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ABSTRACT 
 
Higher Order Ambisonics have been increasingly investigated in the past years, and found promising as a rational, 
scalable and flexible way to encode, transmit and render 3D sound fields. Nevertheless, studies concerning virtual 
source imaging or natural 3D sound encoding mainly focussed on the directional encoding of plane waves, and 
neglected the near field effect of finite distance sources though it's present in any ordinary sound field.  
This paper highlights that with near field, the infinite bass-boost affecting ambisonic components makes the 
currently accepted format unviable. By introducing from the encoding stage a near field compensation of 
reproduction loudspeakers, a viable, modified ambisonic format is defined, distance-coding filters are designed, and 
higher order ambisonic recording and synthesis become practicable. 
 

1. INTRODUCTION 

The tasks of sound spatialisation 
Sound spatialisation aims at providing to the listener 
auditory sensations and information that are usually 
related to the sound propagation in environmental 
space. It addresses two complementary aspects. The 
first one is the environment acoustics ("room effect"), 
i.e. the way the waves radiated from sound sources 
are reflected and reverberated before reaching the 
listener: it provides information on the room size and 
the source distance, for example. The second aspect 
is the directional / spatial properties of such derived 
acoustic events (especially the first wave front and 
reflections): they allow the listener localising sound 
sources and feeling enveloped by the room effect. To 
reflect these aspects, a sound spatialisation system 
typically processes as follows. 
First, from the description of a virtual sound scene 
(sources and environment), a virtual acoustics 
processor computes the signals and the positional 
properties associated to elementary events (first wave 
front and reflections), and also a signal description of 
macroscopic events (diffuse reverberated field). In a 
second step, these signals are spatially encoded, i.e. 
processed with regard to their directional or spatial 
properties (Figure 1). This leads to a multi-channel, 
3D audio representation that can be conveyed then 

decoded for diffusion over loudspeakers or 
headphones. The present paper addresses the spatial 
encoding of virtual or even natural sound fields, on 
the basis of the ambisonic approach. 

 

Figure 1 General spatial encoding scheme of 
elementary (wave fronts) or macroscopic (diffuse 
field) components provided by a room effect 
processor 

Ambisonics among spatial encoding strategies 
Ambisonics is a very versatile approach for the 
spatial encoding and rendering of sound fields. It has 
known an increasing interest during the past years 
thanks to studies that have extended the theory (and 
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to a less extent, its application) from first to higher 
order, highlighting many advantages:  
• A rational encoding of spatial acoustic 

information, and moreover independent from the 
reproduction layout. 

• A flexible and scalable spatial sound 
representation: one can transform (e.g. rotate, 
see Figure 2) the sound field, and also adapt it to 
transmission constraints or reproduction 
capabilities by keeping only a subset of signals 
(variable spatial resolution). 

• A variable geometry rendering: a decoder can be 
suitably designed according to the loudspeaker 
array geometry, and also for binaural rendering 
over headphones. 

• A quite optimal way to achieve "holophonic" 
sound field reconstruction by means of a given 
number of loudspeakers, which makes Higher 
Order Ambisonics (HOA) comparable and even 
preferable to Wave Field Synthesis (WFS) in 
some conditions [1].  

Nevertheless, application of HOA is not as spread as 
it deserves, yet. One reason is that practical recording 
systems are still restricted to 1st order microphones, 
while HOA being basically thought as an amplitude 
panning technique dedicated to virtual sound 
imaging. The present paper transcends this common 
conception of ambisonic approach and potentialities, 
by developing a key improvement [1] that enables 
ambisonics to handle realistic or natural sound fields. 

From directional to positional encoding: near field 
effect as an essential distance feature 
Ambisonic directional encoding and decoding 
basically assumes that virtual sources as well as 
reproduction loudspeakers are in far field and radiate 
plane waves. But in natural sound fields there are 
always more or less near field sources and the wave 
front curvature depends on their distance. This 
curvature allows the listener perceiving the source 
distance when he moves in the sound field, 
independently from the cues given by room effect. 
Even for a still listener, the near field effect of close 
sources is perceptible through the emphasis of ILD 
(Interaural Level Difference).  
This paper first shows that the currently adopted 
HOA encoding format is unable to support near field, 
thus to represent natural sound fields with physically 
transmissible signals. Then a modified encoding 
scheme is introduced, which makes possible the 
synthesis and recording1 of any realistic 
phenomenon. This leads to the detailed description of 
                                                 
1 The paper on HOA microphones announced in [1] 
cannot be given at the present conference. 

distance coding filters, the illustration of a complete 
positional coding and rendering scheme, and finally 
the specifications of a new, viable HOA format. 

2. SUPPORTING NEAR FIELD MODELLING 

WITH HIGHER ORDER AMBISONICS 

2.1. Mathematical encoding formalism  

Spherical harmonic decomposition 
Ambisonic approach bases the sound field 
description on the spherical coordinate system 
(Figure 2). This way, it has the interesting property 
of providing an homogeneous description of 
directional information (azimuth θ and elevation δ ), 
while separating it from the distance information 
(radius r).  
 

 
Figure 2 Spherical coordinate system, with the 
three elementary rotation degrees. A point r  is 
described by radius r, azimuth θ  and elevation δ. 

The mathematical formalism comes from writing the 
wave equation (∆+k2)p=0 (with the wave number 
k=2π f/c) in the spherical coordinate system. This 
leads to the Fourier-Bessel series [2]: 
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Each term of "order" m associates radial, spherical 
Bessel function jm(kr), with angular functions 

),( δθσ
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where δq,q'=1 if q=q' and 0 otherwise (Kronecker 
symbol). The Pmn define the associated Legendre 
functions of degree m and order n, and mnP , their 
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"Schmidt semi-normalised" versions. The exponent 
tag (N3D) attached to functions Ymn

σ in (2) means that 
these are "3D-normalised" in the sense of a spherical 
scalar product [1, 3]. Other conventions with 
different weighting factors may also be used (see 3.1 
and 4.4). 

 

 

Figure 3 3D view (with respect to Figure 2) of 
spherical harmonics with usual designation of 
associated ambisonic components. 

Ambisonic sound field representation 

The spherical harmonic decomposition (1) exhibits 
frequency dependent coefficients Bmn

σ that fully 
represent the sound field within a sphere centred on 
the origin O, provided that there is no acoustic source 
within this sphere. Physically, these components 
represent the pressure field B00

+1 and its spatial 
derivatives or momentums of successive orders m at 
the reference point O. They also reflect the sound 
field propagation properties around this point [4].  

Spherical harmonic factors Bmn
σ are the frequency 

domain expression of what are called "ambisonic 
components". In practice, for spatial encoding, 
transmission and reproduction, one retains a limited 
set of components up to a given order M. Moreover, 
for most 2D (horizontal only) applications, this set 
may be restricted to "horizontal" components Bmn

σ 
(n=m). The higher the order M, the larger the sound 
field approximation around the reference point O 
(considered as the "listener" viewpoint), as further 
explained in [1]. 

Plane wave decomposition:  directional encoding 
Virtual source encoding often assumes that the 
source is far enough, so that its contribution can be 
approximated by a plane wave. As shown e.g. in [3], 
the spherical harmonic decomposition of a plane 
wave of incidence (θS, δS) conveying a signal S leads 
to the simple expression of ambisonic components: 
 . ( , )mn mn S SB S Yσ σ θ δ=  (3) 
Thus a far field source signal S is encoded by simply 
applying real encoding gains, which are the spherical 
harmonic functions. By the way, that means that the 
sound field "derivatives" properties don't vary with 
the frequency.  
Computational details about these encoding gains are 
given in 3.1. 

Spherical wave decomposition: near field effect 
The modelling of the near field effect due to finite 
distance sources is rarely addressed in literature [3]. 
Nevertheless, it points out a fundamental issue of 
natural or realistic sound fields. 
It is shown [2, 3] that the spherical decomposition of 
a spherical wave radiated by a point source at (ρ,θ,δ ) 
leads to:  

 
( 1)
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with ( ) ( )
mn m mn
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where )()()( krjnkrjkrh mmm −=−  are the divergent 
spherical Hankel functions, and dref is a reference 
distance. More conveniently, we'll consider S as the 
pressure field captured at O, so that the 1/ρ 
attenuation and the delay ρ/c due to finite distance 
propagation, which are reflected by Γ0(kρ), are 
supposed to be already modelled. By removing the 
latter from (4), the encoding equations of a source at 
finite distance ρ become: 
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Such a finite distance encoding involves transfer 
functions Fm(ω ) that affect ambisonic components 
especially at low frequencies, as shown by Figure 4. 
In other words and by comparison with the plane 
wave case of (3): the near field disturbs the sound 
field "derivatives" as much as the source distance 
(i.e. the curvature radius) is small regarding the 
wavelength, and as the derivative order m is high. 
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Figure 4 Low frequency infinite boost (m×6 
dB/octave) of ambisonic components due to near 
field effect  

Fundamental limitations of the encoding format 

What is annoying is that transfer functions Fm(ω ) 
typically reflect "integrating filters" (for m≥1), which 
are unstable by nature (infinite bass-boost shown in 
Figure 4). First order encoding may still remain 
practicable provided that every encoded signal S is 
centred (null mean value), but it is no longer the case 
for higher orders. 

Not only (5) involves impracticable filters for virtual 
source encoding, but since it also models the physical 
reality, it would imply that the ambisonic 
representation of any natural sound field may have 
infinite amplitude components. This finally means 
that in spite of being mathematically powerful, the 
currently adopted HOA encoding format is unable to 
physically represent and convey (i.e. by finite 
amplitude signals) natural or realistic sound fields, 
since these always include more or less near field 
sources. 

By addressing the decoding and reproduction issues, 
and introducing the loudspeaker near field modelling 
at this stage, the following section suggests a key to a 
viable encoding format. 

2.2. Decoding: the need for near field 

compensation 

Since the ambisonic components represent by 
themselves the sound field to be rendered, a basic 
goal of the decoder is to recompose or "re-encode" 
them at the centre of the loudspeaker array, which is 
the privileged listening position. As often, we'll 
consider concentric regular arrays in the following. 

Previous decoding conception: amplitude panning 
The most commonly shared conception of ambisonic 
decoding relies on the assumption that the 
loudspeakers are far field sources from the centre 
point of view. Therefore the decoder has to achieve 
sound field reconstruction by combination 
(interference) of presumed plane waves. This 
requires only combining the signals with real 
weighting gains, thus involving a matrix operation: 
 S =D.B,  (6) 
where 1S [ ... ]T

NS S=  is the vector of emitted signals, 
1 1 1

00 11 11B [ ... ...]T
mnB B B Bσ+ + −=  is the vector of ambisonic 

components to be recomposed. The radiated signals 
Si contribute to the ambisonic components re-
composition according to: 
 B=C.S,  (7) 
where C is the so-called "re-encoding" matrix which 
elements are the encoding gains Ymn

σ( θι,δι) 
associated to the loudspeaker directions. As further 
detailed in [1, 3], the matrix D fulfil the decoding 
goal when being defined as the pseudo-inverse of C: 
 1)..()( −== TTpinv CCCCD , (8) 
provided that there are at least as many loudspeakers 
as components to recompose. 
Finally, since both encoding and decoding operations 
only process amplitude weightings, ambisonic sound 
imaging is globally a kind of amplitude pan-pot. An 
interesting property [1, 3, 5] is that higher orders help 
using loudspeakers with a finest angular selectivity 
around the virtual source direction, then 
reconstructing the sound field over a larger area, as 
shown by Figure 5. 
For a higher frequency domain, where the 
reconstruction cannot be achieved at the listener 
scale, Gerzon [6] also introduced "psycho-acoustic" 
criteria in the 1st order decoding design. These have 
been later generalized to higher orders [3, 5]. 
Although this modified decoding is not detailed in 
the present study, it may be advantageously used in 
practical situation. 
 

General comment on sound field illustrations 
(Figure 5 and followings): in all case, they show 
the ambisonic reconstruction of a single waves 
always coming from the same direction (but with 
various source distances, frequencies, system 
orders), by means of a 32 loudspeaker array. The 
instantaneous pressure field is represented in grey 
scale. In the case of monochromatic sound fields, 
blue/dark and yellow/bright contours enclose 
well-reconstructed areas with error tolerance of 
resp. 20% and 50%, and red arrows indicate the 
loudspeaker signal amplitudes. 
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Wave front curvature distortion and bass-boost effect 
Figure 5 shows the case of an encoded plane wave. 
Its left parts, which report a traditional decoding as 
previously described, show that the synthetic wave 
has the expected propagation direction from the 
centred listener point of view. Nevertheless, it clearly 
appears that with a high (15th) order rendering, this is 
not a plane wave that is reconstructed, but a spherical 
one, as being radiated by a point on the loudspeaker 
boundary. Therefore off-centred listeners localise the 
virtual source on this point and not in the direction of 
the original plane wave. 
This wave curvature distortion seems to have little 
impact on the directional effect for a centred listener. 
Nevertheless, even for this position and depending on 
the actual array radius, the difference with a true 
plane may be audible as the so-called "bass-boost 
effect" already mentioned by Gerzon [7], and also as 
an emphasised  Interaural Level Difference (ILD). 
 

 

 

Figure 5 Reproduction of an encoded plane wave 
without (left) and with (right) loudspeaker near 
field compensation (NFC). 2nd order (top) and 15th 
order (bottom) ambisonics.  

Compensating for the loudspeaker near field 
In the context of earlier first ambisonic systems, 
Gerzon recommended to compensate for the bass-
boost effect due to the finite distance of 
loudspeakers. Considering higher orders and with the 
more general aim to preserve the original curvature 
of the encoded wave fronts, it is now suggested to 
introduce the loudspeaker near field modelling into 

the re-encoding equation (7). That means that the 
elements Ymn

σ( θι,δι) of the "re-encoding" matrix C 
would have to be "multiplied" by the near field 
transfer functions ( / ) ( )R c

mF ω  of same order. Finally, 
this leads to the following decoding operation [1, 3]: 

 
( / )

1S D.Diag .B
( )R c

mF ω
⎛ ⎞⎡ ⎤

= ⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠
 (9) 

where the decoding matrix is the same as defined by 
(8). Thus, this new decoding consists in applying a 
near field compensation ( / )1/ ( )R c

mF ω  to the 
ambisonic components Bmn

σ before decoding them 
classically. Unlike the near field modelling transfer 
functions ( / ) ( )R c

mF ω , the filters ( / )1/ ( )R c
mF ω  are 

practicable and stable. 
As a result, the plane wave is actually reconstructed 
without curvature distortion, which is clearly 
illustrated for the 15th order by Figure 5 (right-
bottom part). 
Note that in a higher frequency domain, near field 
compensation is no longer effective (consider the 
inversed curves of Figure 4), and at the same time, 
the reconstruction area progressively narrows. It is 
still appropriate to use high frequency optimised 
decoding solutions mentioned above. 

2.3. Distance coding, viable format: the key 

Compensating for near field from the encoding stage 
At this point, we have proved that for a proper sound 
field reconstruction, one has to compensate for the 
loudspeaker near field effect anyway. Why not 
introducing this near field compensation from the 
encoding stage? As a matter of fact, it rapidly 
appears that combining it to the near field modelling 
of the virtual source leads to apply finite amplitude 
transfer functions. 

Distance Coding / Near Field Control Filters 
The combination of near field effect (for a source 
distance ρ) and compensation (for a loudspeaker 
distance R) leads to the following transfer functions:  

 
( / )

NFC( /c,R/c)
( / )

( )( )
( )

c
m

m R c
m

FH
F

ρ
ρ ωω

ω
=  (10) 

Figure 6 shows that they cause a finite, low 
frequency amplification mx20log10(R/ρ) (in dB), 
which is positive for enclosed sources (ρ<R) and 
negative for outside sources (ρ>R). 
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Figure 6 NFC filters frequency responses: finite 
amplification of ambisonic components from pre-
compensated Near Field Effect (dashed lines: 
ρ/R=2/3; cont. lines: ρ/R=2). 
They can be practically implemented as stable filters 
(as detailed in 3.2), which we will call "Near Field 
Coding" or "Control" filters, or simply "NFC filters".  
Now, encoding equations (5) are replaced by 
following the positional encoding equation: 
 NFC( / ) NFC( /c,R/c). ( ). ( , )R c

mn m mnB S H Yσ ρ σω θ δ=  (11) 
 

 
Figure 7 NFC-HOA positional encoding of a 
virtual sound source: a distance-coding unit (NFC 
filter bank) completes the directional encoding. 

This new positional encoding scheme completes the 
earlier, purely directional one by introducing a 
distance-coding module (Figure 7). The latter 

consists of a NFC filter bank, which is preferably 
placed before the directional gain control in order to 
factorise the filtering of each group of same order 
components. It's worth recalling that with such an 
encoding scheme, the encoded sound field only 
requires an "ordinary" matrix decoding (6). 

A viable, new ambisonic format 
At the same time, it is noticeable that a new encoding 
format derives from the virtual source encoding 
scheme (11). It is more generally related to the 
previous higher order ambisonic (HOA) format by: 
 NFC( / )

( / )

1
( )

R c
mn mnR c

m

B B
F

σ σ

ω
=  (12) 

It will be called NFC HOA, for "Near Field 
Compensated Higher Order Ambisonics". The 
advantage of this encoding format is not restricted to 
virtual sound encoding: it makes also possible the 
representation and the recording of any natural sound 
field. Indeed, it is shown that the equalisation filters 
involved in the signal processing of HOA 
microphone arrays become feasible when introducing 
the near field pre-compensation in them [1].  
 

 
Figure 8 Adaptation of the near field 
compensation to a loudspeaker distance different 
from the reference one 

Finally, the NFC-HOA format comprises a reference 
distance2 R with an implicit parameter, which 
corresponds to the radius of the reproduction 
loudspeaker array. Nevertheless, this shall not be 

                                                 
2 As a matter of fact, the implicit parameter is rather a 
reference delay τ=R/c. 
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thought as a constraint. Indeed, the NFC filters may 
also be used for adapting one NFC-HOA 
representation to a different reference distance or 
loudspeaker radius (Figure 8): 

 2 11 2
NFC( ) NFC( )NFC( )/ // , / ( ).mn m mn

R c R cR c R cB H Bσ σω=  (13) 

Note that this also applies to the earlier, "un-
compensated" HOA format as a particular case for 
which the reference distance is R=∞. 

Illustrated example of close source synthesis 

Figure 9 illustrates the ability of simulating a finite 
distance source, and takes as an example the more 
critical case of a source inside the loudspeaker array 
(ρ=1m<R=1.5m). As expected from Figure 6, a quite 
important amount of energy is involved at low 
frequencies (long red arrows). One notices that the 
reconstructed area is constrained by the same validity 
conditions as the theoretical representation: it is a 
disk that excludes the virtual source (see section 2.1). 
A further discussion can be found in [1], and the later 
section 4.1 completes the rendering analysis with 
time domain considerations. 
 

  

Figure 9 Spherical wave reconstruction (inside 
source) at 500Hz and 1kHz, with NFC-HOA. 

3. DIRECTIONAL AND DISTANCE CODING: 

IMPLEMENTATION ASPECTS 

3.1. Computing directional encoding gains 

For a generic, recursive definition 

Up to now, most of people interested in higher order 
ambisonics for virtual sound space encoding (e.g. for 
music), use explicit encoding equations such as 
provided by Malham and Furse [8], with a restriction 
to the 2nd or 3rd order. This Furse-Malham Harmonics 
set (FMH) is characterised by the fact that each 
function (excepted Y00

+1) reaches a maximal value of 
1. 

On the other hand, the computation of encoding 
gains without order restriction may rely on the 
following few lines of matlab code: 

pm = legendre(m, sin(elev), 'sch'); 
ymn_p = sqrt(2*m+1)*cos(n*azim).*pm(n+1); 
ymn_m = sqrt(2*m+1)*sin(n*azim).*pm(n+1); 

which provide values that conform to the "3D-
Normalised" (N3D) encoding convention (2), the 
first line computing the values pm of functions mnP . 
Nevertheless, such a code cannot be used in a 
practical, matlab-independent DSP platform.  
That's why it is useful to describe a generic algorithm 
for the computation of spherical harmonic encoding 
gains of any order. The algorithm detailed below 
relies on the recursive definition [2] of the Legendre 
polynomials and associated functions Pmn, and of the 
cosine/sine functions (see appendix A.2.2 of [3]). 
Thus, it globally process a recursive computation of 
directional encoding gains ymn

σ: 
 ( , ) ( )mn mn mny Y Y uσ σ σθ δ= = , (14) 
starting from the cartesian coordinates ux, uy, uz of the 
unitary incidence vector u , or, which is equivalent, 
from its azimuth θ and elevation δ. 

Step one: initialisation 

 
2

1 1 1 1

cos , sin 1or
cos , sin / , /

z z

x x

r u r u
c s c u r s u r

δ δ
θ θ

⎧= =⎧ = −⎪
⎨ ⎨= = = =⎩ ⎪⎩

 (15) 

If 0r =  (purely vertical incidence), there's no 
azimuth dependence, then c1 and s1 can be set to 
arbitrary values. Let's recall that: ux

2+uy
2+uz

2=1. 

Cross-recurrence for azimuth/horizontal dependent 
terms cn=cos(nθ) and sn=sin(nθ) 

 1 1 1

1 1 1

2n n n

n n n

c c c c
s c s s c

+ −

+

= −
= +

, for n=1 to M-1.  (16) 

Double-recurrence for elevation/vertical dependent 
terms pmn=Pmn(uz)= Pmn(sinδ) 

 1,0 ,0 1,0

1, 1 1, 1 ,

2 1

1 1
(2 1)

m z m m

m n m n m n

m m

m m
p u p p

p p m r p

+ −

+ + − +

+

+ +
= −

= + +

, (17) 

applied for n=0 to m-1, for each m=1 to M-1, with 
pm'n'=0 when m'<n'.  
And finally: 

 
1

1

. .

. . (for 0)
mn mn mn n

mn mn mn n

y p c

y p s n

β

β

+

−

=

= >
 (18) 

with βmn being coefficients depending on the 
encoding convention used. These ones lead to 
(SN3D)-compliant encoding gains: 

 (SN3D)
0,

( )!(2 )
( )!mn n
m n
m n

β δ −
= −

+
 , (19) 

whereas the following ones are (N3D)-compliant (2): 
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 (N3D) (SN3D)2 1mn mnmβ β= +  (20) 
It is clear that such coefficients are recursively 
computable. In practice, they would even be 
tabulated. 

Horizontal only encoding and components 
For the case of a completely "horizontal" restriction 
(components with n=m and sources with δ =0), 
recurrence (17) is useless. Considering either "2D 
semi-normalised" (SN2D) or "2D normalised" (N2D) 
encoding convention, directional gains are just: 

 
(SN2D) (N2D)1 1

(SN2D) (N2D)1 1

2
and (for 0)

2
mn n mn n

mn n mn n

y c y c
m

y s y s

+ +

− −

⎧ ⎧= =⎪ ⎪ >⎨ ⎨
= =⎪ ⎪⎩ ⎩

 (21) 

Note that y00
+1=1 for any convention. More generally, 

the relation between (N2D) and (N3D) conventions 
is given by [1, 3]: 

 
2 2

(N2D) (N3D)2 !
(2 1)!

m

mm mm
m

m
β β=

+
 (22) 

3.2. Design of distance coding filters 

Design strategy for parametric low cost digital filters 
One basic method for deriving digital filters from 
their analytic, frequency responses is to process an 
inverse Fourier transform of these responses. This 
leads to a Finite Impulse Response (FIR) model. This 
approach is actually not very interesting for several 
reasons: it has to be computed for each new distance 
parameter, its processing may be expensive, 
according to the FIR length, and artefacts called 
"Gibbs oscillations" are always present at the FIR 
extremities, and they are progressively smoothed 
only by enlarging the FIR. 
In contrast, we preferably seek a parametric, lower 
cost, IIR (Infinite Impulse Response) filter 
implementation. It appears that the bilinear 
transform, which is well known in digital filter 
design, does perfectly the job. Let's first define the 
successive steps of the following design strategy. 
With the final aim being to describe filters with 
second and first order sections, we have first to find 
their poles and zeros. For convenience, this pole-zero 
extraction is preferably done directly on the analog 
domain filters, before applying the bilinear 
transform. So, let's first rewrite the near field 
modelling transfer function (5) as the Laplace 
function: 
 ( )( )

0

( )!( ) 2
( )! !

m
n

m
n

m nF p p
m n n

τ τ −

=

+
=

−∑ , (23) 

with respectively τ =ρ/c or τ =R/c if the matter is to 
simulate the virtual source distance or to compensate 
for the loudspeaker near field. 

Pole-zero extraction 
To find the poles and zeros of filter Fm(p), it is 
convenient to set X=2τ p and rewrite (23) as: 
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 (24) 

While the poles of Fm(p) are clearly null, its zeros pmq 
appear to be related to the complex roots Xmq = 2τ pmq 
(0≤q≤m) of the polynomial Qm(X), which is a 
particular case of the generalized Bessel polynomials. 
Traditional roots extraction algorithms are stable only 
for limited orders. Matlab function 'roots' provides 
usable approximations up to order 24, which is 
enough for most applications. For more precise 
approximations or higher orders, Pasquini [9] 
provides a robust method dedicated to the 
generalized Bessel polynomials. 
Some approximated values are given in Table 1. 
 

m Roots Xmq of Qm 
1 -2 
2 -3.0000±1.7321j 
3 -3.6778±3.5088j; -4.6444 
4 -4.2076±5.3148j; -5.7924±1.7345i 
5 -4.6493±7.1420j; -6.7039±3.4853j; -7.2935 
6 -5.0319±8.9853j; -7.4714±5.2525j; -8.4967±1.7350i 

Table 1 Roots of Qm for the first few orders m. 

In the following, we consider that the roots Xmq are 
arranged in decreasing order of imaginary parts. 

Applying the bilinear transform 
The second step is to transpose the pole-zero filter 
form from the analog (Laplace) domain to the digital 
domain (z-transform). For this purpose, the bilinear 
transform consists in applying the substitution p=2 fs 
(1-z-1)/(1+z-1): 
 1

1

( ) ( )
12
1

( ) ( )
s

m m zp f
z

F z F pτ τ
−

−
−=
+

=  (25) 

with fs being the sampling frequency. Therefore, it's 
easy to write the zeros zmq of Fm(z) in terms of the 
zeros pmq of the Laplace function Fm(p): 
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Finally, by setting 1 12 (1 ) /(1 )X p z zτ α − −= = − + , 
with τα sf4= , the "near field compensating" digital 
filter can be written in the pole-zero form: 
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More generally, a near field control filter Hm is 
formed by the ratio of two versions of (27) with 
different implicit parameters τ ' and τ. 

Second and first order sections 

Any mth order IIR filter can be implemented under 
the Direct Form II (28), with m/2 second order 
sections (or "cells") for even m, or (m-1)/2 second 
order sections plus one first order section for odd m: 
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the right factor (first order cell) being present only 
for odd orders m.  
In order to define the coefficients of our NFC filter, 
let's first consider the denominator of (28) as related 
to the "near field compensation" part: it equals the 
denominator of (27), with τ =R/c as an implicit 
parameter. Each second order cell denominator 
a0

q+a1
q z-1+a2

q z-2 derives from the two 1st order cells 
of (27) that involve conjugate complex roots qmX ,  

and *
, 1 ,m m q m qX X− + = : 
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1 2
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  for 1≤q≤m/2 (29) 

For odd order filters, the coefficients of the 
additional first order cell merely derive from the 
remaining real root ,( 1) / 2m mX +

 as follows: 

 
1 1

,( 1) / 2 ,( 1) / 22 2
0 11 , 1
m m

m m m mX X
a a

α α

+ +
+ +⎛ ⎞

= − = − +⎜ ⎟
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 (30) 

Numerator coefficients bi
q, related to the "virtual 

source distance coding" part, are computed exactly 
the same way, but with τ=ρ/c as an implicit 
parameter instead of τ =R/c.  
The second line of (28) suggests a lower cost 
implementation that saves a number of 
multiplications. It involves filter coefficients b'i, a'i 

and g that straightforwardly derive from coefficients 
bi and ai. 
Finally, for a more efficient implementation, it would 
be recommended to tabulate the real part and the 
modulus of each root Xmq (for 1≤q≤(m+1)/2) rather 
than the complex roots themselves. 

Frequency scale distortion: practically ineffective 
The bilinear method transforms the unlimited 
frequency axis p jω=  ( ] [+∞∞−∈ ,ω ) of the 
Laplace's complex plan into the unitary complex 
circle jz e ω= , which reflects bounded frequencies 

] [/ 2, / 2s sf f f∈ − + . Thus theoretically, there is a 

frequency scale distortion between analog and digital 
filter responses: 
 

analog digitaltan ( / )s
s

ff f fπ
π

=  (31) 

Nevertheless, this distortion is insignificant for 
frequencies that are small with respect to the 
sampling frequency fs. Now in the present case, the 
filter response varies only on a low frequency 
domain, and no longer above a frequency that 
depends on the distance ratio ρ/R and the order m 
(Figure 6). Considering the parameters typically used 
in practice, one can verify that the digital filter 
response fits the analytic one very well. Thus such 
designed filters are fully satisfying in practice. 

Time properties: viewing impulse responses 
Figure 10 exhibits some NFC filter temporal 
responses computed with fs=44.1kHz and c=340m/s, 
for "inside" and "outside" sources. In the top case of 
an inside source, a kind of "Dirac" is followed by a 
ventral section which amplitude increases with order 
m. This will be further discussed in the next section, 
while interpreting synthetic sound field snapshots. 
Let's finish by a remark regarding the use of NFC 
filters for adapting NFC-HOA signals from a 
reference distance R1 to another one R2 (as discussed 
in 2.3). It is verified that the original signals are 
exactly restored by backward conversion (R2 to R1): 
the impulse response of Hm

(R1/c, R2/c). Hm
(R2/c, R1/c) is an 

un-delayed Dirac. 
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Figure 10 Impulse responses of NFC filters for a 
source inside (r=1m) and outside (r=3m) the 
loudspeaker array (R=1.5m). 1st to 11th order 
responses are shown with increasing amplitudes 
after the first "Dirac". 

4. APPLICATIVE ISSUES 

A first summary and comparison 

The two previous sections introduced respectively 
theoretical and practical solutions for enabling 
Higher Order Ambisonics to encode and render 
sources at arbitrary distances, and especially near 
field sources. 
The Near Field Control (or "Coding") filters are 
designed as parametric IIR digital filters that may be 
implemented with the lowest possible cost regarding 
their functionality. For these reasons among others, 
this encoding scheme would be preferred to the 
distance coding scheme recently introduced by 
Sontacchi and Höldrich [10], which combines WFS 
(Wave Field Synthesis) "notional" encoding (using a 
virtual circular microphone array) and HOA 
encoding (applying a circular Fourier transform on 
the simulated microphone signals). In spite of arising 
a quite relevant concept, this encoding scheme has a 
number of disadvantages in practice. First, it is 
computationally expensive because it involves 
simulating and "ambisonically" encoding a lot of 
virtual microphone signals. Moreover, this indirect 
encoding suffers from artefacts that are typical to 
WFS [1], such as: spatial aliasing (which is reduced 
only by increasing the number of virtual 
microphone), vertical aliasing (horizontal-only 
microphone array), and time-reversing for inside 
sources, which causes an inverted ITD (Interaural 
Time Delay). And finally, it constraints the 

loudspeaker array to a fixed radius (the same as the 
virtual microphone array).  
The following addresses some applicative issues 
involving format aspects and signal processing tools 
described in previous sections.  

4.1. Illustration of positional rendering 

The NFC filters designed in 3.2 are now applied for 
simulating the positional rendering of virtual sources 
in the time domain, which completes the frequency 
domain simulations of 2.3. A high (15th) order, 32-
speaker system is involved. This actually results in a 
large area, "holophonic" reconstruction. To make the 
sound field visualisation clearer, a gaussian pulse (a 
windowed single sine, with the centre frequency 
fc=500Hz) is chosen as the encoded signal and 
conveyed by the wave fronts. 

Far field virtual sources 
The plane wave case shown Figure 11 implies only 
few comments. The reconstruction looks very good 
on the disk just including the three illustrated 
listeners. Outside this disk, some artefacts (off-
centred interference "rose" patterns) appear on the 
synthetic wave front due to the higher frequency 
content of the pulse, but its spatial consistency 
remains on a quite large area. It is moreover verified 
that the reconstruction is even better with nearest, but 
still outside sources, since the acoustic phenomenon 
to be synthesised becomes closer to what the real 
sources (loudspeakers) can actually create. 

 

Figure 11 Time domain synthesis of a plane wave.  

Near field, enclosed virtual sources 
The two snapshots of Figure 12 give a time domain 
view of the case of an enclosed source, previously 
shown in the frequency domain (Figure 9). The first 
one (beginning of pulse emission) exhibits a strong 
interference pattern on the border area ("behind" the 
virtual source distance), caused by loud emitted 
signals with alternatively opposite phases. Figure 9 
helps understanding that this border interference 
concerns the lower frequency content, which is 
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particularly amplified by high order NFC filters 
(Figure 6). Interfering elementary wave fronts 
radiated by the loudspeakers rapidly and partially 
cancel each other while converging towards the 
centre (see the second snapshot at t=3ms), to 
synthesise the expected sound field. Like on Figure 
9, the latter is well reconstructed on the disk 
excluding the virtual source. 
 

 

 
Figure 12 Two snapshots of spherical wave time 
domain synthesis, for an enclosed virtual source 
(r=1m<R=1.5m).  

Another interesting observation arises from the time 
domain simulations. Indeed, the loudspeaker 
contributions have to "prepare", i.e. anticipate the 
pulse emission by the enclosed source. Moreover, It's 
worth noticing that for an inside source (r=1m), the 
ventral section of NFC impulse responses (Figure 10) 
tends to reach its maximum about 1.5ms, which is the 
time (R-r)/c for the virtual source point being reached 
by the nearest loudspeaker wave. 
Finally, it's worth recalling that the synthetic wave 
propagates in the correct direction, whereas Wave 
Field Synthesis (WFS) would synthesize a time-
reversed wave front (i.e. converging towards the 
virtual source). A further comparison between WFS 
and NFC-HOA is given in [1]. 

4.2. Various uses of NFC filters 

Positional encoding of elementary wave fronts 
As mentioned in introduction, the positional 
encoding and rendering process illustrated in 4.1 may 

apply for any individual contribution computed by 
the environmental acoustics processor (Figure 1). 
Thus NFC filtering (Figure 7) may apply to direct 
sound as well as individual, discrete reflections (as 
emitted by "mirror sound images"). 

Diffuse field encoding  

A general encoding scheme (Figure 1) may also 
process diffuse signals that typically correspond to 
the remaining room effect and especially the late 
reverberation. What's important is to actually provide 
the effect of a diffuse field, i.e. uncorrelated parts 
coming from surrounding directions. Thus, one can 
simply encode this reverb signals as plane waves, 
using NFC filters with the distance parameter ρ=∞.  

Another option consists in considering that a diffuse 
field is theoretically represented by uncorrelated 
ambisonic components of same energy (with the 
"N3D" encoding convention). Therefore, the "reverb" 
signals provided by the room effect processor can 
also be directly added to ambisonic signals, with an 
appropriate gain adaptation if the encoding 
convention is not "N3D" (refer to 3.1 or to [3]), and 
also with a NFC filtering like mentioned just above. 

Format adaptation (change of the reference distance) 

For the purpose of mixing different "NFC-HOA" 
material (multi-channel streams) or decoding for an 
arbitrary loudspeaker layout, NFC filters are also 
used to adapt the encoded material from a reference 
distance to another one. Figure 8 describes this 
adaptation scheme. 

Sound field transformations and effects 

It's worth noticing that sound field transformations 
that process separately each group of components of 
same order m (like rotation) apply the same way to 
NFC-HOA as to HOA. 

It is not the same with focalisation, which consists in 
combining spherical harmonics to form a directive 
beam, as if a highly directive microphone were 
pointing in a given direction of space [3]. When 
applied to NFC-HOA material, the focalisation effect 
is the most effective at a distance that is roughly the 
reference distance. One can control this distance by 
applying NFC filters before focalisation. 
Nevertheless, radial selectivity is much less than 
angular selectivity, and moreover it depends on the 
frequency.  

Finally, NFC filters can be applied to artificially 
distort the wave field curvature, and at the same time 
the bass-boost effect.  
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4.3. Binaural synthesis of close sources  

Virtual NFC Ambisonics (using virtual loudspeakers) 
Although ambisonic approach is initially dedicated to 
reproduction over loudspeakers, its rendering over 
headphones is also possible. A basic approach for 
that is to combine ambisonic decoding with the so-
called "virtual loudspeaker" process, which consists 
in the binaural simulation of each loudspeaker for a 
centred listener position, i.e. the filtering of its signal 
by the corresponding HRTF (Head related Transfer 
Function). For a more efficient implementation, one 
merges the decoding matrix and the HRTF filter bank 
associated with the loudspeaker directions. The 
resulting filter bank directly processes ambisonic 
components Bmn

σ, producing signals that are 
combined to form the binaural signals.  
It has been shown [3, 5] that such a "virtual 
ambisonics" process progressively reaches the 
performance of a direct binaural synthesis in terms of 
spectral reconstruction when considering increasing 
ambisonic orders. Now, binaural synthesis usually 
addresses "far field" sources, which distance actually 
corresponds to the one of the loudspeaker used for 
the HRTF measurements.  As an improvement, the 
new positional encoding scheme (Figure 7) 
associated with the "virtual ambisonics" rendering 
can be used to binaurally synthesise sound sources at 
arbitrary distances. In particular, it can render the 
emphasised ILD (Interaural Level Difference) of 
close sources.  

Extension of the binaural B-format scheme 
Binaural synthesis using NFC-HOA scheme can be 
even more efficient by focussing on each ear 
separately, as if each one were at the origin of the 
spherical coordinate system and at the centre of the 
loudspeaker array. Thus, one has to derive the virtual 
source properties in the referential of each ear 
(Figure 13). Delaying and weighting the original 
signal S (left part of Figure 14) leads to two signals 
SL and SR that are spatially encoded (middle part of 
Figure 14) with respective positional parameters (rL, 
θL, δL) and (rR, θR, δR). Then the resulting multi-
channel streams have just to be decoded (right part of 
Figure 14) according to the "virtual ambisonics" 
scheme mentioned above, but focussed separately on 
each ear. The whole process can be seen as a 
modified version of the "binaural B-format" scheme 
[11], enriched by the NFC positional encoding 
scheme. 

 

Figure 13 Deriving two coordinates systems 
centred on each ear (OL, OR) from the head 
centred one (origin O). 

 

Figure 14 Application of the new positional coding 
(as described Figure 7) in the referential of each 
ear, for accurate binaural synthesis of close 
sources. 

4.4. Generic format specifications  

When conveying a 3D audio multi-channel material 
like 1st or higher order ambisonics, specifications 
must accompany the audio streams (or channels) to 
enable the player interpreting them and applying 
appropriate decoding or transform operations. The 
specifications listed below address multi-channel file 
formats like the Wave file format and its extensible 
definition [12], as well as multi-channel compressed 
audio streaming in MPEG-4 [13]. The fields that are 
introduced compose a structure that could extend the 
format chunk ("fmt ") of the wave field header, for 
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example3. Nonetheless, they may be refined and 
renamed, and their arrangement and size 
specifications still have to be discussed. 

Encoding convention - conversion rules 
Several encoding conventions may be possibly used 
[3]: "N3D" and "SN3D" derive from the most generic 
definition of 3D spherical harmonics (see 2.1 and 
3.1); "N2D" and "SN2D" (section 3.1) initially 
concern a 2D-restricted formalism (cylindrical 
harmonics) [14] but may also apply to 3D spherical 
harmonics provided that clear extension rules are 
given; finally, Furse-Malham Harmonics ("FMH") 
[8] are "Max-Normalised" (MaxN) excepted for m=0 
and only provided up to the 2nd or 3rd order.  
It's important to specify which convention a given 
multi-channel material obeys. For this purpose, we 
introduce a field encodingConvention that takes a 
value among the following list: {N2D=0, SN2D=1, 
N3D=2, SN3D=3, MaxN=4, FMH=5, etc.}. 
It's also important to now how to convert the material 
from such a convention ("e1") to another one ("e2"), 
in order to properly apply transformation, decoding 
or mixing operations that wouldn't be defined for the 
same convention. This involves the conversion rule: 

 
( )

( ) ( )( ) ( )
( )

e2
e2 e1e2 e1 e2 e1

e1. , mn
mn mn mn mn

mn

B B
σ

σ σ

σ

βα α
β

← ←= = , (32) 

where ( )e2 e1
mnα ←  is the conversion factor, as defined by 

Table 2. 

 α00 α1n α22 α21 α20 αmn 

FMH←SN3D 1/ 2  1 2 / 3  1 none for m>2

N3D←SN3D 1 3  5  2 1m +  

N2D←SN2D 1 2  2  2  

N2D←N3D 1 2 / 3  8 /15  
2 22 !

(2 1)!

m m
m +

 

Table 2 Conversion factors between the existing 
encoding conventions 

Any other conversion would merely derive by using 
the relations: 
 ( ) ( ) ( ) ( ) ( )e3 e1 e3 e2 e2 e1 e2 e1 e1 e2. , 1/mn mn mn mn mnα α α α α← ← ← ← ←= =  (33) 
For the conversion of a sound field transformation 
matrix T(e1) (e.g. a rotation) or a decoding matrix  

                                                 
3 This extends an earlier mail discussion between the 
author, Dave Malham, Richard Furse and Richard 
Dobson. 

D(e1), initially defined for a convention (e1), one has 
to apply the conversion matrix A(e1←e2) which 
elements are the factors ( )e2 e1

mnα ← : 

 T(e2)= A(e2←e1). T(e1). A(e1←e2) 
 D(e2)= D(e1). A(e1←e2)  (34) 

Reference distance or reference time 
Any "NFC-HOA" material comprises implicit 
parameters, which are a reference distance R and the 
sound velocity c. More synthetically, we will specify 
a reference delay nfcReferenceDelay, which is 
the ratio τ =R/c. This field can take an infinite value 
to indicate the case of an "uncompensated" HOA 
material (section 2.3).  

Hybrid resolution and channel ordering 
An ambisonic material may have a higher directional 
resolution in the horizontal plane than in the rest of 
the sphere. That supposes to distinguish between an 
upper order M2D (the field resolution2D) for 2D-
components Bmm

σ, and an upper order M3D (the field 
resolution3D) for the other 3D-components (such 
that n<m). The number of components involved is: 

 
2 2

2 3 2

2 2
3 2 3

2 1 ( 1) ( 1)

2 1
D D D

D D D

K M M M

M M M

= + + + − +

= − + +
 (35) 

We already suggested arranging the components of 
each order m by beginning with the horizontal ones, 
i.e. with n decreasing from m to 0. This choice allows 
designating each component by a single index SID 
(for "Single Index Designation"), as described in 
Table 3. 
 

Name W X Y Z U V … 

mn
σ 00

+1 11
+1 11

-1
10

+1 22
+1 22

-1 … 
SID 0 1 2 3 4 5 … 

No more usual names 

mm
+1 … mn

+1 mn
−1 … m0

+1 
m2 … m2+2(m-n) m2+2(m-n)+1 … (m+1) 2-1

Table 3 Single Index Designation of ambisonic 
components Bmn

σ 

According to this default "ordering rule", the case 
(M3D=1, M2D=3) would lead to the index list {0, 1, 2, 
3, 4, 5, 9, 10}, for example. Note that the FMH file 
format, which ordering is described by the list {0, 1, 
2, 3, 8, 6, 7, 4, 5}, doesn't exactly obey this rule.  
For the case the component ordering would need to 
be defined explicitly or according to another rule, 
one introduces the field orderingRule. Its possible 
values are at least: 0 (default ordering) and 1 (explicit 
ordering). They could be extended to other rules, 
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such as a "lateral preference" rule that would place Y 
before X, and more generally σ=-1 before σ=+1. 
The case of an explicit ordering implies defining 
another field componentIndex as the array of 
component indexes (according to Table 3).  
These ordering issues are important in contexts (like 
MPEG-4) that enable multi-channel scalability, i.e. 
the possibility to convey only a subset of audio 
channels to fit transmission rate limitations.  

Mixed order format 
Dave Malham [8] raised the problem of mixing and 
conveying ambisonic materials of different original 
resolutions, while allowing, in the end, to optimally 
decode them according to their respective original 
resolution. Such a differentiated decoding supposes 
controlling the relative weightings of components of 
different orders, according to the resolution of the 
material they originally belong to. To make it 
possible after mixing 1st and 2nd order materials, 
Malham suggests conveying two versions of the W-
component, one resulting from the mixing of both 
materials, and the other regarding only the 1st   (or 
the 2nd) order material. The principal is also 
described and extended to higher resolutions in [3]. 
More generally, one has to foresee and allow the 
transmission of several versions of the same 
components, with the indication of the upper or/and 
the lower resolution of the materials they originally 
belong to. Let's introduce a field mixtResolution 
with the possible values: 0 (no differentiated 
resolutions); 1 (specification of the lower resolution 
of each component); 2 (specification of the upper 
resolution of each component); 3 (specification of 
both lower and upper resolutions). If specified, arrays 
upperResolution and/or lowerResolution are 
filled in with the same number of integer elements as 
the number of channels. 

Possible future specifications 
Some existing stereo or multi-channel formats like 
MS, UHJ, BHJ [6] or G-Format [15] are closely 
related to first order ambisonics. They are kinds of 
matrixed forms of the ambisonic components W, X, 
Y, (and Z). The latter are fully or partially pre-
decoded so that the conveyed signals are ready to 
feed loudspeakers (e.g. stereo or "5.1" arrangements), 
but they can be also restored and decoded for another 
rendering configuration. These options, and their 
possible extension to higher order, could enrich the 
orderingRule list.  
Finally, the presently discussed format could cover 
the extended binaural B-format mentioned in section 
4.3, by adding optional "left" and "right" 
specifications to the transmitted components.  

Structure for multi-channel format specifications 
The following structure gathers the fields introduced 
above. As previously said, the arrangement and bit 
allocation of these fields have to be discussed. Some 
integer or enumeration values (int) typically required 
only a few bits. The values of the optional arrays 
could be interleaved. 
 

encodingConvention int (enum)  
resolution2D int  
resolution3D int  
nfcReferenceDelay float  
orderingRule int (enum) 
mixtResolution bool 
componentIndex int array 
lowerResolution int array 
upperResolution int array 
…  

Table 4 Structure for NFC-HOA format 
specifications 

5. CONCLUSION 

This paper has stated that the commonly adopted 
higher order ambisonic (HOA) encoding format 
suffers from a theoretical obstacle that addresses the 
ability to represent near field. Indeed, the wave front 
curvature due to finite distance sound sources causes 
an emphasis of the spherical harmonic components 
that tends to be infinite at low frequencies. This 
obstacle is overcome by compensating, from the 
encoding stage, the near field of reproduction 
loudspeakers. This compensation is anyway required 
to preserve the original curvature of encoded wave 
fronts. This way a new, "Near Field Compensated" 
(NFC) HOA encoding format is defined, which is 
now viable since its components are ensured to have 
finite amplitude. At the same time, HOA ambisonic 
recording systems are made practicable since they 
now require only a finite equalization. Regarding 
virtual source encoding, distance-coding (or "Near 
Field Coding/Control") filters can be designed. Such 
NFC filters also apply for NFC-HOA format 
adaptation to arbitrary distances of reproduction 
loudspeakers. 
Implementation details have been given on signal 
processing tools for both directional and distance 
encoding. For the latter, we designed parametric, low 
cost digital filters.  
The efficiency of the resulting positional encoding 
scheme has been illustrated with sound field 
simulations of outside and inside sources. Then a 
particular application has been described, which is 
the accurate binaural synthesis of close sound 
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sources. Finally, we detailed a list of specifications 
related to the NFC-HOA format. These specifications 
form a structure that may extend wave file header 
and MPEG-4 audio stream description, in order to 
handle NFC-HOA as a 3D audio multi-channel 
format. 
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