 
function  
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where θ is the angle between the speaker and the 
position of the sound source and p corresponds to the 
ambisonic order.  
While ambisonic encoding is only possible with integer 
orders the exponent in the panning function finph(θ,p) 
can be an arbitrary positive number. Figure 3 shows the 
function for orders 1, 3 and 6.7.  
 

                  

Figure 3. AEP-function for order 1, 3 and 6.7 

 



  
 
For fractional orders the sum of the speaker signals does 
not exactly equal one but the deviation is very small, so 
that it is possible to change the exponent continuously 
without perceivable inaccuracies. Figure 4 shows the 
sum A of the speaker signals for 8 speakers as a 
function of order p and the angle θ of the sound source. 
It is nearly constant between p = 2 and p = n-1.     
 
 

             

Figure 4. Sum A of 8 speakers signals as function of 
the order p and the angle θ of the sound source. 

 
Since with increasing order p the function finph(θ,p) 
narrows more and more slowly, fewer speakers per 
order are necessary. Figure 5 shows that with as few as 
20 speakers it is possible to use orders up to approx. p = 
60. 

                

Figure 5.  Sum A of 20 speakers as function of the 
order p and the angle θ of the sound source. 

The same panning function can be used in 3D. The Only 
five symmetrical speaker setups correspond to the five 
platonic solids; for these setups it can be shown that the 
sum of the speaker signals is independent of the position 
of the sound source for small integer orders [1]. The 
sum can be normalized by the factor (p+1)/n 
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where θi is the angle between the sound source and the 
speaker i, p the order and n the number of speakers.  
 

5. IMPLEMENTATION AND APPLICATIONS 

5.1. Implementation 
The implementation of the panning functions finph (9) is 
straightforward. In order to produce the signal for a 
certain speaker at position Ps = (xs, ys, zs) a sound at 
position P = (x, y, z) is multiplied by f(θ,p) where θ 
denotes the angle between the sound source and the 
speaker. The cosine of this angle is calculated as the 
scalar product (x, y, z).(xs, ys, zs). For a speaker setup on 
a sphere or a circle with radius 1 and a sound source at 
distance r we get in Cartesian coordinates  
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and in spherical coordinates 
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5.2. Computational Costs without Look-up Tables 

In [1] the complexity of ambisonic en- and decoding 
and AEP have been estimated and compared for 
implementations that do not use look-up tables. There 
are about 0, 3, 16, 45, 96, 177, 300, …(approx. (m+.5)3) 
multiplications for the orders 0, 1, 2, … for the encoding 
of each signal. In the decoding process the matrix CT is 
multiplied with the B-format. This takes an additional 
n*(m+1)2 multiplications. 
The panning function (11) takes only 3 or 4 
multiplications and 1 function call for every sound and 
speaker. 

5.3. Look-up tables 

For applications in computer music where often a great 
number of independent sound sources are treated and a 
great number of speakers are used it is reasonable to use 
look-up tables instead of repeated calculations. In order 
to estimate the complexity of the implementation and 
the computational costs we have to take into account the 
dimensionality of the tables, the number of elements in 
the tables and the type of interpolation.   

5.3.1. Two dimensional tables 

Using tables with more then one dimension poses some 
problems. 1) The most common sound synthesis 
languages as Csound and Max (with the exception of 
extensions such as Jitter, FTM or language bindings like 



  
 
Java, Python etc) do not support them. 2) Tables with 
length n per input variable need nd entries for 
dimensionality d. For a resolution of for example 1024 
points for two variables 1 MB of RAM is used. Thus 
RAM limits the table size and using interpolation 
becomes imperative.  

5.3.2.  Ambisonic en- and decoding 

In 2D-Ambisonics the harmonics are just sine and 
cosine functions. They can be used as table look-up 
functions in the same way as in a standard oscillator.  

In 3D ambisonic en- and decoding spherical harmonics 
are used. Since they are functions of two variables θ and 
δ we need 2 dimensional arrays. Tables are used whose 
dimensions correspond to the number of B-format 
channels (m+1)2. Since the higher order spherical 
harmonics are complicated (see figure 6) a good 
resolution or high order interpolation is necessary. 

          

Figure 6. A spherical harmonic fifth order: Y3
5  

5.3.3.  AEP-function of difference of angles 
 
The input variable in the panning function (9) is the 
angle θs-θi between sound source and speaker i. If this 
angle is calculated and the order is constant a one-
dimensional table is used. A two dimensional table is 
needed if the order is variable. Since the order normally 
changes slowly, and the changes of the function are 
accordingly small, the resolution of this parameter does 
not need to be very good and no interpolation is needed. 
Since the function is symmetric the size can be halved if 
we need abs(θ-θi) as input. Because the difference of the 
angles between sound source and speaker are is used, 
only one table is used and it is independent of the 
speaker set-up. 
 

           

Figure 7. Panning as function of the order and the 
angle between sound source and speaker i. 

5.3.4.  AEP-function of angles of the sound source 
 
In order to avoid the calculation of the angle between 
sound source and speaker we can produce a table for the 
amplitude of every speaker as function of azimuth θ and 
elevation δ of a sound source. Figure 8 shows a speaker 
set-up in a tetrahedron (left) and the panning function for 
the speakers at point (1,0,0) (centre) and at point (0,1,0) 
(right).  
 

 

Figure 8. Functions for different speakers  

 
Whilst the difference of the angle between a sound 
source and a speaker can not be calculated from the 
difference to an other speaker, the functions of the two 
variables θ and δ are similar but shifted in direction of 
the axes according to the angles of the speakers. Thus 
instead of calculating and storing as many functions as 
speakers only the function for one speaker can be stored 
and the values for the other speakers can be read out by 
adding the difference of the angles between the speakers 
to the input values of the function. 

5.4. Csound 

The following code sample shows a very simple 
implementation of AEP in Csound for a set-up with only 
three speakers. During the course of an event the sound 
source turns twice around the listener (kfi goes from 0 to 
4π) and the order grows from 1 to 10.  

 
nchnls = 3 
 
instr 1 
i2pi = 2*3.141592 
ifi1 = 0 
ifi2 = i2pi/3 
ifi3 = 2*i2pi/3 
kp line 1,p3,10 
kfi line 0,p3,2*i2pi 
kpan1 = (.5+.5*cos(kfi-ifi1))^kp 
kpan2 = (.5+.5*cos(kfi-ifi2))^kp 
kpan3 = (.5+.5*cos(kfi-ifi3))^kp 
a1 rand 30000 

outc a1*kpan1,a1*kpan2,a1*kpan3 
endin 

Figure 9 shows the resulting amplitudes of the three 
channels over the duration of the event. It is obvious 
that in the second half of the time the order becomes too 
high for the small number of speakers resulting in the 
absence of a signal for part of the sweep. 



  
 

                 

Figure 9. Resulting sound file of the Csound example. 

With the following code the panning function of order 
3.5 is saved in a sound file.  

 
i2pi = 6.2831853 
kfi line 0,p3,i2pi 
a1 =  (.5+.5*cos(kfi))^3.5 
 out 32767*a1 

The sound file then is used as a table for the table look-
up function that can be put in the above instrument. 

kpan1 table ipi2*(kfi-ifi1), 1, 1, 0, 1 

More examples are available from [7]. 

5.5. MaxMSP 

The implementation of AEP as a patcher in MaxMSP is 
fairly straightforward. The expression for the calculation 
of the signal amplitude for one speaker takes a source 
position, a speaker position and the order factor as 
shown in Fig. 10.  

 

Figure 10. Patcher based MaxMSP implementation of 
the AEP ideally suited for didactic purposes.  

It is necessary to use more optimized forms of the 
process for a large number of sources; this is made 
available as a MaxMSP external programmed in C [7]. 
The external is based on interpolated two-dimensional 

look-up tables and is optimized for static speakers and a 
multitude of sources. It implements an n by m signal 
matrix and includes position input in either Cartesian or 
polar coordinates, distance correction on both the source 
and speaker amplitudes and delay-time correction for 
the speaker feeds. The control syntax is the same as for 
the other ICST ambisonics tools in order to facilitate 
interchanging the processes [8]. 

                     

Figure 11. Implementation of the AEP as a MaxMSP 
external structured like an n by m matrix mixer. 

5.6. Computational Costs with Look-up Tables 
 
The effective computational costs of the different 
procedures depend on hardware and on the 
programming environment. In the following examples 
we therefore only list the number of multiplications, 
function calls and table look-ups for an order m and a 
number of speakers n. In general with interpolation the 
number of table look-ups is doubled in 2D and 
quadrupled in 3D and 2 additional multiplications occur 
in 2D or 8 additional multiplications occur in 3D. For 
the procedure described in paragraph 5.3.2 we only need 
the (m+1)2 table look-ups per sound for the encoding; 
(decoding is processed for all sounds together and thus 
computing costs does not increase with a higher number 
of sources). For the procedure described in paragraph 
5.3.3 we need 4 multiplications to calculate the angle 
between sound source and speaker and n table look-ups 
per sound. In the context of the I-S-O project 
(Interactive Swarm Orchestra [9]), which was the 
starting point for our study, ambisonic en- and decoding 
ironically outplays AEP if no look-up tables are used 
and is of the same complexity and cost if one takes full 
usage of look-up tables. Since in this project many 
sound-sources are used the encoding process causes the 
biggest costs and so we only need  (m+1)2 table look-
ups for ambisonic encoding and n table look-ups for 
AEP. For example with a speaker set-up in a 
dodecahedron (n = 20) up to m = 3 traditional ambisonic 
encoding still beats AEP. 

5.7. Explaining Ambisonics 

The mathematics used in ambisonic theory is beyond the 
skills of non-scientists or non-engineers. Since panning 
functions are familiar and easy to visualize they provide 



  
 
a good didactical means for explaining Ambisonics to 
laymen and for deriving encoding formulas and gains 
for in-phase decoding. For example for order m = 3 we 
expand the powers of the panning function (…)  
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and replace the powers of the cosine function by cosines 
of multiples of the angle to get the cosine part of the B-
format together with the in-phase coefficients (6). 
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6. CONCLUSIONS AND FURTHER 
INVESTIGATIONS 

In order to store 3D sound independently of the speaker 
set-up either sound and position of the sound source can 
be stored separately or they can be stored together in the 
ambisonic B-format. If the sound need not be stored, 
e.g. for example in testing environments, real time 
performances or playback of multi-channel sequencer-
sessions AEP is easier to implement and takes less 
computing power than ambisonic en- and decoding. 
Only in applications where a great number of 
independent sounds occur, each with its own position or 
movement occurs and the spatial resolution need not to 
be very high ambisonic en- and decoding outplays AEP. 
In most other cases AEP performs better. 
A further advantage of AEP is the possibility to use an 
arbitrary order of directivity for each individual sound 
source. It becomes possible to mix pre-recorded low 
order ambisonic B-format, medium order ambient 
sounds, high order precise localisable sound and sounds 
with changing localizability. How the individual sounds 
are perceived if different orders are used at the same 
time is an open question that can be answered only by 
experience. Can we simulate different sizes or 
directivities of the sound source or will we just hear 
unnatural,  incongruent sound scenes? 
An open theoretical question is, whether there are 
simple formulas for ambisonic panning with other 
correcting gains of ambisonic decoding as for example 
basic decoding in 3D and so-called max rE decoding [3]. 
A lot of work has still to be done to implement AED and 
especially 2D table look-up for different sound synthesis 
languages and to create plug-ins for commercial 
software. 
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