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1 INTRODUCTION  

The problem of sound field reconstruction is a subject of relevance in many branches of acoustics. 
In the audio industry, considerable research has been dedicated to the study of recording and 
reproduction systems that allow an accurate rendering of the spatial information that is considered 
to be an important component of the sound scene. This research activity is also encouraged by the 
increasing diffusion of multi-channel recording and reproduction systems and multi-channel audio 
formats. Loudspeaker systems using the 5.1 format are now widely accepted in the consumer 
market and systems with an increasingly large number of loudspeakers are now being proposed.  
 
The rendering of the spatial information describing the sound scene can be attempted in a number 
of different ways. One of the possibilities is to attempt the physical reconstruction or the synthesis of 
the desired sound field using an array of loudspeakers. Theories like Wave Field Synthesis [1] and 
High Order Ambisonics [2] have been proposed and applied in order to realize this task, and other 
approaches to the same problem have been proposed more recently [3], [4]. All these theories are 
based on the physical description of the sound field using rigorous mathematical models. The aim 
of this paper is to propose the theory of an alternative approach to sound field reconstruction, that is 
based on functional analysis. The latter has been widely used in other branches of physics, such as 
quantum mechanics, which share with acoustics some important mathematical models. This 
suggests that a similar approach could be useful in order to produce a greater insight into the sound 
field reconstruction problem. An approach based on a mathematical background analogous to that 
presented in this paper has already been used for practical inverse problems of engineering 
interest, such as those described, for example, in [5] and [6]. An extensive and rigorous 
mathematical introduction to functional analysis applied to acoustic and electromagnetic scattering 
problems can be found in [7]. Concepts such as Hilbert spaces, compact operators and self-adjoint 
operators are introduced in the course of this paper, and the reader can refer to [8], [9] and [10] for 
an extensive discussion of these mathematical tools. 
 
The target of the system described in this paper is the reconstruction of a sound field over a region 

of space Ω  that does not contain acoustic sources or scattering objects, which means that the 

sound field in that region can be described by the homogeneous Helmholtz equation. The 

loudspeaker array is assumed to be an ideally infinite distribution of sources continuously arranged 

on a three dimensional surface S , that contains the region of space Ω  over which the sound field 

reconstruction is attempted. This is represented in Figure 1. It is also assumed that the information 

on the desired sound field is represented by the knowledge of the acoustic pressure ( , )p tx  on the 

boundary ∂Ω of the reconstruction area. This implies that either the original sound field was 

measured using an ideally infinite number of omnidirectional microphones continuously arranged 

over ∂Ω , or that ( , )p tx  was defined using an analytical model of the desired sound field. The 

advantage of this approach is that the sound field reconstruction problem can be modeled by an 

integral equation of the first kind, and many useful results that functional analysis provides with 

respect to integral operators can be used in order to give an important insight into this engineering 

problem. Since the derived integral equation defines an ill-posed problem, a brief discussion is 

presented in the final section of this paper of ill-conditioning of inverse problems and regularization 

methods. The reader is referred to [6], [7], [10] and [11] for a more detailed introduction to this topic. 
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2 THEORY OF SOUND FIELD RECONSTRUCTION SYSTEM 

 
2.1 Definition of the problem  

Let the reconstruction area 
3Ω ⊂ �  be a region of space limited by a smooth, bounded and simply 

connected boundary ∂Ω . Assume that the acoustic pressure ( , )tψ x  of a sound field is defined 

over this region, satisfying the homogeneous wave equation  
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where c  is the speed of sound, considered to be uniform over Ω , and the symbol Ω  represents 

the closure of Ω , that is Ω = Ω ⊕ ∂Ω . For a monochromatic sound field with angular frequencyω , 

equation (1) can be reduced to the homogeneous Helmholtz equation  
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where /k cω=  is the wave number, and the harmonic time dependence 
j t

e
ω

 is implicitly 

assumed. Let ( ),  p ∈∂Ωx x  be the continuous function that represents the value of ( , )tψ x  on the 

boundary ∂Ω . Assume then that the loudspeaker array that is used for the reconstruction 

corresponds to an ideally continuous monopole source layer arranged over a smooth, bounded and 

simply connected surface S , as showed in Figure 1. It is also assumed that Ω  is contained in S .   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Cross-section of the reconstruction volume Ω  and of the 3D surface S  

 

 

2.2 The Dirichlet Problem 

It is important to note at this point that, under certain conditions, the knowledge of the acoustic 

pressure on the boundary  ∂Ω  is sufficient in order to completely define the sound field inside Ω . 

This is equivalent to proving the uniqueness of the solution of the interior Dirichlet problem  
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where the second equation represents the Dirichlet boundary condition. It is worth saying that there 

is no need to discuss the existence of the solution and to impose any condition on the smoothness 

of ( )p x  as long as it is assumed that the boundary condition ( )p x  is not chosen arbitrarily but 
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corresponds to that of a real sound field. Therefore the solution must exist, but there is no evidence 

that it is unique.   

 

If ( ) 0  p = ∀ ∈∂Ωx x , then the Dirichlet boundary condition is said to be homogeneous. For a 

certain geometry of ∂Ω , a non-trivial solution to the Dirichlet problem in the interior of Ω  with 

homogeneous boundary conditions on ∂Ω  is possible only for a countable and infinite set of wave 

numbers { }nk , related mathematically to the eigenvalues of the negative Laplacian operator. 

These eigenvalues are physically associated with the resonances of the cavity having the shape of 

Ω  and pressure release boundaries. Provided the wave number k  in equation (3) with 

inhomogeneous boundary conditions does not correspond to any of the eigenvalues{ }nk , then the 

homogeneous Dirichlet problem in Ω  has only the trivial solution and the problem (3) with 

inhomogeneous boundary conditions has a unique solution. This is shown in [7, p.108] and [12, 

Chapter 7]. This means that, under the above-mentioned condition, the measurement of the 

acoustic pressure on ∂Ω  is sufficient in order to define the sound field in Ω  . Furthermore, the 

reconstruction of the acoustic pressure on ∂Ω  ensures that the reconstruction is achieved also in 

the interior region Ω . This is an important result that implies that, if the frequency in question is not 

one of the resonances of the pressure release cavity, the measurement and reconstruction effort 

can be limited to the boundary ∂Ω  of the reconstruction area.  

 

 

2.3 Formulation of the reconstruction problem as an integral equation 

Let ( | )G y x  be the free field Green function solution to the free field inhomogeneous wave 

equation 
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and assume that this function can be a good model, at a given frequency, of the electro-acoustic 

transfer function between each loudspeaker, represented by a point source located at y , and any 

point x  in Ω .  It is now possible to write an expression of the acoustic pressure ˆ ( )ψ x  of the 

reconstructed sound field as the linear superposition of the infinite number of point sources 

arranged on S . That is 

 

ˆ ( ) ( | ) ( ) ( )      
S
G a dsψ = ∈Ω∫x y x y y x  (5) 

 

where ( )a y  is a complex function representing the driving signal (monopole strength) of each 

loudspeaker. In view of the uniqueness of the Dirichlet problem when the problem does not involve 

one of the resonance frequencies, the reconstructed sound field ˆ ( )ψ x  equals the desired sound 

field ( )ψ x  if the acoustic pressure is correctly reconstructed on the boundary ∂Ω . That is to say, 

provided the loudspeaker driving function ( )a y  is such that  

 

( ) ( | ) ( ) ( )      
S

p G a ds= ∈∂Ω∫x y x y y x  (6) 

 
Obviously, if the desired boundary condition ( )p x  is imposed, then ( )a y  is the unknown of the 

problem. Equation (6) is a Fredholm integral equation of the first kind, and ( | )G y x  is the kernel of 

the integral. As will be shown later, this equation represents an inverse problem that is, in general, 

ill-posed. For the definition of an ill-posed problem the reader can refer to [6] or [11]. It is possible to 

rewrite equation (6) using an operational notation as 
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( )( ) ( | ) ( ) ( )     
S

Ha G a ds= ∈∂Ω∫x y x y y x  (7) 

 

where H  is an operator that acts on the function ( )a y  defined over S , and transforms it into a 

function defined over ∂Ω . It may be useful to mention that the function ( )a y  belongs to a Hilbert 

space Y of dimension M . Explaining the concept of Hilbert spaces is beyond the aim of this paper 

and the reader can refer to [8], [9] and [10] for a detailed explanation. For the case under 

consideration it suffices to provide an intuitive idea of Hilbert space. The space can be described as 

an infinite set of functions defined over a certain domain ( S  in the case of Y ), over which is 

possible to define an inner product between two elements of the set as 

 

( ) ( ) ( ) ( ) ( )
S

a b a b ds= ∫y y y y y  (8) 

 

and the norm of an element and the distance between two elements, respectively as  
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The symbol []  represents the complex conjugate of [] . Two functions ( ), ( )a b Y∈y y are said to be 

orthogonal if their inner product ( ) ( ) 0a b =y y . The Hilbert space has dimension M  if each 

element of Y can be expressed as a linear combination of M mutually orthogonal functions 

belonging to Y , in the same way that any vector of a Euclidean vector space of dimension M  can 

be expressed as a linear combination of M  vectors constituting an orthogonal basis for that space. 

Hilbert spaces can have both finite and infinite dimension. In the same way as ( )a y  belongs to the 

Hilbert space Y , the function ( )p x  defined over ∂Ω  belongs to the Hilbert space X , for which 

the inner product, the norm and distance are defined as for Y  (but the domain of integration is ∂Ω  

instead of S ).  

 

It is now useful to introduce the concept of an adjoint operator. The adjoint operator H +
of H is 

such that  

 

( )( ) ( ) ( ) ( )( )Ha p a H p+=x x y y  (10) 

 

It is important to point out that if the operator H transforms a function defined over a domain S  into 

a function defined over ∂Ω , the adjoint operator acts on a function defined over ∂Ω  generating a 

function defined over S . Under the proper assumptions of smoothness of the kernel ( | )G y x , the 

operator H defined in (7) is compact [8, p. 454]. The rigorous definition of compactness of an 

operator is beyond the scope of this paper, and the interested reader can refer to [8] and [10], but it 

is important to state that the operator H  is compact in order to use the properties of compact 

operators. As a consequence of the compactness of H , the adjoint operator H +
 exists and is 

compact [8, p.416]. It can be observed that H +
 has the form [10] 

 

( )( ) ( | ) ( ) ( )          H p G p ds S
+

∂Ω
= ∈∫y y x x x y  (11) 

 

and can be understood as a “time reversed” acoustic propagation of an infinite distribution of 

monopole sources on ∂Ω  to a point S∈y . It is now possible to define the operator H H+
, which 

maps a function of Y  to another function ofY .  It has the analytical form 
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( )( ) ( | ) ( | ) ( ) ( ) ( )        
S

H Ha G G a dS ds S
+

∂Ω
= ∈∫ ∫y y x ξ x ξ ξ x y . (12) 

 

This operator is a product of two compact operators, and is therefore a compact operator [7, p.89], 

[8, p.422]. Furthermore, H H+
 is self-adjoint, that is to say 

 

( )H H H H
++ +=  (13) 

 

and it is therefore possible to use all the proprieties of compact, self-adjoint operators. Of special 

relevance is the spectral theorem of self-adjoint operators. Consider the eigenvalue problem 

 

( ) ( ) ( )
n n n

H Ha aλ+ =y y  (14) 

 

The eigenfunctions { }na , henceforth also called modes, can be chosen to be of unitary norm 

( ( ) 1na =y ). The non-negative square roots 
n

µ of the non negative eigenvalues of H H+
, that is 

n nµ λ= , are real and are called the singular values of H . It is useful to order them with 

decreasing magnitude, from the largest to the smallest. Let ( )N H  be the null-space of the 

operator H , defined as the set of functions ( )a y�  such that 

 

{ }( ) ( ) : ( )( ) 0N H a Ha= =y x� �  

 
The null space of an operator, as explained in [11], can be understood for the case under 

consideration as the set of loudspeaker driving functions for which, at the considered frequency, the 

reconstructed acoustic pressure profile ˆ ( ) 0p x = .  

 

 

2.4 Spectral Theorem and Singular Value Decomposition 

The spectral theorem for compact, self-adjoint operators states that each function ( )a y  of Y  can 

be expressed as a linear combination of the eigenfunctions of H H+
, plus a function belonging 

to ( )N H : 
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The operator Q  represents the orthogonal projection of ( )a y  on ( )N H  and N  is the number of 

nonzero eigenvalues of H H+
(that can also be infinite). It is possible to generate a set of orthogonal 

functions { }( )np X⊂x  (also called modes) by letting H  act on the eigenfunctions { }( )na y  
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The functions{ })np (x  are mutually orthogonal because, considering equations (10), (14), (16), the 

orthogonality of { }( )na y  and the fact that ( ) 1  na n= ∀y leads to 
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The set of functions { }( )na y  and { }( )np x  can be interpreted respectively as the loudspeaker 

array modes and microphone array modes described in [11]. Combining the two latter equations it is 

possible to express the action of H  on a function ( )a y  as 
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This powerful representation of the integral operator defined in (7) is called the singular value 

decomposition of the compact operator H . The function ( )p x  can be therefore represented as 
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where the operator R is the orthogonal projection on the null-space of the adjoint operator ( )N H +
. 

This can be understood as the set of functions { }( )p X⊂x�  that can not be generated by the 

operator H  [11].  

 

In practical terms, ( )N H +
 represents the set of acoustic pressure profiles { }( )p X⊂x�  that can 

not be reconstructed by the continuous distribution of sources on S . Any acoustic pressure profile 

( )p x corresponding to a physical case can be expressed as the sum of an acoustic pressure profile 

that can not be reconstructed (the orthogonal projection ( )( )Rp x  of ( )p x  on ( )N H +
) plus the 

linear superposition of different orthogonal modes ( )
n

p x  that can be reconstructed by the 

monopole source distribution on S . 

 

It is now possible to seek a solution, when this exists. Multiplying both sides of (19) by the complex 

conjugate of ( )
m

p x  and integrating over ∂Ω one obtains, because of the orthogonality of the 

functions{ }( )np x , 
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Hence, if the solution to equation (6) exists, it is given by 

 

1 1

1
( ) ( ) ( ) ( ) ( ) ( ) ( )

N N

n n n n
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An exact solution is possible if and only if the desired acoustic pressure profile is described by a 

function ( )p x that has zero orthogonal projection on ( )N H +
, since any function belonging to 

( )N H +
 cannot be reconstructed by the distribution of monopole sources on S . This shows that a 

solution of equation (6) is not possible for all pressure profiles ( )p x  and the inverse problem is 

therefore ill-posed. However, even if a solution to the inverse problem (6) does not exist, that is if 

( )p x  has a nonzero orthogonal projection on ( )N H +
, the approximation of ( )p x  expressed by  
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is the approximation that can be generated by the continuous distribution of sources on S  which is 

the closest to ( )p x  in relation to the distance defined by (9). This is the approximation that 

minimizes the root mean square error.  

 

 

2.5 Ill-conditioning of the inverse problem 

Even if a solution exists, the inverse problem (6) can be ill-conditioned and its solution can be 

unstable. This can be easily seen considering the fact that, in the general case, the eigenvalues 

{ }nλ of the compact, self-adjoined operator H H+
 can accumulate at zero, and hence the singular 

values { }nµ  of H  will monotonically decrease, possibly approaching zero. Observing equation 

(21) it can be noticed that if the desired acoustic pressure profile ( )p x  has a nonzero inner product 

( ) ( )np px x  with a mode ( )
n

p x  related to a very small singular value 
n

µ , then the related mode 

( )
n

a y  will become very large due to the inverse of 
n

µ  in equation (21). Furthermore, if the 

acoustic pressure profile ( )p x  is perturbed such that 

 

( ) ( ) ( )
n

p p p
δ δ= +x x x  (23) 

 

then the effect of this perturbation is amplified by a factor 1
n

µ  in the loudspeaker driving 

function ( )a y , obtaining a perturbed solution 
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In more detail, it holds that [7, p.91] 
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−
=

−

y y

x x
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This error amplification factor can become very large because of the roll-off of the singular values. 

In a practical sense, this means that the presence of small singular values implies that a small error 

in the measurement of the desired acoustic pressure profile ( )p x  or the inaccuracy in the 

positioning of the loudspeakers can have a devastating effect on the reconstructed sound field, The 

reconstructed field might then differ largely from that desired because of the presence of small 

errors in the data. 

 

There are many different ways to “regularize” the solution to the ill-posed problem (6) and to 

compute an approximate solution ˆ( )a y  that does not generate an exact sound field reconstruction, 

but is more robust than the solution given by (21). Many regularization methods are described in the 

literature such as, for example, spectral damping and Tikhonov regularization. They will not be 

discussed in this paper and the reader is invited to refer to [6] or [7].   

 

 

3 CONCLUSIONS  

The outline has been presented of a theory for the reconstruction of a sound field over a source free 

area. The system is constituted by an ideally continuous distribution of monopole sources over a 

three dimensional smooth surface that contains the reconstruction volume. The uniqueness of the 

related Dirichlet problem has been discussed and it has been shown that, provided the operating 

frequency does not correspond to one of those related to the eigenvalues of the homogeneous 
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Dirichlet problem, knowledge of the acoustic pressure profile on the boundary of the reconstruction 

volume is sufficient in order to completely define the sound field over all the reconstruction volume. 

Using the same argument, it has been shown that under the same conditions the accurate 

reconstruction of the target pressure profile on the boundary of the reconstruction volume implies 

the reconstruction of the desired sound field over the entire reconstruction volume. The 

reconstruction problem has been formulated analytically as a Fredholm integral equation of the first 

kind, its solution providing the driving function for the continuous distribution of point sources. The 

ill-posedness of the inverse problem has been discussed and the singular value decomposition of 

the compact operator involved in the integral equation has been presented in order to seek a 

solution to the inverse problem. As the problem is ill-posed, the solution might be not exact but can 

be approximated. Finally, the robustness of the solution to errors in the data has been discussed 

and some regularization methods have been mentioned.    

 

The practical realization of a system based on this theory obviously involves the reformulation of the 

latter when a limited number of point sources is considered. This subject is currently part of the 

research activity of the authors. Further work might also involve the study of the problem when the 

wave number considered is one of the eigenvalues of the homogeneous Dirichlet problem. Another 

important aspect is the study of the null-space of the adjoint operator ( )N H +
 and of the spread of 

the singular values of the operator H  in relation to the shape of the surface S  over which the point 

sources used for the reconstruction are arranged. Finally, it could be interesting to attempt to 

reformulate the problem by removing the free field assumption and choosing a different Green 

function ( | )G y x  that can model the reflections of the room in which the reconstruction is 

attempted. 
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