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ABSTRACT

Higher order Ambisonics (HOA) is a spatial audio reproduction technique aiming at physically synthesizing
a desired sound field. It is based on the expansion of sound fields into orthogonal basis functions (spatial
harmonics). In this paper we present an approach to the two-dimensional reproduction of virtual sound
sources at arbitrary positions having arbitrary radiation directivities. The approach is based on the descrip-
tion of the directional properties of a source by a set of circular harmonics. Consequences of truncation of
the circular harmonics expansion and spatial sampling as occurring in typical installations of HOA systems
due to the employment of a finite number of loudspeakers are discussed. We illustrate our findings with
simulated reproduction results.

1. INTRODUCTION

Higher order Ambisonics (HOA) is a sound repro-
duction technique that utilizes a large number of
loudspeakers to physically recreate a sound field in
a specific listening area. This desired sound field is
typically described via its spatial harmonics expan-
sion coefficients [5]. These can be yielded either from
appropriate microphone recording techniques which
utilize a Fourier series representation of the recorded
signals [7] or virtual sound scenes may be composed
of a number of virtual sound sources whose spatial
harmonics expansion coefficients are derived from

analytical source models. In this paper we will con-
centrate on the latter case. In the context of wave
field synthesis, another physically based audio re-
production technique, the rendering of analytically
described virtual scenes is termed model based ren-
dering complementary to data based rendering when
the rendered scene has been recorded [10].
So far virtual sources have typically been modeled
as emitting plane or spherical waves whereby some
further extensions exist (confer to section 2). This
circumstance does not exploit all potentials of HOA
since directional properties of sound sources are
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known to contribute to immersion and presence of a
sound scene.
Although the basic principle of HOA directly sug-
gests the coding of the directional properties of vir-
tual sound sources via spatial harmonics, as we pro-
pose it, we are not aware of an according explicit
description in the literature. For wave field synthe-
sis a similar approach has recently been presented
by the authors [1].
Our approach focusses on two-dimensional repro-
duction. However, an extension to three dimensions
is straightforward.

1.1. Nomenclature

In the remainder of this paper we will assume that
the near field correction is included in the Ambison-
ics approach as described in section 2. Thus, when
we speak of Ambisonics we implicitly mean near field
corrected higher order Ambisonics (NFC-HOA) ex-
cept where otherwise stated.
The following conventions are used: For scalar vari-
ables lower case denotes the time domain, upper case
the temporal frequency domain. Vectors are denoted
by lower case boldface. The descriptions in this pa-
per are restricted to two-dimensional reproduction
which means in this context that an observed sound
field is independent from one of the spatial coor-
dinates, e.g. P (x, y, z, ω) = P (x, y, ω). The two-
dimensional position vector in Cartesian coordinates
is given as x = [x y]T . The Cartesian coordinates
are linked to the polar coordinates via x = r cosα
and y = r sin α. The acoustic wavenumber is de-
noted by k. It is related to the temporal frequency
by k =

∣
∣ω

c

∣
∣ with ω being the radial frequency and c

the speed of sound.
Outgoing monochromatic plane and cylindrical
waves are denoted by e−j ω

c
(x cos θpw+y sin θpw) and

H
(2)
0 (ω

c
r) respectively, with θpw being the propaga-

tion direction of the plane wave.

2. THE AMBISONICS APPROACH

In the typical HOA approach both the desired sound
field as well as the sound fields emitted by the loud-
speakers are expanded into Fourier series with re-
spect to the positional angle [4]. This results in an
equation system that is solved for the optimal loud-
speaker driving signals that drive the loudspeakers
such that their superposed sound fields best approx-
imate the desired one in a given sense, e.g. least

square error (LSE). The term Ambisonics tradition-
ally refers to first order Ambisonics, thus involving a
tetrahedron of loudspeakers. ”First order” because
this setup is restricted to the reproduction of zeroth
and first order spatial harmonics only [4]. Setups
involving more loudspeakers and thus providing the
ability to reproduce also harmonics of a higher order
than one are termed HOA.
In the early years the Ambisonics community has fo-
cussed on plane waves as analytic sound field model
both for the virtual sources and the loudspeakers.
This framework heavily restricts the versatility of
HOA. Although the reproduction over an extended
listening area is targeted the reproduction quality
deteriorates heavily as the listener departs from the
central listening spot. Even there the curvature of
the synthesized wave front deviates strongly from
the desired one [2].
Recent extensions have included a compensation for
the properties of the sound field of a finite distance
source for both virtual sources and loudspeakers.
This highly ameliorated the reproduction quality es-
pecially for off-center listening [2]. These extensions
are typically termed near field corrections and the
resulting system consequently near field corrected
HOA (NFC-HOA). The near field correction enables
the ability to synthesize a desired wave front over
an extended listening area. Contrary to wave field
synthesis this listening area becomes smaller with
higher frequency given a certain tolerated deviation.
NFC-HOA furthermore enables the rendering of vir-
tual spherical waves [2]. Thus, it makes it possible
to also assign a distance to a virtual sound source
and not only a direction. The rendering of simple
directive sources is addressed in [8].
The Ambisonics approach is usually divided into an
encoding and a decoding stage. In the former the
spatial information about the sound field to be re-
produced, i.e. its spatial spectrum, is reduced by lim-
iting the spatial bandwidth. In this framework (the
so-called ’Ambisonics’ domain) the signals can then
be more or less efficiently stored or transmitted in-
dependently from the loudspeaker layout.
In the decoding stage the ’Ambisonics’ signals are
then adopted to the actual loudspeaker layout to be
rendered. Apart from the inconvenience of an ad-
ditional intermediate processing stage, the decom-
position of the Ambisonics approach into en- and
decoding brings another disadvantage. It is the fact
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that the filters necessary for the near field correction
are unstable if only the encoding stage is considered.
Although workarounds are given in [2] we consider
this decomposition as cumbersome in the context of
this paper. For ease of illustration we will thus skip
the encoding/decoding procedure and directly de-
rive the loudspeaker driving signals from the initial
virtual sound field description. We will follow the
procedure outlined in [10]. Similar to the terminol-
ogy used in wave field synthesis we will rather speak
of a driving function than of an Ambisonics signal.
To illustrate Ambisonics it is typically assumed that
the secondary sources are located on a sphere around
the listener residing in the center, since a closed so-
lution for the loudspeaker driving functions can be
derived for this setup. Note that also irregular se-
tups can be handled [7].
In the two-dimensional reproduction scenario con-
sidered here, the secondary sources are located on a
circle. For convenience, we assume an evenly spaced
distribution of N loudspeakers around the origin of
the coordinate system as depicted in Fig. 1. The
reproduced wave field is given as

P (x, ω) =

N−1∑

n=0

D(αn, R, ω) · V (x,xn, ω) , (1)

where D(αn, R, ω) denotes the driving signal for
the n-th secondary source situated at xn = R ·
[cosαn sin αn]T and V (x,xn, ω) its spectrum.
αn = n 2π

N
. Note that the temporal source spec-

trum is inherently included in the driving functions
D(αn, R, ω). These are derived by setting the left
hand side of (1) to the desired wave field and solving
the resulting equation with respect to D(αn, R, ω) as
it is performed in section 3.1.

3. DERIVATION OF THE DRIVING FUNC-

TION

3.1. Mode-Matching Approach

In the context of this paper we define the directivity
of a sound source as its temporal impulse response,
i.e. the sound field created by the source when is it
fed by a temporal impulse.
Any arbitrary two-dimensional virtual source sound
field S(x, ω) can be decomposed into circular har-
monics, so can the above defined directiviy. This
decomposition is the two-dimensional analogon of

α

αs

α′
αn=5

R

x

xs

x

y

y′

x′

r′

r

rs

Fig. 1: The coordinate systems used in this paper.
The dots • denote the positions of the secondary
sources.

the cylindrical harmonics expansion [15]. Its fa-
vorable properties in our context are: (a) It pro-
vides an orthogonal expansion of the virtual source
field, (b) rotations of the virtual source can be sim-
ply expressed by phase shifts, and (c) the expansion
coefficients can be easily derived from the far-field
(plane wave) characteristics of the virtual source via
a Fourier transformation [11].
For a virtual source located at xs this decomposition
yields

S(x, ω) = Ŝ(ω)×

×
∞∑

η=−∞
S̆(2)(η, ω)H(2)

η (
ω

c
r′)ejηα′

, (2)

where Ŝ(ω) denotes the temporal source spectrum

(i.e. the input signal) and H
(2)
η the η-th order Han-

kel function of second kind. The coefficients S̆(2)

are termed circular harmonics expansion coefficients.
The coordinates r′ = r′(x) and α′ = α′(x) belong
to a local coordinate system whose origin coincides
with the source’s location xs and whose axes are par-
allel to the global x- and y-axes (cf. to figure 1). The
infinite sum on the right hand side of (2) fully de-
scribes the source’s directivity. Note that Ŝ(ω) and
S̆(2) may also be combined. But for ease of illustra-
tion we keep them separated.
However, in order to apply the Ambisonics approach
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introduced by (1) we seek for an expansion of the
source’s directivity at the origin of the global coor-
dinate system, thus an expansion in r and α. We
therefore apply the addition theorem for cylinder
harmonics [13] to translate the expansion from (2)
to our global origin:

S(x, ω) = Ŝ(ω) ·
∞∑

η=−∞
S̆(2)(η, ω)×

×
∞∑

ν=−∞
Jν(

ω

c
r)H

(2)
ν−η(

ω

c
rs)e

−j(ν−η)αsejνα . (3)

Note that our nomenclature and definition of incom-
ing and outgoing waves (confer to section 1.1) alters
the theorem given in [13] to the form being evident
in (3). Note also that (3) is only valid for r < rs.
Incorporating (3) as desired sound field into (1) and
modeling the loudspeakers as line sources, i.e.

V (x,xn, ω) =
j

4
H

(2)
0 (

ω

c
|x − xn|) , (4)

and expanding H
(2)
0 (ω

c
|x−xn|) about the global ori-

gin via the addition theorem applied in (3) leads to
the relationship

−4j·Ŝ(ω)·
∞∑

η=−∞
S̆(2)(η, ω)

H
(2)
ν−η(ω

c
rs)

H
(2)
ν (ω

c
R)

e−j(ν−η)αs =

=

N−1∑

n=0

D(αn, R, ω)e−jνn 2π

N

︸ ︷︷ ︸

=DFTN{D(αn,R,ω)}

∀ ν . (5)

Note that (5) essentially demonstrates the so-called
mode matching approach commonly applied in sim-
ilar problems [7]. The right hand side of (5) can be
interpreted as a discrete Fourier series (DFS) expan-
sion of period N with respect to n. It may also be
interpreted as a discrete Fourier transform (DFT)
of length N with respect to n. The difference be-
tween both alternatives is the definition for values
of n outside the interval [0; N − 1]. The DFS ex-
pansion assumes the signal to be periodic whereas
the DFT assumes it to be zero for n ∋ [0; N − 1]
[9]. In our case n will never exceed [0; N − 1] so we
do not need to bother and may choose the DFT for
convenience since we assume more familiarity of the
reader with DFT rather than with DFS.

Thus, to yield D(αn, R, ω) we need to perform an
inverse DFT (IDFT) with respect to ν on both sides
of (5) reading

D(αn, R, ω) = −4j · IDFTN

{ ∞∑

η=−∞
S̆(2)(η, ω) ×

× j−ν
H

(2)
ν−η(ω

c
rs)

H
(2)
ν (ω

c
R)

e−j(ν−η)αs

}

· Ŝ(ω) . (6)

The factor j−ν was introduced due to the fact that
the inverse DFT in (6) has to be performed symmet-
rically from ν = −N−1

2 to ν = N−1
2 for odd N and

accordingly for even N , and not from 0 to N − 1
like the forward DFT in (5) [9]. Due to the repeated
application of the addition theorem for cylinder har-
monics (confer to (3)) equation (6) is only valid for
r < r<, whereby r< is the smaller of rs and R.
Note that although all equations above employ the
equality sign, this does not imply that the repro-
duced sound field is equal to the desired (virtual)
one. Confer to section 4 for a further discussion.
To approximate Hankel functions via expressions
which can be efficiently implemented via simple fil-
tering and delaying of a signal, the large argument
approximation for the Hankel function is commonly
applied. One is now tempted to pose the restriction
on the position xs of the virtual source to be far
enough from the origin so that this large argument
approximation for the Hankel function holds. But
due to the fact that in (6) the dependent variable
is the order of the Hankel functions and not the ar-
gument it is not admissible. Doing so will result in
a plane wave carrying along a single component of
the directivity of the virtual source, the one point-
ing towards the reference point (i.e. the origin of the
coordinate system in our case).

3.2. Sound field manipulations

Apart from generally changing the source’s directiv-
ity three different elementary manipulations of the
virtual sound field are possible: (a) rotation of the
source around the origin of the coordinate system,
(b) translations of the sound source radially with re-
spect to the origin of the coordinate system, and (c)
rotation of the sound source about its location.
Manipulations in terms of (a) simply add a linear
phase value to the argument of the IDFT in (6), thus
continuously rotate the loudspeakers signals around
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the array. For manipulations in terms of (b) the ar-
gument of the IDFT in (6) has to be evaluated. Ro-
tations of the virtual source about its location (case
(c)) can be achieved by introducing the complex fac-
tor e−jηαrot into the expansion in (2), thus adding a
constant phase value to the argument of the IDFT
in (6). αrot denotes the angle by which the source is
rotated.

4. TRUNCATION OF THE HARMONIC EX-

PANSION AND SPATIAL SAMPLING

The transition from equation (5) to (6) truncates
the reproducible spatial bandwidth to modes from
ν = −N−1

2 to ν = N−1
2 for odd N and accordingly

for even N . Generally, a virtual sound field will
have energy outside this interval. This truncation
obviously produces spatial artefacts. However,
extending the range of reproduced spatial modes
potentially reduces these artefacts.
To quantify the truncation error the normalized
truncation error was introduced in [14] as the ratio
of the reproduction error and the desired sound
field. The reproduction error is the difference of
the desired sound field and the actual reproduced
sound field. Both numerator and denominator
are integrated over the unit circle. In [14] results
are given for a sample plane wave, in [7] for a
sample spherical wave. Both examples show similar
qualitative and even quantitative reduction of the
error with extension of the modal bandwidth.
Similar tendencies can be assumed for arbitrary
virtual sources.
As outlined in [6] there are strong indications that
there exists a threshold above which only little
improvement is achieved for a given listening area
and frequency when the range N of rendered spatial
modes is further extended.

Additionally to the truncation error artefacts due to
the sampled nature of the reproduced sound field
have to be expected. To investigate the sampling of
the reproduced sound field due to the employment
of a finite number of secondary source we will revisit
the basic Ambisonics approach and reformulate it for
a continuous secondary source distribution on which
sampling is performed.
With this continuity assumption of the secondary

source distribuion equation (1) reads

P (x, ω) =

2π∫

0

D(α, R, ω) · V (x,xα, ω)dα . (7)

Performing the steps outlined in section 3.1 we arrive
at the continuous equivalent of (5) reading

−4j·Ŝ(ω)·
∞∑

η=−∞
S̆(2)(η, ω)

H
(2)
ν−η(ω

c
rs)

H
(2)
ν (ω

c
R)

e−j(ν−η)αs =

=

2π∫

0

D(α, R, ω)e−jναdα

︸ ︷︷ ︸

=2π·D̊(ν,R,ω)

∀ ν . (8)

The right hand side of equation can be interpreted
as a continuous inverse Fourier series (IFS) expan-
sion of D(α, R, ω) yielding the Fourier series coeffi-
cients D̊(ν, R, ω) [11]. We model the sampling of the
continuous driving function D(α, R, ω) by a multi-
plication with a polar pulse train as

Ds(α, R, ω) = D(α, R, ω) · ⊥⊥⊥(α) =

= D(α, R, ω) ·
N−1∑

n=0

δ(α − n

N
2π) . (9)

The subscript s indicates sampling. It turns out that
this multiplication results in

D̊s(ν, R, ω) =

∞∑

n=−∞
D̊(ν + nN, R, ω) . (10)

Thus, the angular sampling results in repetitions of
the angular spectrum D̊(ν, R, ω). As discussed in
[11] these repetitions overlap and give rise to spatial
aliasing artefacts. In our case D̊(ν, R, ω) is given
by the left hand side of (8). It can be seen that
D̊(ν, R, ω) differs from zero at any frequency ω, at
any distance r from the origin, and for any order
ν. Thus, spatial aliasing can not be avoided since
the overlaps will always interfere. It is indeed such
that extending the range of reproduced orders ν
(i.e. increasing the number of loudspeakers) shifts
the significant values of the involved (higher order)
Hankel functions and thus the significant aliasing
artefacts to higher frequencies respectively to far-
ther distances from the coordinate origin. In the
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present case of directional sources the orders of the
involved Hankel functions are not only dependent
on the angular mode ν but also on the expansion
of the source’s directivity, i.e. on η (confer to equa-
tion (8)). Thus, it can be stated that the wider the
range of modes of which the source’s directivity is
composed of, the more lower order Hankel functions
are present at high angular modes ν. And conse-
quently, the wider the range of directivity modes
the lower the frequency respectively the closer the
distance to the coordinate origin is where significant
overlaps and thus spatial aliasing occur.
Note that the approach described in this paper pro-
vides potential to reduce spatial aliasing artefacts
since it allows for an arbitrary limitation of the spa-
tial bandwidth of the virtual sound field by limiting
the range of angular modes η of the expansion of the
source’s directivity (equation (2)). See also [12] for
a closer look.

5. DERIVATION OF A DESIRED DIRECTIV-

ITY’S EXPANSION COEFFICIENTS

In this section will briefly illustrate how the circular
expansion coefficients S̆(2)(η, ω) of a desired source
directivity can be derived from a given far-field di-
rectivity pattern. Similar to the circular harmonics
expansion presented in (2) any arbitrary sound field
may also be expanded into its plane wave compo-
nents. Applied on source fields this plane wave de-
composition (PWD) describes the far-field radiation
characteristics of the respective source.
A very intuitive manner of illustrating directivities
are polar plots. These are frequently used to illus-
trate the directivities of e.g. microphones and loud-
speakers and therefore many people are familiar with
them. Analytically spoken polar plots represent the
PWD of a directivity at a selected frequency by
showing the magnitude of the PWD over all angles
in a plane. To yield the circular expansion coeffi-
cients for a given PWD the following expression can
be used [11]:

S̆(2)(η, ω) =
k

8π2

2π∫

0

j−ηS̄(θ, ω)e−jηθdθ , (11)

whereby S̄(θ, ω) denotes the PWD of the source’s
directivity.
We will now illustrate the application of (11) via
a simple example. One of the elementary types of

directive sources is a dipole exhibiting a figure-of-
eight directivity. Its normalized polar plot is given
in figure 2.
When assuming far field conditions the frequency

  0.5
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Fig. 2: Normalized polar plot of the directivity of
a dipole.

response of a two-dimensional dipole is proportional
to 1/

√
k, whereby we assume k being dimensionless

for convenience. The PWD of the directivity reads
then

S̄
(2)
dipole(θ, ω) =

1√
k

cos θ . (12)

Inserting (12) into (11) and applying Euler’s identity

yields that S̆
(2)
dipole(η, ω) only differs from zero for η =

1 and η = −1, more exactly

S̆
(2)
dipole(η, ω) =







− j
√

k
8π

for η = 1
j
√

k
8π

for η = −1

0 elsewhere .

(13)

6. RESULTS

In this section we simulate the implementation of a
dipole as described by equations (12) and (13) to il-
lustrate the above derived observations.
Note that the infinite sum in (6) reduces to two com-
ponents in this case. The sound field of such a dipole
and the sound field of an Ambisonics system ren-
dering it are shown in figure 3(a) respectively 3(b).
Here, a circular array of 56 monopole sources and a
radius of 1.5 m is modeled. The geometrical param-
eters are chosen in accordance to the loudspeaker
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(a) Wave field ℜ{Pdipole(x, ω)} of a dipole situated at

xs = [0 − 2]T .

 

 

−2 −1 0 1 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2 −1

−0.5

0

0.5

1

x [m]

y
[m

]

(b) Wave field ℜ{PAmb(x, ω)} of an Ambisonics system
rendering the dipole from figure 3(a). The marks indicate
the positions of the secondary sources.

Fig. 3: Simulation results for a source outside the loudspeaker array. The sound fields are scaled to have
comparable levels. The values are clipped as indicated by the color bar.

system installed at the Usability Laboratory of the
Deutsche Telekom Laboratories.
The emitted signal is monochromatic with a fre-
quency of 1000 Hz. The marks in figure 3(b) indicate
the secondary sources. Outside the array where (6)
does not hold the two wave fields do not coincide
since the propagation direction of the sound fields
emitted by some of the loudspeakers does not co-
incide with that of the virtual source field. Inside
the array a good concordance can be seen. Figure 4
further illustrates this. It shows the ratio of the two
sound fields in logarithmic scale.
Note that figure 4 illustrates a fundamental differ-
ence of the capability of Ambisonics to render di-
rectional sources compared to wave field synthesis.
As outlined in [1] practical implementations of wave
field synthesis systems limit the reproducible spatial
fine structure of sound field such that e.g. zeros in
the directivity (as with dipoles) can not be rendered
properly. In the present case of Ambisonics spatial
aliasing and artefacts of truncation are also present
but so subtile that they can only be identified in the
vicinity of the loudspeakers in figure 4.
Note that it is also possible to render sources in-
side the listening area as illustrated in figure 5. In
that case rs is the limiting factor in equation (6)

which is then only valid for r < rs. Note that
the loudspeakers can exhibit extremely high levels.
This circumstance heavily restricts the applicabil-
ity since the proper interference of the loudspeaker
sound fields inside the valid listening area is very
sensitive towards variation of the loudspeaker char-
acteristics, their exact arrangement, and the acous-
tical properties of the reproduction room. This is
typical for Ambisonics synthesis of sources inside the
loudspeaker array [3].

7. CONCLUSIONS

The two-dimensional rendering of virtual sound
sources with arbitrary directivity in NFC-HOA has
been shown. The presented approach relies on the
expansion of the directive properties of the virtual
sound source into circular harmonics. A closed form
solution the loudspeaker driving signals for evenly
spaced circular arrays is provided. Further analysis
revealed that a wider range of circular expansion co-
efficients of the source’s directivity brings significant
spatial aliasing artefacts down to lower frequencies
respectively closer to the origin of the coordinate
system (the reference listening position). This is due
to the fact that the unavoidable overlaps in the an-
gular spectrum of the loudspeaker driving signals
cause interferences of lower order Hankel functions
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(a) Wave field ℜ{Pdipole(x, ω)} of a dipole situated at

xs = [0 − 1]T .
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(b) Wave field ℜ{PAmb(x, ω)} of an Ambisonics system
rendering the dipole from figure 5(a). The marks indicate
the positions of the secondary sources.

Fig. 5: Simulation results for a source inside the loudspeaker array. The sound fields are scaled to have
comparable levels. The values are clipped as indicated by the color bar.
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Fig. 4: Ratio of the two sound fields from figure 3 in
logarithmic scale. The marks indicate the positions
of the secondary sources. The values are clipped as
indicated by the color bar.

which have significant values at low frequencies re-
spectively close distances.
The two-dimensional descriptions in this paper are
primarily meant as a means to illustrate the under-
lying physical and mathematical principles. Two-
dimensional reproduction as outlined here is not

suitable for implementation since appropriate loud-
speakers (i.e. line sources) are hardly available. Al-
though equation (6) provides potential for opti-
mization of the computational complexity especially
when large numbers of loudspeakers and circular ex-
pansion coefficients are involved we will not focus on
this due to the above mentioned reasons.
We will rather concentrate on extending the theory
to three dimensions and apply optimizations for spe-
cial cases there (e.g. reproduction in a plane). Fur-
thermore, we will give more explicit insight into the
consequences of the sampled nature of the repro-
duced sound field which have been briefly discussed
in section 4.

8. REFERENCES

[1] Jens Ahrens and Sascha Spors. Implementation
of directional sources in wave field synthesis.
In IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics (WASPAA),
New Paltz, NY, October 21-24 2007.

[2] J. Daniel. Spatial sound encoding including
near field effect: Introducing distance coding fil-
ters and a viable, new ambisonic format. In 23rd
International Conference, May 23–25, Copen-

AES 123rd Convention, New York, NY, 2007 October 5–8

Page 8 of 9



Ahrens AND Spors Directional virtual sources in HOA

hagen, Denmark, 2003. Audio Engineering So-
ciety (AES).

[3] J. Daniel, R. Nicol, and S. Moreau. Further in-
vestigations of high order ambisonics and wave-
field synthesis for holophonic sound imaging. In
114th Convention, March 22-25, Amsterdam,
The Netherlands, 2003. Audio Engineering So-
ciety (AES).

[4] Michael A. Gerzon. With-heigth sound repro-
dution. Journal of the Audio Engineering Soci-
ety (JAES), 21:2–10, 1973.

[5] J.Daniel. Représentation de champs acous-
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