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1 First-Order Ambisonic (B-Format)

1.1 Encoding

The roots of Ambisonic date back to the 1970s, when Michael Gerzon from the University

of  Oxford  introduced  First-Order  Ambisonic  in  form  of  the  so-called  B-Format,  which

encodes  the  directional  information  of  a  given  three-dimensional  soundfield  to  four

channels called W, X, Y, Z:

W=s [ 1
2

] omnidirectional information

X=s [coscos] x-directional information

Y=s [sincos] y-directional information

Z=s [sin] z-directional information

where  Φ  (phi)  is  the  horizontal  angle  (azimuth),  and  Θ  (theta)  the  vertical  angle

(elevation).1 The equations  show that  an Ambisonic  soundfield  can be synthesized by

multiplying an audio signal s with the value of a certain function in the desired direction.

This is what those functions look like for the different Ambisonic channels (W to Z from left

to right):

Fig. 1: First Order Ambisonic encoding functions

It is intuitively clear that these signals can be captured by the means

of one omnidirectional microphone (the W channel) and three figure-

of-eight microphones (channels X, Y, Z), which allows for First-Order

Ambisonic recordings of real soundfields. Ideally, those microphones

should  all  be  located  in  the  origin  of  the  coordinate  system.  The

Soundfield microphone (Fig. 2) has been built for this purpose. It is

made up of four cardioid capsules arranged in a tetrahedron, which

can be combined as needed to provide the desired polar patterns.
1 The coordinate system assumed here has the x axis showing into the 0° direction for both, azimuth and

elevation. If the listener faces the positive x direction, he finds the positive y direction to his left, and the
positive z axis above him. The azimuth goes counterclockwise from 0° to 360°, the elevation is positive for
values above, and negative for values below the xy plane.

Fig. 2: soundfield
microphone



1.2 Decoding

It  is  important  to  understand,  that  the Ambisonic-encoded signals are not  feeding any

speakers themselves, but carry the directional information of an entire soundfield. That

means,  that  they are completely independent  from the  loudspeaker  layout  chosen for

decoding the soundfield. An Ambisonic decoder is therefore always designed for a specific

speaker  layout,  and  an  Ambisonic-encoded  soundfield  can  be  reproduced  on  any

Ambisonic decoding system. Ambisonic does not imply a certain number of loudspeakers

used  for  reproduction.  The  only  limit  it  puts  on  the  number  of  speakers  is,  that  the

minimum number of loudspeakers L is equal to the number of Ambisonic channels N:

L≥N

In case of the B-Format, this means four speakers for a periphonic (i.e. three-dimensional)

loudspeaker  setup.  In  case  of  a  horizontal-only  setup,  where  the  Z  channel  can  be

neglected  (since  it's  the  only  channel  extending  in  the  z-direction,  see  Fig.  1),  three

speakers are sufficient. However, it is fine and even desirable to use more speakers than

the number of Ambisonic channels, since this can increase the overall quality of sound

localization.2

An  Ambisonic  encoder  has  however  put  certain  demands  towards  the  layout  of  the

loudspeaker array: it is supposed to be as regular as possible. The more regular it is, the

better the results in terms of localization of audio sources will be, just like in Vector Base

Amplitude Panning (VBAP) systems. In other words, the decoder will do its job as good as

it can with the speaker layout offered to him. There are two major decoding strategies,

which will be introduced in the chapters 1.2.1 and 1.2.2:

1.2.1 Decoding through Projection

So how are the actual speaker signals derived from the Ambisonic signals? A very basic

Ambisonic decoder works like this:  each speaker receives its own weighted sum of  all

Ambisonic channels. For each speaker, the weight of an Ambisonic channel equals the

value of the according spherical harmonic for the position of that speaker.3 In other words,

the spherical harmonics are spatially sampled by the speakers.

So the signal feeding the i-th loudspeaker is:

pi=
1
N
[W  1

2
X cosi cosiY sini cosiZ sini]

2 Based on these considerations, Michael Gerzon has suggested that  quadrophonic systems should be
driven rather by only three (Ambisonic-encoded) channels (W, X, Y) than by four discrete channels (one
for each speaker).

3 This is refered to as re-encoding the loudspeaker positions, since the same encoding functions are
applied.



with  (Φi,  θi)  being  the  position  of  the  i-th  speaker,  and  N  the  number  of  Ambisonic

channels.4

This decoding strategy assumes regular speaker layouts, like 8 speakers along a circle,

separated by equal angles. If the layout is not regular, the decoder will just act as if this

was the case, which is called  projection  (of the Ambisonic signals onto the loudspeaker

array).  For  3D layouts,  there  is unfortunately only a very limited number (five) regular

layouts, the so-called  platonic solids5, which means that we are also very limited in the

number of loudspeakers used.

1.2.2 Decoding through Pseudoinverse

A notation of the decoding equation in matrix form can be useful. Assume, that B is the

column  vector  of  Ambisonic  channels  (B  =  [W  X  Y  Z]T),  p  the  column  vector  of

loudspeaker signals, and C the re-encoding matrix. The entries of C are the values of the

spherical harmonics for the loudspeaker positions, with N rows for the different spherical

harmonics, and L columns for the speakers. We can express the decoding function as:

B=C∗p

thus:

p=C−1∗B

C-1 is the inverse of C (also called decoding matrix).  To invert C, the matrix needs to be

square,  which  is  only  the  case  if  L=N  (number  of  speakers  =  number  of  Ambisonic

channels).  Since generally,  L>N, the inversion can only be done by the means of  the

pseudoinverse:

pinv C =CT C∗CT −1

p= pinv C ∗B=CT C∗CT −1∗B

The pseudoinverse will only provide useful values if the condition number of C is small.

This  can  be  achieved  by  minimizing  the  maximal  distance  and  angle  between  two

speakers,  i.e.  making  the  layout  again  as  regular  as  possible.  For  perfectly  regular

speaker layouts, decoding by the means of projection is therefore equivalent to decoding

with the pseudoinverse.

1.3 Soundfield Operations

Since Ambisonic encodes the soundfield created by multiple sound sources rather than

4 Since each speaker receives all Ambisonic channels, the speaker signals have to be normalized by 1/N to
avoid clipping.

5 cube, tetrahedron, octahedron, icosahedron, dodecahedron



the sources themselves, it is straightforward to apply operations on this soundfield as an

entity:

1.3.1 Rotation, Tilt, Tumble

By the means of simple rotation matrices, it is possible to rotate an Ambisonic soundfield

around all three axes of an xyz coordinate system. Rotation (or yaw) refers to the z-axis,

tilt (or roll) to the x-, and tumble (or pitch) to the y-axis.

This  property  of  Ambisonic  soundfields  is  exploited  in  binaural  3D audio  reproduction

techniques including head tracking: in natural acoustic environments, we constantly make

small  head movements,  in order to  maximize interaural level  and time differences and

thus  improve our auditory localization. Using headphones, you usually can't make head

movements without moving the soundfield along with you. Head tracking devices coupled

to a Ambisonic rotation matrix can achieve this with relatively little CPU power.

1.3.2 Mirroring

It is possible to easily mirror an Ambisonic encoded soundfield, i.e. create movements of

all sources in the soundfield to their diametrically opposed directions.

1.3.3 Zoom

Zoom-like  operations  (also  known  as  focus,  dominance,  or  acoustical  lense)  can  be

applied to an Ambisonic soundfield by the means of Lorentzian transformations or filters.

1.4 Summary

Ambisonic at its time was pretty much a commercial failure, which is certainly also due to

the fact that Gerzon's approach was just way ahead of its time.6 However, in recent years,

it  has  experienced  a  comeback  in  3D  audio  applications  for  loudspeakers  and

headphones, being extended to Higher Order Ambisonic.

2 Higher Order Ambisonic

2.1 Basics

In the 1990s, it has been shown that the Ambisonic approach can be extended to higher

orders,  increasing  the  size  of  the  sweet  spot  in  which  the  soundfield  is  accurately

reproduced as well as the overall quality of localization. The price paid for this is that with

increasing order, a growing number of additional Ambisonic channels will be introduced (5

6 It is interesting to note though, that obvious analogies can be found between the Ambisonic approach and
the early sterophonic microphone techniques "MS" and "Blumlein pair" (crossed figure-of-eights), if you
take a look at their mic layouts including the polar patterns of the microphones.



new channels for second order, 7 new channels for third order, etc.), which also means

that the minimum number of required loudspeakers increases (remember L≥N!).

So what do these new Ambisonic signals look like? The mathematical idea behind the

extension of the Ambisonic approach to higher orders looks like this:

1) A soundfield can be regarded as a superposition of plane waves.

It  is  intuitively  clear  that  it  must  therefore  be  possible  to  reproduce  a  soundfield  by

reproducing the plane waves it is composed of, for example with loudspeakers. The waves

emitted  by  loudspeakers  can  be  assumed  plane  when  the  speakers  are  "far  enough

away", i.e. when their distance is big compared to the wavelengths of the frequencies they

reproduce.

2) A plane wave can be represented as an infinite series.

The mathematical  expression of  this series looks rather complicated. Fortunately, if  we

limit ourselves to an accurate reproduction of the desired soundfield in the origin of our

coordinate system (i.e. the sweet spot), things become much easier, and we can develop

the  series  by  the  means  of  spherical  harmonic  functions7,  which  consist  of  simple

constant, sine and cosine terms. Spherical harmonic functions come in different orders,

with increasing numbers of functions for increasing order. For example, there is only one

function of zeroth order. It is the one that is applied in the creation of the W channel of a

First-Order Ambisonic system (see Fig. 1)8. For the first order, three functions exist, which

are applied in the creation of  the X, Y, and Z channel.  Thus,  a First-Order Ambisonic

encoded soundfield  actually combines the Ambisonic  signals  of  first  and zeroth order.

Similarly, a third-order system is made up not only by the third-order signals, but also by

those of zeroth, first, and second order.

Below are the five spherical harmonics of second order:

Fig. 3: Second order spherical harmonics

And the according Ambisonic signals: 

R=s [ 1
2
3sin2−1]

S=s [cossin 2]

T=s [sinsin 2]
7 Spherical harmonic functions describe a function on the surface of a sphere.
8 So actually most of us got a zeroth order Ambisonic system in their old mono kitchen radio...



U=s [cos2cos2]

V=s [sin 2cos2]

And the seven spherical harmonics of third order:

Fig. 4: Third order spherical harmonics

K=s [ 1
2
sin5sin2−3]

L=s [ 8
11
sincos5sin2−1]

... etc. for channels M, N, O, P, Q ...

Since with every new order the number of new functions introduced increases by two, the

sum over all these functions for a given order is given by

N=M12 for 3D reproduction

where N is the number of  Ambisonic channels,  and M is the order of  the system. For

horizontal-only reproduction, only the spherical harmonics that are dependent from the z-

value are counted, and we end up with:

N=2M1 for 2D reproduction

Obviously, the directional information carried by the spherical harmonics becomes more

distinguished with increasing order, giving a more and more accurate localization. At the

same time, it is also obvious that recording of Higher Order Ambisonic signals becomes

more tricky,  since microphones with  according polar  patterns don't  exist.  The required

polar  patterns  have to  be  created  by the  means  of  microphone  arrays.  However,  the

synthesizing of artificial soundfields is just as easy as it is in a first order system.

It has been mentioned above that the minimum number of loudspeakers required by an

Ambisonic system is given by the number of Ambisonic channels (L  ≥ N). It is therefore

quite obvious, that the series describing our plane wave has to be truncated at some point

(i.e. at a specific order), since the number of available channels and loudspeakers will be

finite. This results in an approximation of the original soundfield, being more accurate for

higher orders (better localization, bigger sweet spot). It has been shown, that Ambisonic

can be as a special case of holophony, relating it to the principle of Wave Field Synthesis.



2.2 Mixed-Order Systems

In  designing  a  periphonic (i.e.  3D)  audio  reproduction  system,  the  psychoacoustic

properties  of  the  human hearing can  be  considered  by  making use of  mixed-ordered

systems, where the horizontal and vertical parts of a soundfield are encoded separately

with  different  orders.  Since the  spatial  resolution  of  the human ear  is particularly well

developed in the horizontal plain, the horizontal part will typically be encoded in a higher

order  than  the  vertical  part.  The  number  of  Ambisonic  channels  for  a  mixed-ordered

system is given by:

N=N HN V=[2M H1][M V1
2−2M V1]

where N is the number of channels,  MH the horizontal,  and  Mv the vertical order of the

system. For example, a system with MH = 3 und Mv = 1 consists of N = 8 channels. A full

periphonic system of  second order requests  N = (M+1)2 = 9 channels.  Therefore,  it  is

possible to  optimize the number  of  transmitted channels and the quality of  the spatial

audio reproduction at the same time. Unfortunately, the ability to comfortably rotate the

soundfield around the x- and y-axis (tilt and  tumble) is lost within mixed-order systems,

only allowing for rotations around the z-axis.

3 Extensions to Higher Order Ambisonic Systems

3.1 Decoder Flavor

As described above, an Ambisonic decoder attempts to recreate the encoded soundfield

in the center of the loudspeaker setup (sweet spot). If  we want to enjoy the acoustical

pleasures of  this  recreation,  we will  unfortunately  have to introduce our  head into  the

scene, which causes the following problem: since Ambisonic is sound field oriented rather

than  sound  source  oriented,  typically  all loudspeakers  in  the  array  contribute  to  the

decoding of the field created by an Ambisonic encoded source. This sounds weird, but the

idea is, that in the center of the array, the contributions of the different speakers interact,

meaning that for example the signals of loudspeakers opposing each other cancel each

other out, since they are 180° out of phase.

However, the introduction of our head introduces reflection and diffraction effects, making

such a phase cancellation impossible. This is particularly annoying when a loudspeaker in

the opposite direction of an encoded source contributes to the decoding of this source:

due to the effects around our head, we will be able to hear this speaker's contribution as a

separate source. The effect is also more disturbing for listening positions out of the sweet

spot, where the distance to the speakers is not equal any more, and closer speakers will



more likely  be  heard  as  separate  sources.  A  solution  to  this  problem is  the  in-phase

decoder, which requires that all speakers produce equally phased signals, removing the

dependency on cancellation effects in the sweet spot. This is simply achieved by applying

gain factors to the basic decoder matrix.

Fig. 5: polar patterns of
(a) a basic decoder
(b) an in-phase decoder
for a source encoded at 0°, and for increasing Ambisonic order (from left to right)

As the figure above shows, removing the contributions from directions opposite  to the

source is done at the cost of widening the source position. By increasing the order of the

system, the lost localization quality can be regained. Fig. 5 can be drawn as an ordinary

function showing the amplitude of speakers as a function of angle:

Fig. 6: Window-applied Decoding
x-axis: azimuth in [ °]
y-axis: speaker amplitude



An obvious analogy to the characteristics of  windows used in FIR filter  design can be

found here: an in-phase decoder reduces the amplitude of the side lobes at the cost of

widening the main lobe. This way, the principles of window design can be applied in the

optimization  of  decoders  for  Higher  Order  Ambisonic  systems.  This  process  called

window-applied  decoding  can  be  used  to  find  compromises between the  extremes  of

basic and in-phase decoding, depending on the auditorium the decoder is built for.

3.2 Distance Coding

Up to now, we have considered the position of our Ambisonic encoded sound sources to

be only dependent on the azimuth and elevation, quietly assuming, that their distance is

equal to the radius of the loudspeaker array used for reproduction (an assumption which is

familiar from VBAP). However, natural acoustical environments consist of sound sources

in  varying  distances.  To  reproduce  or  synthesize  natural  sounding  soundfields,  it  is

therefore necessary to think about how to encode the distance of sources. For sources far

away,  this  can  be  achieved in  a  straightforward way by  the means  of  artificial  reverb

algorithms; again this is similar to how it is done in VBAP. Things become more tricky

though if one wishes to locate sources within the speaker array. At least two approaches

exist  for  this  problem,  and  both  of  them  try  to  encode  the  distance  by  synthesizing

wavefront curvatures: the curvature of a point-like sound source expands spherically, so

the further you move away from the source, the less curved the wavefront will be, leaving

you  with  a  plane  wave  at  an  infinite  distance.  Remember,  that  one  major  idea  of

Ambisonic is to assume that the loudspeakers emit such plane waves, which removes any

dependancy on the distance of a sound source, since the amplitude of a plane wave does

not decay with distance like a spherical wave does.9 While the mathematical treatment of

plane (non-curved) wavefronts is much easier, we actually loose our distance information

this way.

3.2.1 Distance Coding by Near Field Compensation

One  approach  to  regain  this  information  bases  on  considering  the  fact,  that  the

loudspeakers are not emitting plane waves anyway, if the distance of the speaker array is

finite (which is usually the case). This finite distance results in a bass-boost effect (similar

to the proximity effect experienced with velocity microphones like the Shure SM58): the

closer from infinity I come with my speaker array, the more bass frequencies I introduce. It

9 The amplitude of a spherical wavefront decays with 1/r. This is the familiar effect of things being more
quite if they are far away. The decay is due to the fact, that the energy of the source has to spread over an
increasing spherical surface as the wavefront expands from its origin. The energy of plane wavefronts
does not have to spread, since it travels in only one direction, which is why their amplitude does not decay
with distance.



has  therefore  been  suggested  to  introduce  a  new encoding  format  called  NFC-HOA

(Near-Field Compensated Higher Order Ambisonic), which compensates this bass boost

effect already in the encoding stage by the means of filters. This way, distance coding can

elegantly  be  introduced  at  the  same  time:  if  I  want  a  source  at  the  distance  of  my

loudspeaker array, simply don't apply any compensation of the bass-boost. The speakers

are going to reproduce the according wavefront curvature anyway! If  you want sources

outside the speaker array, reduce the bass, since the speaker array will cause a bass-

boost  because it  is  "too close".  If  you want inside sources,  even turn up the bass,  to

simulate the additional bass boost you would get from even closer speakers. The price

being paid for this is, that the radius of the loudspeaker array now has to be known at

encoding time,  removing  the  clear  separation  between  encoding  and  decoding  stage.

However, additional filters can compensate for the difference between the radius assumed

at encoding time, and the actual radius of a loudspeaker array the soundfield is decoded

too.

3.2.2 Distance Coding by a Hybrid Holophony / HOA Approach

Another idea is based on a hybrid approach of holophony (i.e. Wave Field Synthesis in

3D) and Higher Order Ambisonic. In the first stage, the curvature of the wavefront (and

thus  the  distance  of  the  source  emitting  the  wavefront)  is  encoded  by  the  means  of

holophony  to  a  virtual  loudspeaker  array.  In  a  second  stage,  the  virtual  loudspeaker

signals  are  then  encoded  into  an  Higher  Order  Ambisonic  soundfield  as  Ambisonic

sources with static position information.

This approach makes it possible to exploit the advantages of holophony (possible distance

coding), without the huge amounts of  loudspeakers demanded by holophonic systems.

Obviously, the number of virtual speakers as well as their layout and spacing are primary

design parameters for this approach.

3.3 Considering Sound Source Characteristics (O-Format)

Introducing  the  curvature  of  spherical  wavefronts  in  distance  coding,  we  have  said

goodbye to the mathematically useful but rather unrealistic concept of plane wavefronts.10

However, a spherical wavefront has its origin in a point-like sound source. Quite obvious,

real sound sources are unlikely to be point-like (think of a piano!), and even worse, their

polar characteristics will be heavily frequency dependent.

It is possible to approximate the surface shape of a sounding object by the means of the

10 It's not unrealistic in so far as any soundfield can be understood as a superposition of such plane waves. It
is just unrealistic to assume that a loudspeaker at a finite distance will emit a plane wave!



by now well-known spherical harmonics.11 This allows for efficiently modelling the impulse

response  of  the  sounding  object,  which  can  thus  be  embedded  into  an  Ambisonic-

encoded soundfield including its spatial characteristics. This representation of sounding

objects is reffered to as the so-called O-Format.

3.4 Room Reflection Cancellation

Another quiet assumption we have made is the one of free field conditions, which would

mean  that  only  the  direct  loudspeaker  signals  will  contribute  to  the  restoration  of  the

encoded soundfield  in  the sweet spot.  However,  in real  life wall  reflections disturb the

reproduction  of  the  original  soundfield.  Different  algorithms  exist  for  applying  room

reflection cancellation:

By measuring the directional impulse responses of the reproduction room in the sweet

spot,  it  is  possible  to  interpret  the reflexions  as  virtual  sources and encode additional

Ambisonic sources which destructively interfere with these reflexions (phase cancellation).

Another approach expolits the analogies of Ambisonic to Holophony: the room reflections

are  measured  by  the  means  of  a  microphone  array  (a  typical  holophonic  recording

technique). The transfer functions from each speaker to each microphone are measured

and compared to  the free-field  conditions.  This  leads to a set  of  filters  applied to  the

speakers,  which  allows  for  reflection  cancellation,  but  only  within  the  bounds  of  the

microphone array.

4 Conclusion

The possibility of higher-order extension makes the Ambisonic approach very flexible in

terms of  scalability  – also due to the  self-compability of Ambisonic-systems, which is an

effect of the complete separation of encoding and decoding stage: higher-order encoded

soundfields can be reproduced on lower-order decoding systems (by simply ignoring the

channels  exceeding the  order  of  the  reproduction  system)  and  vice versa  (by  happily

accepting the fact that you have more speakers available than you actually need).

On the other hand, a speaker layout which provides good properties regarding regularity

for a decoder of a certain order, does not necessarily have as good properties for other

orders. This is of course a special issue in the design of mixed order systems.

Also, the  soundfield operations mentioned above (rotations, mirroring, zooming) become

increasingly difficult or impossible at all to implement for higher orders.

11 Again, this is a scalable approach, since higher order spherical harmonics will allow for closer 
approximation.



However, the advantages of Higher Order Ambisonic in terms of efficiency regarding CPU

and hardware (number of channels and loudspeakers) make it a very attractive approach

for 3D audio reproduction.

Higher  Order  Ambisonic  systems  can  be  improved  by  including  distance  coding,

considering the physical properties  of  sounding objects  (O-Format)  and applying  room

reflection cancellation algorithms.

Links

http://audiolab.uwaterloo.ca/~jeffb/info/thesis.html
thesis on 2nd and 3rd order systems

http://members.tripod.com/martin_leese/Ambisonic/faq_latest.html
FAQ

http://www.ambisonic.net/
general forum

http://www.mshparisnord.org/cicm/dl_en.htm
externals for MAX/MSP, PD

http://www.york.ac.uk/inst/mustech/3d_audio/
Ambisonic at University of York, open source Ambisonic VST plugins
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