

AMBISONICS EQUIVALENT PANNING

Martin Neukom, Jan C. Schacher
Zurich University of the Arts

Institute for Computer Music and Sound Technology
Baslerstrasse 30

8048 Zürich, Switzerland
{martin.neukom, jan.schacher}@zhdk.ch

ABSTRACT

In Ambisonics sound is encoded and stored in multi-
channel sound files and is decoded for playback. In the
en- and decoding process complicated functions are
used. In this paper panning functions equivalent to the
result of en- and decoding are presented which can be
used for real-time panning in an arbitrary high
ambisonic order. In the function equivalent to the so-
called in-phase decoding the order of ambisonic
resolution is just a variable that can be any positive
number not restricted to integers and that can be
changed during playback. The limitations and
advantages of the technique are mentioned, real time
applications are described and the computational costs
are estimated. The described procedure offers a new
intuitive understanding of Ambisonics.

1. INTRODUCTION

For a project called Interactive Swarm Orchestra, where
hundreds of virtual moving sound sources have to be
rendered in real-time, we have been looking for a
simplification of the complicated and computational
costly calculations of Ambisonics. The theoretical
results were published in an AES paper in October 2007
[1]. The main results of this paper are recapitulated in a
less technical stile in paragraph 4. Paragraphs 2 and 3
give a short introduction to the concepts of panning and
Ambisonics. In paragraph 5 more practical issues such
as implementations, limitations and advantages of the
technique are addressed.

2. PANNING

Panning is the technique of the positioning of a single
(monophonic) source within a stereophonic image.
Vector Base Amplitude Panning (VBAP) was
introduced by Ville Pulkki [2] for two dimensions. In
VBAP loudspeaker arrays are treated as arrangements of
subsequent stereo pairs or, when extended to three
dimensions, as triples of loudspeakers. Panning
normally uses only level differences and feeds only the
loudspeakers nearest to the virtual sound source.
In amplitude panning the sound signal x(t) is fed to
speaker i with the gain factor fi

!

xi(t) = f ix(t) , i = 1, …, N (1)

In contrast to other panning techniques ambisonic
panning functions normally produce signals for all
speakers at the same time. The functions are defined on

the whole horizontal circle or the whole sphere. The
sum of all speaker gains equals 1.

3. AMBISONICS

Ambisonics is a surround-system for encoding and
rendering a 3D sound field. In Ambisonics the room
information of the recorded or synthesized sound is
encoded together with the sound itself in a specific
number of channels independent of the final speaker set-
up. The encoding can be carried out in an arbitrary
degree of accuracy. The accuracy is given by the so-
called order of Ambisonics. The zeroth order
corresponds to the mono signal and needs one channel.
In first order Ambisonics the components of the sound
field in the directions x, y and z are encoded in three
more channels. The interpretation of higher orders is
much more complicated than that of zeroth and first
order.

3.1. Encoding

The formulas for ambisonic encoding are derived from
the solution of the three-dimensional wave equation in
the spherical coordinate system where a point P is
described by radius r, azimuth θ and elevation δ.
Assuming that the sound waves are plane and that the
listener is located at the origin of the coordinate system
the formulas can be simplified dramatically. In practice
the arising infinite series is truncated and only a finite
number of components are calculated and saved in the
so-called ambisonic B-format. After all these
simplifications a signal S is encoded by multiplying the
signal with the first spherical harmonics in 3D and with
the first harmonics in 2D [3][4].
The order of resolution m defines the accuracy of the
encoding and the number of channels in the B-format,
namely 2m+1 in 2D and (m+1)2 in 3D.

3.2. Decoding

From a B-format file with n channels and a given set-up
of at least n speakers the signals for the speakers can be
calculated. They are a weighted sum of the B-format
channels. The vector S of the speaker signals for
symmetrical setups of n speakers can be calculated from
the B-format and the matrix of the B-format of the
speaker signals C as [3]

!

S = C
"1
.B =

1

n
C
T
.B (2)

Since solutions for asymmetrical setups often are
unusable (for 5.1 surround see [5]) normally this
symmetric solution is used, even if the speaker set-up is
not exactly symmetric.

3.3. Corrections

The truncation of the infinite series causes side effects
such as signals on speakers far away from the original
sound position and inverted phases (see figure 1). By
windowing the decomposition i.e. weighting the
ambisonic channels according to their order these side
effects can be reduced at the cost of the precision of the
directivity. Figure 2 shows two level functions for a
speaker at position θ (sound at θ = 0, order m = 3) the
first without correction (basic decoding) fbas(θ), the
second for so-called in-phase decoding finph(θ). The bars
indicate the levels of 13 symmetrically positioned
speakers. Thus for a sound source at position θs we get
the gain for the speaker i at position θi as f(θs-θi).

Figure 1. Level functions for basic and in-phase
decoding.

Putting the correcting gains into equation (2) yields

!

S =
1

n
C
T
Diag[...gm ...].B (3)

For symmetric set-ups this equation can be simplified
and we get the ambisonic panning functions [6]

!

f (",m) =
1

n
(g

0
+ 2 gk cosk"

k=1

m

) in2D (4)

!

f (",m) =
1

n
(2m +1)gkPk (cos"

k=1

m

) in 3D (5)

The correcting gains for in-phase decoding are

!

gk = g
0

m!
2

(m + k)!(m " k)!
in2D (6)

!

gk = g
0

m!(m "1)!

(m + k +1)!(m " k)!
in 3D (7)

with normalizing factors g0 [3].

4. AMBISONICS EQUIVALENT PANNING
(AEP)

For basic and in-phase decoding the formulas (4) and
(5) can be simplified.

4.1. Basic Decoding

For basic decoding (i.e. without correcting gains) the
panning function (4) can be written in the simplified
form

!

f (",m) =
sin(2m+1

2
")

n sin(1
2
")

 (8)

This function is exactly equivalent to ambisonic en- and
decoding in 2D. For higher orders the number of
calculations is reduced dramatically with this technique.
Figure 2 shows the panning function for order 15.

Figure 2. Ambisonic panning function for order 15.

The function depends only on the angle between speaker
and sound source and so it can also be used in 3D as an
approximation of the ambisonic panning function [1].

4.2. In-phase Decoding

In [1] we showed that the panning functions (4) and (5)
with the gains (6) and (7) are equivalent to the simple
function

!

finph (", p) = (1
2

+ 1

2
cos")p = (cos

"

2
)
2p (9)

where θ is the angle between the speaker and the
position of the sound source and p corresponds to the
ambisonic order.
While ambisonic encoding is only possible with integer
orders the exponent in the panning function finph(θ,p)
can be an arbitrary positive number. Figure 3 shows the
function for orders 1, 3 and 6.7.

Figure 3. AEP-function for order 1, 3 and 6.7

For fractional orders the sum of the speaker signals does
not exactly equal one but the deviation is very small, so
that it is possible to change the exponent continuously
without perceivable inaccuracies. Figure 4 shows the
sum A of the speaker signals for 8 speakers as a
function of order p and the angle θ of the sound source.
It is nearly constant between p = 2 and p = n-1.

Figure 4. Sum A of 8 speakers signals as function of
the order p and the angle θ of the sound source.

Since with increasing order p the function finph(θ,p)
narrows more and more slowly, fewer speakers per
order are necessary. Figure 5 shows that with as few as
20 speakers it is possible to use orders up to approx. p =
60.

Figure 5. Sum A of 20 speakers as function of the
order p and the angle θ of the sound source.

The same panning function can be used in 3D. The Only
five symmetrical speaker setups correspond to the five
platonic solids; for these setups it can be shown that the
sum of the speaker signals is independent of the position
of the sound source for small integer orders [1]. The
sum can be normalized by the factor (p+1)/n

!

p +1

n
finph ("i, p)

i=1

n

=1 (10)

where θi is the angle between the sound source and the
speaker i, p the order and n the number of speakers.

5. IMPLEMENTATION AND APPLICATIONS

5.1. Implementation
The implementation of the panning functions finph (9) is
straightforward. In order to produce the signal for a
certain speaker at position Ps = (xs, ys, zs) a sound at
position P = (x, y, z) is multiplied by f(θ,p) where θ
denotes the angle between the sound source and the
speaker. The cosine of this angle is calculated as the
scalar product (x, y, z).(xs, ys, zs). For a speaker setup on
a sphere or a circle with radius 1 and a sound source at
distance r we get in Cartesian coordinates

!

finph (P,Ps, p) = (
xxs + yys + r

2r
)
p

in2D (11)

!

finph (P,Ps, p) = (
xxs + yys + zzs + r

2r
)
p

in 3D

where r = x
2

+ y
2

+ z
2

and in spherical coordinates

!

finph (P,Ps, p) = (
1+ cos(" #"s)

2
)
p

in2D (12)

!

f = (
1+ cos(" #"s)cos($)cos($s) + sin($)sin($s)

2
)
p
in 3D

5.2. Computational Costs without Look-up Tables

In [1] the complexity of ambisonic en- and decoding
and AEP have been estimated and compared for
implementations that do not use look-up tables. There
are about 0, 3, 16, 45, 96, 177, 300, …(approx. (m+.5)3)
multiplications for the orders 0, 1, 2, … for the encoding
of each signal. In the decoding process the matrix CT is
multiplied with the B-format. This takes an additional
n*(m+1)2 multiplications.
The panning function (11) takes only 3 or 4
multiplications and 1 function call for every sound and
speaker.

5.3. Look-up tables

For applications in computer music where often a great
number of independent sound sources are treated and a
great number of speakers are used it is reasonable to use
look-up tables instead of repeated calculations. In order
to estimate the complexity of the implementation and
the computational costs we have to take into account the
dimensionality of the tables, the number of elements in
the tables and the type of interpolation.

5.3.1. Two dimensional tables

Using tables with more then one dimension poses some
problems. 1) The most common sound synthesis
languages as Csound and Max (with the exception of
extensions such as Jitter, FTM or language bindings like

Java, Python etc) do not support them. 2) Tables with
length n per input variable need nd entries for
dimensionality d. For a resolution of for example 1024
points for two variables 1 MB of RAM is used. Thus
RAM limits the table size and using interpolation
becomes imperative.

5.3.2. Ambisonic en- and decoding

In 2D-Ambisonics the harmonics are just sine and
cosine functions. They can be used as table look-up
functions in the same way as in a standard oscillator.

In 3D ambisonic en- and decoding spherical harmonics
are used. Since they are functions of two variables θ and
δ we need 2 dimensional arrays. Tables are used whose
dimensions correspond to the number of B-format
channels (m+1)2. Since the higher order spherical
harmonics are complicated (see figure 6) a good
resolution or high order interpolation is necessary.

Figure 6. A spherical harmonic fifth order: Y3
5

5.3.3. AEP-function of difference of angles

The input variable in the panning function (9) is the
angle θs-θi between sound source and speaker i. If this
angle is calculated and the order is constant a one-
dimensional table is used. A two dimensional table is
needed if the order is variable. Since the order normally
changes slowly, and the changes of the function are
accordingly small, the resolution of this parameter does
not need to be very good and no interpolation is needed.
Since the function is symmetric the size can be halved if
we need abs(θ-θi) as input. Because the difference of the
angles between sound source and speaker are is used,
only one table is used and it is independent of the
speaker set-up.

Figure 7. Panning as function of the order and the
angle between sound source and speaker i.

5.3.4. AEP-function of angles of the sound source

In order to avoid the calculation of the angle between
sound source and speaker we can produce a table for the
amplitude of every speaker as function of azimuth θ and
elevation δ of a sound source. Figure 8 shows a speaker
set-up in a tetrahedron (left) and the panning function for
the speakers at point (1,0,0) (centre) and at point (0,1,0)
(right).

Figure 8. Functions for different speakers

Whilst the difference of the angle between a sound
source and a speaker can not be calculated from the
difference to an other speaker, the functions of the two
variables θ and δ are similar but shifted in direction of
the axes according to the angles of the speakers. Thus
instead of calculating and storing as many functions as
speakers only the function for one speaker can be stored
and the values for the other speakers can be read out by
adding the difference of the angles between the speakers
to the input values of the function.

5.4. Csound

The following code sample shows a very simple
implementation of AEP in Csound for a set-up with only
three speakers. During the course of an event the sound
source turns twice around the listener (kfi goes from 0 to
4π) and the order grows from 1 to 10.

nchnls = 3

instr 1
i2pi = 2*3.141592
ifi1 = 0
ifi2 = i2pi/3
ifi3 = 2*i2pi/3
kp line 1,p3,10
kfi line 0,p3,2*i2pi
kpan1 = (.5+.5*cos(kfi-ifi1))^kp
kpan2 = (.5+.5*cos(kfi-ifi2))^kp
kpan3 = (.5+.5*cos(kfi-ifi3))^kp
a1 rand 30000

outc a1*kpan1,a1*kpan2,a1*kpan3
endin

Figure 9 shows the resulting amplitudes of the three
channels over the duration of the event. It is obvious
that in the second half of the time the order becomes too
high for the small number of speakers resulting in the
absence of a signal for part of the sweep.

Figure 9. Resulting sound file of the Csound example.

With the following code the panning function of order
3.5 is saved in a sound file.

i2pi = 6.2831853
kfi line 0,p3,i2pi
a1 = (.5+.5*cos(kfi))^3.5
 out 32767*a1

The sound file then is used as a table for the table look-
up function that can be put in the above instrument.

kpan1 table ipi2*(kfi-ifi1), 1, 1, 0, 1

More examples are available from [7].

5.5. MaxMSP

The implementation of AEP as a patcher in MaxMSP is
fairly straightforward. The expression for the calculation
of the signal amplitude for one speaker takes a source
position, a speaker position and the order factor as
shown in Fig. 10.

Figure 10. Patcher based MaxMSP implementation of
the AEP ideally suited for didactic purposes.

It is necessary to use more optimized forms of the
process for a large number of sources; this is made
available as a MaxMSP external programmed in C [7].
The external is based on interpolated two-dimensional

look-up tables and is optimized for static speakers and a
multitude of sources. It implements an n by m signal
matrix and includes position input in either Cartesian or
polar coordinates, distance correction on both the source
and speaker amplitudes and delay-time correction for
the speaker feeds. The control syntax is the same as for
the other ICST ambisonics tools in order to facilitate
interchanging the processes [8].

Figure 11. Implementation of the AEP as a MaxMSP
external structured like an n by m matrix mixer.

5.6. Computational Costs with Look-up Tables

The effective computational costs of the different
procedures depend on hardware and on the
programming environment. In the following examples
we therefore only list the number of multiplications,
function calls and table look-ups for an order m and a
number of speakers n. In general with interpolation the
number of table look-ups is doubled in 2D and
quadrupled in 3D and 2 additional multiplications occur
in 2D or 8 additional multiplications occur in 3D. For
the procedure described in paragraph 5.3.2 we only need
the (m+1)2 table look-ups per sound for the encoding;
(decoding is processed for all sounds together and thus
computing costs does not increase with a higher number
of sources). For the procedure described in paragraph
5.3.3 we need 4 multiplications to calculate the angle
between sound source and speaker and n table look-ups
per sound. In the context of the I-S-O project
(Interactive Swarm Orchestra [9]), which was the
starting point for our study, ambisonic en- and decoding
ironically outplays AEP if no look-up tables are used
and is of the same complexity and cost if one takes full
usage of look-up tables. Since in this project many
sound-sources are used the encoding process causes the
biggest costs and so we only need (m+1)2 table look-
ups for ambisonic encoding and n table look-ups for
AEP. For example with a speaker set-up in a
dodecahedron (n = 20) up to m = 3 traditional ambisonic
encoding still beats AEP.

5.7. Explaining Ambisonics

The mathematics used in ambisonic theory is beyond the
skills of non-scientists or non-engineers. Since panning
functions are familiar and easy to visualize they provide

a good didactical means for explaining Ambisonics to
laymen and for deriving encoding formulas and gains
for in-phase decoding. For example for order m = 3 we
expand the powers of the panning function (…)

!

finph (", p) = (1
2

+ 1

2
cos")3

= 1

8
(1+ 3cos" + 3cos

2" + cos
3")

 (13)

and replace the powers of the cosine function by cosines
of multiples of the angle to get the cosine part of the B-
format together with the in-phase coefficients (6).

!

1

32
(10 +15cos" + 6cos2" + cos3") (14)

6. CONCLUSIONS AND FURTHER
INVESTIGATIONS

In order to store 3D sound independently of the speaker
set-up either sound and position of the sound source can
be stored separately or they can be stored together in the
ambisonic B-format. If the sound need not be stored,
e.g. for example in testing environments, real time
performances or playback of multi-channel sequencer-
sessions AEP is easier to implement and takes less
computing power than ambisonic en- and decoding.
Only in applications where a great number of
independent sounds occur, each with its own position or
movement occurs and the spatial resolution need not to
be very high ambisonic en- and decoding outplays AEP.
In most other cases AEP performs better.
A further advantage of AEP is the possibility to use an
arbitrary order of directivity for each individual sound
source. It becomes possible to mix pre-recorded low
order ambisonic B-format, medium order ambient
sounds, high order precise localisable sound and sounds
with changing localizability. How the individual sounds
are perceived if different orders are used at the same
time is an open question that can be answered only by
experience. Can we simulate different sizes or
directivities of the sound source or will we just hear
unnatural, incongruent sound scenes?
An open theoretical question is, whether there are
simple formulas for ambisonic panning with other
correcting gains of ambisonic decoding as for example
basic decoding in 3D and so-called max rE decoding [3].
A lot of work has still to be done to implement AED and
especially 2D table look-up for different sound synthesis
languages and to create plug-ins for commercial
software.

7. REFERENCES

[1] Neukom, M. "Ambisonic Panning'', AES 121st
Convention, New York, USA, 2007.

[2] Pulkki, V. "Virtual sound source positioning
using Vector Base Amplitude Panning'', J.
Audio Eng. Soc., 45, June 1997.

[3] Daniel, D. Représentation de champs
acoustiques, application à la transmission et à
la reproduction de scènes sonores complexes
dans un contexte multimédia. Ph.D. Thesis,
University of Paris VI, France, 2000,
http://gyronymo.free.fr

[4] Sontacchi, A., Höldrich, R. “Konzepte zur
Schallfeldsynthese und Schallfeldrepro-
duktion”, Jahrestagung der ÖPG FA-Akustik,
2000, http://iem.at/projekte/publications/paper

[5] Neukom, M. “Decoding Second Order
Ambisonics to 5.1 Surround Systems”, AES
121st Convention, San Francisco, CA, USA,
2006

[6] Daniel, D., Nicol, J. R., Moreau, S. “Further
Investigations of Higher Order Ambisonics and
Wavefield Synthesis for Holophonic Sound
Imaging”, AES 114th Convention, Amsterdam,
The Netherlands, 2003

[7] http//:www.icst.net/downloads

[8] Schacher, J.C., Kocher, P. "Ambisonics
Spatialization Tools for Max/MSP",
Proceedings of the International Conference on
Computer Music 2006 (ICMC'06) New
Orleans, November 6-11, 2006

[9] http://www.i-s-o.ch

