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ABSTRACT 

A method for the analysis and reconstruction of a three dimensional sound field using an array of microphones and 
an array of loudspeakers is presented. The criterion used to process the microphone signals and obtain the 
loudspeakers signals is based on the minimisation of the least-square error between the reconstructed and the 
original sound field. This approach requires the formulation of an inverse problem that can lead to unstable solutions 
due to the ill-conditioning of the propagation matrix. The concepts of generalised Fourier transform and singular 
value decomposition are introduced and applied to the solution of the inverse problem in order to obtain stable 
solutions and to provide a clear understanding of the regularisation method.  

 

1. INTRODUCTION 

The problem of analyzing and reconstructing a sound 
field is of basic importance in many branches of 
acoustics.  In the audio industry, the reconstruction of a 
recorded or synthesized sound field has become a topic 
of increasing interest because of the diffusion of multi-
channel audio systems, which are very indicated for this 
kind of application. Theories like Wave Field Synthesis 
[1] and Ambisonics [2] have been applied with success 
to the realization of large audio systems for multiple 
listeners, and a considerable effort in the research has 
been dedicated to further studies related to these 
theories [3,4,5,6].   

The technique for the reconstruction of a sound field 
presented in this paper is based on the mean squared 
error minimisation method used in the active control of 
sound and vibrations [7], and requires a combined use 
of loudspeakers and microphones. Some applications of 
this method for audio purposes were proposed for 
reconstruction of plane waves [8]. The aim of this work 
is to present an insight of the theory of this method 
applied to multi-channel audio systems, with particular 
attention to the problem of ill-conditioning. The electro-
acoustics transducers of the multi-channel systems are 
not considered as independent units but as elements of a 
complex system, represented by a matrix, called the 
propagation matrix. The array of loudspeakers and the 
array of microphones are described as systems with 
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multiple degrees of freedom, represented by 
independent array modes. It is shown that when 
attempting the reconstruction of a sound filed, some 
modes of the microphone array, corresponding to 
specific combination of the signals of the different 
microphones, can be reconstructed more �easily� than 
others by the loudspeaker array. For those modes, the 
presence of noise and errors in the measurements of the 
sound field does not affect dramatically the 
reconstruction. The singular value decomposition is a 
powerful mathematical tool that allows to analyse the 
conditioning of the propagation matrix and to identify 
which array modes are robust and which array modes 
are more problematic. 

The basic theory of the least squares method applied to 
multi-channel systems is introduced in the first section. 
Then the concepts of ill-posedness of a problem and ill-
conditioning of a matrix are defined in a mathematical 
sense and their importance for engineering application 
is highlighted. Then the concept of loudspeaker modes 
and the singular value decomposition are presented and 
discussed in the detail. Two examples are finally 
presented in order to clarify the practical implication of 
the mathematical results. In the first example the 
singular value decomposition is applied to simple 
system of 2 microphones and 2 loudspeakers. The 
second example involves a system constituted by two 
large spherical arrays.  

THEORY 

A monochromatic sound field defined over a closed, 

bounded and source free region 3RΩ ⊂  can be 
represented by a function  

( , ) Re ( ) j tp t p e ω⎡ ⎤= ⎣ ⎦x x           (1 ) 

where ω  is the angular frequency and ( )p x  is a 
complex scalar field  that satisfies the homogeneous 
Helmholtz equation 

2 2( ) ( ) 0p k p∇ + =x x           (2 ) 

and the wave number k is defined by the dispersion 

relation 0/k cω= . The speed of sound 0c  is assumed 

to be uniform in Ω . Let qp  be the complex value of 

( )p x  at the position qx = x . qp  can be obtained by a 

Fourier transform of the signal captured by an ideal 
omnidirectional microphone located in that position.  

( )p x  can be sampled using an array of Q  
omnidirectional microphones located at arbitrary 

positions , ,..., ,..., ∈Ω1 2 q Qx x x x  and can be used to 

extract Q  samples from the sound field, which can be 
represented by a column vector (the microphone vector) 

1 2, ,..., ,...
T

q Qp p p p⎡ ⎤= ⎣ ⎦p           (3 ) 

p  is an element of CQ  (the Q -dimensional complex 

vector space). The elements qp  are, from here on, 

referred to as microphone coefficients.  In general, for a 
finite number of microphones, the same microphone 
vector could correspond to different sound fields and 
therefore vector p  does not usually identify ( )p x  

uniquely. This phenomenon is known as spatial aliasing 
and is of relevance for many applications, but will not 
be discussed any further in this paper.  

It is possible to attempt to reconstruct ( )p x  in a 

different environment using an array of L  
loudspeakers, located at arbitrary positions 

, ,..., ,...,1 2 Ly y y yl  outside Ω  and arbitrarily 

oriented, each of them driven by a 

signal ( ) Re j t
l la t a e ω⎡ ⎤= ⎣ ⎦ , where la  is a complex 

(frequency dependent) constant, referred to in what 
follows as a loudspeaker coefficient. As for the 
microphone vector, it is possible to define the 
loudspeaker vector  

[ ]1 2, ,..., ,...
T

l La a a a=a           (4 ) 

which is an element ofCL . The squared norm of the 

loudspeaker vector, denoted by 
2

a , where 

2

1

L

l
l

a
=

= ∑a           (5 ) 

is representative of the total energy of the signals 
driving the loudspeakers. 
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As the microphone vector represents all of the available 
information about the original sound field ( )p x , it is 
reasonable to try to generate with the loudspeakers array 
a reconstructed sound field � ( )p x  such that its 

corresponding microphone vector �p , obtained by 

sampling � ( )p x  using the previously defined 

microphone array,  is as close as possible to p . In other 
words, the target is to minimise the distance between  

�p  and p . For the metric of  CQ , the distance is 
defined as 

2

1

� � �( , ) :
Q

q q
q

d p p
=

= = −∑p p p - p           (6 ) 

and represents the root mean squared error between the 
Q  samples of ( )p x  and the Q  samples of � ( )p x . In 

order to solve this minimization problem, the 

microphone vector �p  must be expressed in terms of the 

loudspeaker vectora .  

If the loudspeakers are assumed to be linear systems, it 
is possible to define the linear electro-acoustical transfer 

function ( )qlH ω  between the input of the l-th 

loudspeaker and the q-th microphone of the array 
positioned in the environment where the reconstruction 
is performed. The set of all the transfer functions 
between each loudspeaker can be represented by the 
propagation matrix H  (later on also called propagation 
operator), of dimensionQ L× . Hence the microphone 
vector of the reconstructed sound field can be expressed 
as  

� =p Ha           (7 ) 

If this expression is substituted in (6), then the 
minimization problem becomes 

�( , ) :d =p p p - Ha           (8 ) 

It can be proved [8] that, if the propagation matrix H  is 
full rank, then the choice of the loudspeaker vector 

0a that minimises the distance �( , )d p p  (or 

alternatively the mean squared error) is unique and is 
given by 

( )=
-1H H +

0a H H H p = H p           (9 ) 

The symbol [ ]⋅ H
 denotes the Hermitian transpose of a 

matrix and the symbol[ ]⋅ -1
denotes the inverse matrix. 

Matrix HH  is called the adjoint matrix (or adjoint 

operator) of the propagation matrix. +H  is called the 
Moore-Penrose pseudo-inverse matrix of H . 

2. ILL-CONDITIONING PROBLEM 

Even if equation (9) gives a unique solution to the least 
squares problem (8), it does not explicitly shows that 
there are subsets of microphone vectors p that can not 
be reconstructed and subsets of vectors that can be 
reconstructed perfectly. Furthermore, the reconstruction 
of different vectors p  having the same norm could 
imply the usage of a considerably different amount of 
energy by the loudspeaker array. The knowledge of the 
robustness of a solution is also of great importance for 
engineering applications, as it is important to know 
what the effects of noise and measurement errors are on 
the sound field reconstruction. It is useful to define, in a 
mathematical sense, the concept ill-posedness of a 
problem. According to the definition of well-posed 
equation given by Hadamard [9], if an operator H  from 
a subset U  of a normed space X  into a normed space 
Y  is defined, a problem of the form  p = Ha  is said to 
be ill posed if [10] one of the following three conditions 
is verified:  

� the solution a does not exist for all Y∈p ;  

� the solution a  is not unique; 

� the solution a  does not depend continuously on the 
data p (instability). 

The instability is of primary importance for engineering 
applications, and  

In the case of the sound field reconstruction problem the 

least squares solution 0a  always exist, but for some 

arrangements of microphone and loudspeaker arrays it 

is often possible that either the distance � 0>p - p , 
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that means the reconstruction of  p  is not perfect, or 

that small errors in the sampling p or small variations in 

the estimation of matrix H result in large loudspeaker 

gains and in large errors �p - p . In this case, the 

propagation matrix is said to be ill-conditioned. The 
concept of array modes and Singular Value 
Decomposition are now introduced as these concepts 
are very useful for the study and physical understanding 
of the ill-conditioning of matrix H . 

2.1. Array modes 

It has been shown that all the vectorsa , obtained with 
all the possible combinations of loudspeaker 

coefficients la , belong to the complex vector spaces of 

dimension L . This means that each 

coefficient la identifies a one dimensional subspace 

ofCL  that can be identified by a unitary complex 

vector la . In other words, it is possible to express a  as 

1

L

l
l

a
=

=∑a al           (10 ) 

The vectors la  are mutually orthogonal and represent 

the canonical orthonormal base forCL .  It is possible to 
identify another set of respectively L  non zero, 

orthogonal vectors { }LC∈nv , which are an 

orthonormal basis for the vector space to which they 

belong. It is possible to call the vectors nv  loudspeaker 

array modes, for a reason that will become clearer later 
on. It holds that: 

[ ]1 2

1

, ,...,

1             

 , 1, 2,...,

n n nL

L

nl ml nm
l

v v v

v v

n m L

δ
=

=

=

= =

=

∑

n

n

n m

v

v

v v
          (11 ) 

where nmδ is the Kronecker delta ( 1nmδ =  if n m=  

and 0nmδ =  otherwise). It follows that any vector a  

can be expressed as 

1

1

L

n

L

nl l
l

v a

=

=

=

=

∑

∑

n n

n

a v a v

v a

         (12 ) 

This basic result implies that it is possible to describe 
the sound field generated by the loudspeaker array 
� ( )p x  in terms of the sound fields generated by L  

independent combination of loudspeaker array 

modes nv .  

What has been said for the loudspeaker array can also 
be proved for the microphone array. It is possible to 

define an orthogonal set of Q  vectors { }QC∈mu , 

called microphone array modes, such that each 
microphone vector p can be expressed as 

1

1

Q

m

Q

mq q
q

u p

=

=

=

=

∑

∑

m m

m

p u p u

u p
         (13 ) 

This result is less intuitive than the loudspeaker case: 
the sampled version of the sound field ( )p x  can be 

expressed as the linear combination of Q  independent 
microphone array modes. 

If two matrices V  and U  are created by putting side 

by side all the column vectors nv  and nu respectively, 

then it is possible to rewrite equation (12) and (13) in a 
matrix formulation 

       ln ln

qm qm

V v

U u

= =

= =

H

H

a VV a

p UU p         
         (14 ) 

It is easy to see that matrix V  and U are unitary, that 
is  

       H
L

H
Q

VV = I

UU = I          
      (15 ) 
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where LI  is the L L×  identity matrix. As a simple 

example of array modes, the very basic case of the 
system composed of two loudspeakers and two 
omnidirectional microphones arranged as in Figure 1 is 
presented. The canonical bases for the loudspeaker and 
microphone array are respectively 

[ ] [ ]
[ ] [ ]
1 0      0 1  

1 0      0 1  

, ,

, ,

1 2

1 2

a = a =

p = p =         
      (16 ) 

It is possible to define one loudspeaker array mode 1v  

as the combination of the two loudspeakers operating in 

phase and another mode 2v , orthogonal to 1v , as the 

combination of the two loudspeakers operating in 
opposition of phase, that is 

1 1 1 1    2 2 2 2, ,⎡ ⎤ ⎡ ⎤−
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦1 2v = v =      (17 ) 

It is easy to see the orthonormality relation 

1=1 1 2 2v v = v v and 0=1 2 2 1v v = v v . 

In a similar way one can define two microphone array 
modes as the microphone coefficients being in 
quadrature, that is 

1 1 1 1  2 2 2 2, j j ,⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦1 2u = u =      (18 ) 

Again, the orthonormality relation (11) is verified. 

 

Figure 1: diagrammatic representation of the two-
channels system 

2.2. Singular Value Decomposition 

It is possible to define the matrix HH H , that is the 
product of the adjoint matrix of the propagation matrix 
times the propagation matrix. This matrix is self-adjoint, 
meaning that it is equal to its Hermitian transpose as 

( ) =
HH HH H H H . For that reason, HH H  is a 

normal matrix and the spectral theorem can be applied 
to it [11]. This implies that L orthonormal eigenvectors 

nv and L  (not necessarily distinct) real eigenvalues 
2 0nσ ≥  exist such that  

2
nσ=H

n nH Hv v          (19 ) 

This means that the spectral decomposition of the self-

adjoint operator HH H  identifies L  loudspeaker array 

modes nv , as defined in (11), which represent a 

complete orthonormal basis for CL . It is important to 

emphasize that, even if the operator HH H  transform a 
loudspeaker vector into another loudspeaker vector, the 

loudspeaker array modes nv and the eigenvalues 
2

nσ depend not only on the loudspeaker arrangement 

and characteristic but also on the microphone array. It is 
now possible to apply the propagation matrix to each 

array mode corresponding to non-zero 2
nσ  obtaining 

 nσ= =n n nHv u u%          (20 ) 

The expression of the vector nu% as a product of a vector 

nu  times a scalar nσ is due to the fact that the vectors 

nu are mutually orthogonal and of unitary norm. This 

can be proved considering the propriety of the adjoint 
operator [11] 

= H
n m n mHv v v H v          (21 ) 

From this and considering (11) and (20) it follows that 

D 

D d 

d 

R1 

R2 

L 
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2

1

1
n m

n m

m
nm

n m

σ σ

σ σ
σ δ
σ σ

= =

= =

=

n m n m

H
n m

n m

u u Hv Hv

v H Hv

v v

         (22 ) 

This means that the loudspeaker array modes { }nv can 

generate a set of orthogonal microphone array modes 

{ }nu . In general { }nu  is not a complete basis for 

CQ , as the complex subspace of CQ   spanned by the 
microphones array modes generated by (20), 

{ }span nu , has dimension R Q≤ , corresponding to 

the rank of the propagation matrix.  However, it is 
possible to create other Q R− microphone array modes 

,....,⎡ ⎤⎣ ⎦R+1 Qu u mutually orthogonal and orthogonal to 

{ }span nu  such that the set  { } ,....,⎡ ⎤⊕ ⎣ ⎦n R+1 Qu u u  

is a complete base of CQ . Because of the described 
results, each microphone vector and loudspeaker vector 
can be represented as a combination of microphone 
array modes and loudspeaker array modes as in (14). 

The values nσ  are called singular values of H  and the 

vectors nu  and nv  are respectively the left and right 

singular vectors of H . Letting ( )min ,T Q L= . It is 

possible to create a Q L× matrix Σ  consisting of a 

diagonal matrix of dimension T T× ,whose elements 

are the singular values nσ  ordered in decreasing order, 

and Q L−  extra columns or rows, which contain only 

zeros. It is then easy to show that  

HV = UΣ  (23 ) 

and, as a consequence of (15) 

HH = UΣV  (24 ) 

This important result represents the Singular Value 
Decomposition of the propagation matrix. Furthermore, 

it can be shown that the pseudo-inverse matrix  +H  can 
be simply expressed as 

+ + HH = VΣ U  (25 ) 

where the matrix +
Σ is computed by transposing Σ and 

substituting each non zero element with its reciprocal.  

2.3. Meaning of the Singular Value 
Decomposition  

It is interesting at this point to understand the meaning 
of the singular value decomposition of the propagation 
operator in terms of the array modes, and to show how it 
is related to the study of the ill-conditioning of the 

problem. It is useful to split both CL  and CQ  in two 
subspaces. The subspace spanned by the loudspeaker 

array modes  nv  corresponding to non-zero singular 

values nσ  contains all the loudspeaker modes that are 

observable by the microphone array. On the other hand, 
the subspace spanned by the loudspeaker modes 
corresponding to zero singular values is the null space 

of the propagation matrix, ( )HN , and represents the 

loudspeaker array modes that are not observable by the 

microphone array. The subspace of  CQ  spanned by the 
microphone array modes generated by (20) is the range 
of the propagation matrix, ( )HR , and represents the 

microphone array modes that can be reconstructed by 
the loudspeaker array. Its orthogonal complement, 

spanned by ,....,⎡ ⎤⎣ ⎦R+1 Qu u , represents the microphone 

array modes that can not be reconstructed by the 
loudspeaker array. 

It is possible to analyse separately two cases: 
R Q L= <  and R L Q= < . In the first case, 

corresponding to a number of loudspeakers larger then 
the number of microphones, matrix Σ  has the form 

0

0

σ

σ
×

1

Q L

Q

0 0

Σ =

0 0

L

O M O M

L

 (26 ) 

It can be seen that ( ) C= QHR  and all microphone 

array modes can be reconstructed. ( )HN has 
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dimension L Q− . This means that there are some 

loudspeaker array modes that do not actively contribute 
to the minimization problem (8), and as a consequence 
even if a large amount of energy is generated by the 
loudspeaker array operating in one mode that belongs to 
the null space of the propagation matrix, the 
microphone array will not detect any energy. It is easy 
to verify that, in this case, the solution (9) implies that 

the loudspeaker vector 0a  is such that it does not 

activate any of these modes and hence minimise the 
amount of energy required to reconstruct the desired 
microphone array modes. From a geometrical point of 
view, the least squares method (9) always defines a 

solution 0a  that is perpendicular to ( )HN  and 

therefore lies on the orthogonal complement of 

( )HN  to CL . Any other solution   a' : p = Ha'  

having a projection on ( )HN  would have a squared 

norm  
2 2

0a' > a  

In the case that R L Q= < , when there are more 

microphones than loudspeakers, matrix Σ  has the form 

σ

σ
×

1

L
Q L

0

0
Σ =

0 0

0 0

O

L

M O M

L

 (27 ) 

It can be observed that { }( ) 0=HN and that there 

are some microphone array modes that can not be 
reconstructed by the loudspeaker array. This problem is 
ill posed, as the exact solution can not always be found. 
In this case the least squares solution (9) generates an 

orthogonal projection �p of p on ( )HR , and then 

finds an loudspeaker vector 0a  that reconstructs that 

projection. The root mean square error �p - p is the 

norm of the component of p perpendicular to ( )HR . 

In other words, the least squares solution automatically 
finds a solution that reconstructs the array modes that 
can be reconstructed by the loudspeaker array and 
neglects the other modes. 

It is really important to point out that in both the cases 
described the singular value decomposition defines a 
one to one relation between each microphone modes  

( )∈nu HR  and the loudspeaker array mode 

( )∉nv HN from which it is generated (if the 

multiplicity of the corresponding singular value is 
unitary). More intuitively, the reconstruction of the 

microphone array mode ( )∈nu HR depends on one 

and only one loudspeaker array mode. Furthermore, the 
corresponding modal amplification is given by the 
corresponding singular value, which is to say that if the 

loudspeaker array is operating in the mode nu  and 

1=a , then it can be easily shown that the 

microphone array is detecting only the mode nv  and 

nσ=p . This important relation derives directly from 

(25) and implies that some loudspeaker array modes are 
seen to be more efficient than others by the microphone 
array, and the measure of the efficiency is expressed by 
the corresponding singular values. It is important to 
make clear that the loudspeaker array modes are 
considered to be efficient or inefficient in respect to 
what can be detected by the microphone array, but 
nothing is argued about the effect of each loudspeaker 
array mode on the reconstructed sound field � ( )p x . 
Considering the inverse problem (9), it can be argued 
that some microphone array modes require more effort 
to be reconstructed than others. In more detail, if a 
microphone array mode is related to an inefficient 
loudspeaker array mode, then its reconstruction requires 

a large amount of energy, proportional to   21 nσ . In 

the limit that nσ  is very close to 0, then an almost 

infinite amount of energy is required by the loudspeaker 
array.  The ratio between the largest and the smallest 
singular value of H  is the condition number of the 
propagation matrix and is a good index of the 
conditioning of the matrix. In a more intuitive sense, if 
some loudspeaker array modes are severely less 
efficient than others, then the problem is ill-posed and 
the presence of a little noise in the microphone signals 
or little errors in the estimation of the propagation 
matrix can have devastating effects when attempting the 
reconstruction due to the �explosion� of the modes with 
low efficiency.  

In a geometric sense, the singular value decomposition 

means that a hyper-sphere of unitary radius in CL  is 
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mapped to a hyper-ellipse in CQ , having its principal 

axis of  length nσ directed as the eigenvectors nu . The 

more the hyper-ellipse looks like a sphere, the more 
robust is the system.  

In order to regularise an ill-posed problem, one could 
deliberately decide not to attempt the reconstruction of 
the microphone array modes which relate to non 
observable loudspeaker array modes. This technique is 
known as truncated singular value decomposition [9,10] 
and implies that the smaller singular values are 
converted into zero and hence not inverted in the 

computation of +
Σ .  Alternatively, it is possible to limit 

the total energy by restricting the allowed value of a  to 

the interior of a hyper-sphere in CL of certain radius 
[10], with the direct implication that the range of the 
propagator is restricted to the interior of a hyper-ellipse 

defined inCQ . A further possibility is represented by 
the Tikhonov regularization. This method consists in 

adding a small quantity β to all singular values nσ .  It 

can be shown [9,10] that the Tikhonov regularization 
method implies the trade off between the correct 
reconstruction of the sound field and a limit on the total 
energy of the signals driving the loudspeakers.  

3. EXAMPLES 

3.1. Two channel system 

In order to give a better understanding of the presented 
results, it is useful to study the reconstruction problem 
in the simple case represented by Figure 1. In this 
example, the electro acoustic transfer functions between 
each loudspeaker and each microphone constituting the 
propagation matrix are assumed to be free field Green 
functions of the form 

 
( )exp

4
ql

jk
H

π

−
=

q l

q l

x - y

x - y
 (28 ) 

Observing Figure 1, it can be easily shown that the 
propagation matrix is  

1 2

1 2

2 1

2 1

exp( ) exp( )

4 4

exp( ) exp( )

4 4

jkR jkR

R R

jkR jkR

R R

π π

π π

− −

=
− −

H  (29 ) 

The Singular Value Decomposition of H  defines two 

loudspeaker array modes 1v and 2v  of the form 

expressed by (17), that is in one mode the loudspeakers 
are operating in-phase and in the other mode in 
opposition of phase. Numerical simulations show that 
the microphone array modes are such that the 

microphone coefficients defining 1u are in phase, while 

those defining 2u are in opposition of phase.  

 

Figure 2 : singular values of the two-channel system 

 Figure 2 shows how the singular values associated with 

1v (blue line) and 2v  (red line) vary as a function of 

the distance between the two microphones and for a 
fixed arrangement of the loudspeakers. It can be 
observed that when the two microphones are closely 

spaced, the first loudspeaker array mode 1v  can be well 

observed by the microphone array, while the second 
mode is not. This implies that the reconstruction of the 

microphone array mode 2u  is more �problematic� than 

the reconstruction of 1u  when the microphones are 

close together. In these circumstances, matrix H  is ill-
conditioned. In the extreme case when the two 
microphones are coincident, the singular value 



Fazi and Nelson  ill-conditioning in Sound Field Reconstruction
 

AES 123rd Convention, New York, NY, USA, 2007 October 5�8 

Page 9 of 12 

associated with 2v  approaches 0 , and the propagation 

matrix becomes singular. This means that the 

loudspeaker array mode ( )∈2v HN , and therefore 

can not be observed by the microphone array. This has 
the intuitive consequence that it is impossible to create 
two microphone coefficients in opposition of phase 
when the two microphones are in the same position. 
When the distance between the microphones is 

increased, the singular value associated with 2v  grows 

while the other singular value decreases. At a certain 
microphone distance the two singular values coincide, 
and if the distance between the microphones is 

increased, the array mode 1v becomes less observable 

than 2v and, as a consequence, the reconstruction of the 

microphone array mode 1u requires more energy than 

the reconstruction of 2u . 

3.2. Multi-channel system 

The reconstruction of a sound field can be in general 
attempted using a large number of loudspeakers and 
microphones. In the following example, the numerical 
simulation of the reconstruction of a sound field using a 
system constituted by 81 loudspeakers and 81 
omnidirectional microphones is illustrated. The 
loudspeakers and the microphones are arranged almost 
regularly (sphere packing [12]) over the surface of two 

concentric spheres of radius LR  and MR  respectively, 

and L MR R> . As in the previous example, the 

elements of the propagation matrix H  are free field 
Green functions. The singular value decomposition is 
applied to the propagation matrix H  in order to analyse 
the stability of the system. 

If the sound field ( )p x  is square-integrable inΩ , then 

it possible to express ( )p x  by the generalized Fourier 
series [13 ] 

( ) ( )n n
n

p bψ
+∞

=−∞

= ∑x x           (30 ) 

Where the set of ( )nψ x represents a complete set of 

orthonormal functions forΩ  , that is [11]   

n m nmψ ψ δ=           (31 ) 

and the series coefficients are computed by 

( ) ( ) (n n nb p p dψ ψ
Ω

= = Ω∫ x x x)           (32 ) 

A useful example of generalized Fourier series is 
represented by the spherical harmonics expansion, 
sometimes also called the Fourier-Bessel series. It can 
be proved [14] that the sound field in an interior, source 
free region Ω  can be represented using the following 
expression 

0

�( ) ( ) ( )
n

m
n n nm

n m n

p j k Y b
∞

= =−

=∑ ∑x x x           (33 ) 

The terms nmb are the coefficients of the series, ( )nj ⋅ is 

the spherical Bessel function of order n , �x = x x  

and ( )m
nY ⋅  is a spherical harmonic as defined in [14].  

It has been shown [15] that the singular value 
decomposition of the propagation matrix can be 
computed analytically in the case of spherical 
loudspeaker and microphone arrays, like the ones 
described, and when the number of transducers tends to 
infinite. This result holds with good approximation 
when the arrays are constituted by a large but finite 
number of transducers. In more detail, both the 
microphone array modes and the loudspeaker array 
modes correspond to sampled spherical harmonics, 
while the singular values are such that 

(2)( ) ( )
nn n M Lk j kR h kRσ =           (34 ) 

where (2) ( )nh ⋅ is the Hankel function of the second kind 

of order n [14]. This important result gives a very good 
insight into the analysis of the conditioning of the 
propagation matrix, as it explicitly expresses relates the 
radius of the transducer arrays to the singular values and 
consequently the condition number of the propagation 
matrix.  
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Figure 3: multi-channel system - sound field generated 
by the first loudspeaker array mode 

 

Figure 4: multi-channel system - sound field generated 
by the first loudspeaker array mode 

 

Figure 3 and Figure 4 show the horizontal cross-section 
of the sound field generated by the first two loudspeaker 

array modes 1v  and 2v  obtained by a numerical 

computation of the singular value decomposition of the 
propagation matrix. The black dots represent the 
loudspeakers, while the red dots represent the 
microphones. Considering equation (34), it can be 
observed that in the interior of the loudspeaker array the 
sound fields in Figure 3 and Figure 4 can be well 
represented by the product of one spherical harmonic 
and one Bessel function ( 0n = in Figure 3 and 1n = in 
Figure 4). 

 

Figure 5: multi-channel system - condition number of 
the propagation matrix 

 

 

Figure 6: spherical Bessel Functions 

Figure 5 shows how the condition number of the 
propagation matrix varies as a function of the radius of 
the microphone array and for fixed wave number 

9.24k =  (corresponding to 500 Hz ) and 

loudspeaker array radius 2 LR m= . Figure 6 plots the 

spherical Bessel functions of the first 8 orders. It is easy 
to observe the relation between the condition number 
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and the behavior of the Bessel functions: the condition 
number is very large close to the origin, as all the Bessel 
functions of order 0n > are very small close to the 
origin while the Bessel function of order 0n =  is 
unitary at the origin. This implies that only the first 

loudspeaker array mode 1v  is observable if all the 

microphones are located at the origin, and as a 

consequence only the first microphone array vector 1u , 

corresponding to all microphone coefficients being in-
phase, can be reconstructed. A similar result was 
obtained in the previous 2-channel system example, and 
shows that the propagation matrix becomes ill-
conditioned when the microphones are closely spaced. 
This result holds if the microphones are considered to 
be omnidirectional, but this might not be the case for 
microphones with different directivity, as shown by [3].   

Figure 5 also shows the presence of some peaks in the 
condition number, the first of which occurs at 

0.34 MR m=  and the second at 0.68 MR m= . 

Observing Figure 6, it can be noticed that, for a given 
wave number k , the spherical Bessel functions of order 

0n =  is zero at 0.34 MR m=  and at 

0.68 MR m= . These distances correspond to the 

radius of the nodal circles represented in Figure 3. As a 
consequence, if the microphone array radius is one of 
those two values, that is all microphones are located on 
a nodal surface of the sound field generated by the first 

loudspeaker array mode 1v , the singular value 

associated to 1u  is zero and the associated loudspeaker 

array mode belongs to the null space of the propagation 
matrix.   

4. CONCLUSIONS 

The theory of the sound field reconstruction based on 
the minimization of the least squared error between the 
original and reconstructed sound field has been 
presented and discussed. The concept of array modes 
has been introduced and the singular value 
decomposition has been first defined in a mathematical 
sense and its application to a multi-channel system has 
been described. The practical implication derived from 
ill-conditioning of the propagation matrix have been 
discussed in the detail and clarified with two examples. 
In the case of the presented multi-channel system, the 
condition number has been shown to be related to the 

microphone array radius. It has been demonstrated that 
ill-conditioning of the propagation matrix can occur if 
the microphones are closely spaced or if they all lie in 
the nodal points of the sound field generated by one 
loudspeaker array mode. 
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