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ABSTRACT

Wave field synthesis (WFS) and higher-order Ambisonics (HOA) are two high-resolution spatial sound repro-
duction techniques aiming at overcoming some of the limitations of stereophonic reproduction techniques.
In the past, the theoretical foundations of WFS and HOA have been formulated in a quite different fashion.
Although, some work has been published that aims at comparing both approaches their similarities and
differences are not well documented. This paper formulates the theory of both approaches in a common
framework, highlights the different assumptions made to derive the driving functions and the resulting phys-
ical properties of the reproduced wave field. Special attention will be drawn to the consequences of spatial
sampling since both approaches differ significantly here.

1. INTRODUCTION

Loudspeaker based sound reproduction systems with
a high number of reproduction channels are increas-
ingly being proposed and implemented. Typically,
the aim of increasing the number of channels, com-
pared e. g. to the nowadays widely used five channels,
is to provide high-resolution spatial audio for a po-
tentially large audience. While some of the proposed
systems are more or less extensions of stereophonic
techniques, others are based on the concept of phys-

ically recreating a sound field. Two established ap-
proaches of the latter category are wave field synthe-
sis (WFS) and Ambisonics. WFS has initially been
proposed by [1] and since then quite a number of
systems with some tens to hundreds of reproduction
channels have been realized. The term Ambisonics
is associated with a variety of approaches. Tradi-
tional Ambisonics [2] uses four loudspeakers driven
by amplitude panning. It is therefore more an al-
ternative approach to five-channel surround than
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a high-resolution replacement. However, the tra-
ditional Ambisonics has been extended in various
ways. Higher-order Ambisonics (HOA) [3, 4] can
use an arbitrary number of reproduction channels
and potentially provides a high spatial resolution.
The aim of this paper is to compare the properties
of WFS and HOA. The theoretical foundations of
WFS and HOA look quite different in their original
formulations. While WFS is based on the Kirchhoff-
Helmholtz integral, HOA is typically derived on ba-
sis of the mode matching approach. A straightfor-
ward comparison of the physical properties is there-
fore difficult. Some work has been published in the
past that compares both approaches [5, 6, 7]. These
comparisons are based on a spatially continuous for-
mulation of WFS and a spatially discrete formula-
tion of HOA. As a consequence, the influence of spa-
tial sampling could not be formulated analytically
and was investigated only by numerical simulations
of the reproduced wave field. This paper formulates
both approaches in a continuous domain and per-
forms the spatial sampling at a later stage. For this
purpose, a common theoretical framework is intro-
duced fostering the comparison of both approaches
in more detail as compared to the previous publica-
tions.
We begin the paper with a general formulation of the
underlying physical problem of sound reproduction
in Section 2. Then this theory is applied in order to
briefly review the concepts of WFS and HOA in Sec-
tion 3. A unified formulation of both approaches is
furthermore provided ibidem. At the current stage,
HOA is limited to circular/spherical loudspeaker ar-
rangements. Therefore, explicit formulations for the
reproduced wave fields, the driving functions and
spatial sampling are derived in Section 4 for circular
WFS and HOA systems. The theory developed so
far, lays then the fundament for a detailed compar-
ison of both approaches in Section 5.

2. BASIC THEORY

This section introduces the basic theory of sound
field reproduction. This serves as basis for the
derivation of WFS and HOA given in the next sec-
tion.

2.1. The Kirchhoff-Helmholtz Integral

A loudspeaker system surrounding the listener can
be regarded as an inhomogeneous boundary condi-
tion. The solution of the homogeneous wave equa-

virtual
source

S(x, ω)

P (x, ω)

x
x0

n

V

∂V

0

Fig. 1: Illustration of the geometry used for the
Kirchhoff-Helmholtz integral (1).

tion for a bounded region V with respect to in-
homogeneous boundary conditions is given by the
Kirchhoff-Helmholtz integral [8]

P (x, ω) = −

∮

∂V

(

G(x|x0, ω)
∂

∂n
P (x0, ω) −

P (x0, ω)
∂

∂n
G(x|x0, ω)

)

dS0 , (1)

where P (x, ω) denotes the pressure field inside a
bounded region V enclosed by the boundary ∂V
(x ∈ V ), G(x|x0, ω) a suitably chosen Green’s func-
tion, P (x0, ω) the acoustic pressure at the boundary
∂V (x0 ∈ ∂V ) and n the inward pointing normal
vector of ∂V . The abbreviation ∂

∂n
denotes the di-

rectional gradient in direction of the normal vector
n. The wave field P (x, ω) outside of V is zero and
V is assumed to be source-free. Figure 1 illustrates
the geometry. For sound reproduction typically free-
field propagation within V is assumed. This implies
that V is free of any objects and that the bound-
ary ∂V does not restrict propagation. The Green’s
function is then given as the free-field solution of the
wave equation and is referred to as free-field Green’s
function G0(x|x0, ω). The free-field Green’s function
can be interpreted as the spatio-temporal transfer
function of a monopole placed at the point x0 and
its directional gradient as the spatio-temporal trans-
fer function of a dipole at the point x0, whose main
axis points towards n.
Equation (1) states that if the Green’s function is re-
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alized by a continuous distribution of appropriately
driven monopole and dipole sources which are placed
on the boundary ∂V , the wave field within V is fully
determined by these sources. This principle can be
used for sound reproduction as will be illustrated
in the following. In this context the monopole and
dipole sources on the boundary are referred to as
(monopole/dipole) secondary sources.
The Kirchhoff-Helmholtz integral implies, that au-
thentic sound field reproduction can be realized if
a distribution of secondary monopole and dipole
sources on the boundary ∂V of the listening area V is
driven by the directional gradient and the pressure
of the wave field of the virtual source S(x, ω), re-
spectively. The Kirchhoff-Helmholtz integral and its
interpretation given above lay the theoretical foun-
dation for a variety of massive multichannel sound
reproduction systems.
It is desirable for a practical implementation to dis-
card one of the two types of secondary sources.
Monopole sources can be realized reasonably well
by loudspeakers with closed cabinets. At least two
different classes of approaches can be identified to
remove the dipole contributions in the Kirchhoff-
Helmholtz integral. These are discussed in the fol-
lowing two subsections.

2.2. Neumann Green’s Function

The second term in the Kirchhoff-Helmholtz inte-
gral (1), representing the dipole secondary sources,
can be eliminated by changing the Green’s function
used in the Kirchhoff-Helmholtz integral [8]. De-
pending on the situation, this may also imply that
other sources than monopoles have to be used as sec-
ondary sources.
The basic concept is to use a Neumann Green’s
function in order to eliminate the dipole secondary
sources. A Neumann Green’s function has to obey
the following condition

∂

∂n
GN(x|x0, ω)

∣

∣

∣

x0∈∂V
= 0 . (2)

Introducing the definition of the Neumann Green’s
function (2) into the Kirchhoff-Helmholtz inte-
gral (1) yields the reproduced wave field as

P (x, ω) = −

∮

∂V

∂

∂n
S(x0, ω)GN(x|x0, ω) dS0 .

(3)

The explicit form of the Neumann Green’s function
depends on the geometry of the boundary ∂V . A
closed form solution can only be found for rather
simple geometries like spheres and planar bound-
aries [9]. The boundary ∂V is implicitly modeled
as an acoustically rigid surface for the secondary
sources. This is a consequence of the condition given
by Eq. (2).
Equation (3) states, that if the Neumann Green’s
function can be realized by an physically existing
secondary source, then the driving signal is sim-
ply given by the directional gradient of the virtual
source. Depending on the explicit form of the Neu-
mann Green’s function such secondary sources may
be impossible to realize in practice.

2.3. Monopole Only Formulation

There are various approaches to derive a monopole
only formulation of the Kirchhoff-Helmholtz in-
tegral. A direct approach would be to assume
monopole only reproduction and to evaluate the
properties of the solution. Another approach, which
is often considered, is the simple source approach [8,
10]. The simple source approach is derived by con-
structing an exterior and separately an interior prob-
lem with respect to the same boundary ∂V and link-
ing both problems by requiring that the pressure is
continuous and the directional gradient is discontin-
uous at the boundary ∂V .
To the knowledge of the authors, both approaches
seem to produce similar results. They result in a
monopole only formulation of sound reproduction

P (x, ω) =

∮

∂V

D(x0, ω)G0(x|x0, ω) dS0 . (4)

Equation (4) states that a distribution of monopole
sources on ∂V driven by D(x0, ω) determines the
wave field P (x, ω) within and outside of V . Note,
that contrary to the Kirchhoff-Helmholtz formula-
tion the wave field outside of V will not be zero
in this case. Problems arise at the eigenfrequen-
cies of the interior homogeneous Dirichlet prob-
lem [10]. The wave field within V cannot be con-
trolled at these frequencies and is consequently not
determined uniquely. This problem is refereed to as
non-uniqueness in the following.
The Green’s function in Eq. (4) characterizes the
field of the secondary sources, the remaining terms
their strength. The strength will be termed as
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secondary source driving function in the following.
An appropriate secondary source driving function
D(x0, ω) for a desired virtual wave field can be de-
rived by explicitly solving the integral equation (4)
or by applying the simple source approach.
An explicit solution of (4) can be found by applying
results from functional analysis, for instance, decom-
position of the respective wave fields with respect to
orthogonal basis functions. Note, that the underly-
ing problem might be ill-posed.
The simple source approach states that the driving
function is given as the difference of the directional
gradients when approaching the boundary ∂V from
the outside and the inside. Hence, the driving func-
tion can be derived by constructing an exterior field
that satisfies the required boundary conditions. An
appropriate exterior field can be derived by consider-
ing the equivalent acoustic scattering problem [11].
Common to all these approaches is, that an explicit
formulation of the driving function is only possible
by considering special geometries for the secondary
source contour ∂V .
In higher-order Ambisonics [3], and other reproduc-
tion techniques [12, 13, 14, 15] which are inherently
based on the simple source approach, Eq. (4) is ex-
plicitly solved with respect to D(x0, ω). For the
geometries considered in HOA this is typically per-
formed by expanding the respective wave fields using
spherical harmonics or Fourier series.
The monopole only formulation, as presented above,
corrects for the missing dipole sources by modify-
ing the driving function. The Neumann Green’s
function method, as presented in Section 2.2, ap-
plies a modified Green’s function in order to remove
the dipole secondary sources and requires no mod-
ification of the driving function. At least in some
cases, both methods can be linked directly to each
other. For instance, if the Neumann Green’s func-
tion can be expressed as a multiplication of terms de-
scribing a monopole source and other terms. These
other terms can then be aggregated to the driving
function of the Neumann case. For a spherical sec-
ondary source contour this procedure is straightfor-
ward when considering e. g. the Rayleigh-like inte-
grals [8].

3. WAVE FIELD SYNTHESIS AND HIGHER-

ORDER AMBISONICS

The two concepts to eliminate the dipole secondary

sources, introduced in the previous section, are now
applied to derive WFS and HOA.

3.1. Wave Field Synthesis

The theory of WFS is based on eliminating the
dipole secondary sources by using an appropriate
Neumann Green’s function. It was already out-
lined in Section 2.2, that the physical realization of
a Neumann Green’s function by secondary sources
might be impossible for complex secondary source
contours ∂V . For a linear/planar secondary source
contour the Neumann Green’s function takes a form
which can be realized straighforwardly by secondary
monopole sources. WFS is explicitly based on
the Neumann Green’s function for a linear/planar
boundary. Some extensions to the basic theory are
applied, in order to cover curved secondary source
contours. The following section outlines the deriva-
tion of WFS. A detailed discussion which is based
on the same physical framework, as used here, can
be found in [16].
A suitable Neumann Green’s function for a pla-
nar/linear boundary ∂V can be derived by adding
an image source with respect to the boundary ∂V
to the free-field Green’s function [8]. This solution
fulfils the condition (2) due to the specialized geom-
etry. In this case the Neumann Green’s function is
given as

GN(x|x0, ω)
∣

∣

∣

x0∈∂V
= 2 G0(x|x0, ω) . (5)

Hence, for the linear/planar case GN(x|x0, ω) is
equal to a monopole source with double strength. In-
troducing GN(x|x0, ω) into the Kirchhoff-Helmholtz
integral derives the first Rayleigh integral, which is
the basis for the traditional derivation of WFS [1].
However, this theoretical basis holds only for lin-
ear/planar secondary source distributions. In WFS,
it is assumed that Eq. (5) holds also approximately
for other geometries. The elimination of the sec-
ondary dipole sources for an arbitrary secondary
source contour ∂V has two consequences:

1. the wave field outside of V will not be zero, and

2. the reproduced wave field will not match the
virtual source field exactly within V .

The first consequence implies that the boundary ∂V
has to be convex, so that no contributions from the
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wave field outside of the listening area V propagate
back into the listening area. The second is a con-
sequence of approximating the Neumann Green’s
function for arbitrary geometries using (5). Using
this Neumann Green’s function for curved secondary
source contours leads to artifacts in the reproduced
wave field. One possibility is to mute those sec-
ondary sources whose normal vector n does not co-
incide with the local propagation direction of the
virtual wave field.
Following this concept, the reproduced wave field
reads

P (x, ω) =

−

∮

∂V

2a(x0)
∂

∂n
S(x0, ω)G0(x|x0, ω) dS0 , (6)

where a(x0) denotes a suitably chosen window func-
tion. This function takes care that only those sec-
ondary sources are active where the local propaga-
tion direction of the virtual source at the position x0

has a positive component in direction of the normal
vector n of the secondary source. It was proposed
in [17] to formulate this condition analytically on
basis of the acoustic intensity vector.
For an arbitrarily shaped boundary ∂V , the repro-
duced wave field will not exactly match the virtual
source field S(x, ω) within V . However, this approx-
imation seems to be reasonable for sound reproduc-
tion purposes.

3.2. Higher-order Ambisonics

In the literature, several variants of Ambisonics ex-
ist. They differ in the assumptions made for the
secondary sources and the procedure used to de-
rive the desired virtual wave field. Since the focus
of this contribution lies on the comparison of HOA
with WFS we will assume model-based reproduc-
tion with monopole sources as secondary sources.
This variant of Ambisonics is also known as near-
field compensated HOA [4]. We will further skip
the en-/deconding procedure, typically used in the
traditional derivation of HOA, for the sake of clar-
ity. The theory of HOA is often based on the direct
assumption of a spatially discrete distribution of sec-
ondary sources. However, the analysis of sampling
artifacts is simplified by formulating the problem in
a continuous domain and introducing the spatial dis-
cretization separately.

In this case, the driving function for HOA is de-
rived by explicitly solving the integral equation (4)
with respect to the secondary source driving function
DHOA(x0, ω). As outlined above, decomposition of
the involved wave fields into orthogonal basis func-
tions is a standard solution applied to integral equa-
tions in the form of Eq. (4). The orthogonal expan-
sion of wave fields transforms the integral equation
into an equation containing only sums. The result-
ing equation is then solved by comparison of coeffi-
cients or by setting up a linear system of equations.
The particular choice of basis functions depends on
the secondary source contour and the dimensional-
ity of the problem. In the context of HOA, circular
and spherical secondary source contours have been
considered so far. A detailed derivation of driving
functions for continuous circular/spherical contours
can be found in [12, 13, 15]. For a circular geometry
exponential functions with respect to the angular co-
ordinate of a polar coordinate systems are suitable
(Fourier series), for a spherical geometry spherical
harmonics. The explicit form of the driving function
for a circular boundary will be derived in Section 4.2.

3.3. Unified Formulation

The following section will develop a unified formu-
lation of WFS and HOA, which will be used for the
comparison of both approaches.
This unified formulation is derived straightforwardly
by comparing Eq. (4) with Eq. (6). This reveals
that the sound pressure P (x, ω) inside the listen-
ing area can be expressed by the secondary source
driving function D(x0, ω) and the Green’s function
G0(x|x0, ω) as

P (x, ω) = −

∮

∂V

D(x0, ω)G0(x|x0, ω) dS0 . (7)

The Green’s function characterizes the wave field
emitted by the secondary sources. For WFS and
HOA these are assumed to be monopoles placed at
the boundary ∂V . The explicit form of the Green’s
function depends on the dimensionality of the prob-
lem.
For three-dimensional reproduction this is the field
of a point source, for two-dimensional reproduction
this is the field of a line source. Sound reproduction
in a plane, ideally leveled with the listeners ears, is
referred to as two-dimensional reproduction. The re-
quired reduction in dimensionality is performed by
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assuming that the reproduced wave field is indepen-
dent from the z-coordinate.
Line sources would be the appropriate choice as
secondary sources for two-dimensional reproduc-
tion. However, since line sources are hard to re-
alize in practice, point sources are typically used
for two-dimensional reproduction. This secondary
source type mismatch results in various artifacts for
WFS [16, 18] and HOA [12, 13] that can be compen-
sated for only to some extend. The remaining most
prominent artifacts are amplitude errors. We will
discard setups exhibiting a secondary source type
mismatch for the comparison of both approaches.
The secondary source driving function D(x0, ω)
plays an important role since it determines the
loudspeaker signals in a practical implementation.
The secondary source driving function for WFS
DWFS(x0, ω) can be derived from Eq. (6) as

DWFS(x0, ω) = −2a(x0)
∂

∂n
S(x0, ω) . (8)

The driving function DHOA(x0, ω) for HOA depends
on the particular geometry of ∂V . An explicit ex-
pression will be derived in the next section.

4. REPRODUCTION ON CIRCULAR ARRAYS

Since HOA is based on a circular/spherical sec-
ondary source contour, such geometries will be con-
sidered for the comparison of both approaches. For
the sake of clarity, we will assume two-dimensional
reproduction using a circular secondary source con-
tour with line sources as secondary sources for both
WFS and HOA. We will follow the framework de-
veloped in [19, 7].

4.1. Reproduced Wave Field

The two-dimensional free-field Green’s function is
given as

G2D(x|x0, ω) =
j

4
H

(2)
0 (

ω

c
|x − x0|) , (9)

where H
(2)
0 (·) denotes the zeroth-order Hankel func-

tion of second kind [20] and x = [x y]T . Equation (9)
can be interpreted as the field of a line source. This
line source is located parallel to the z-axis and inter-
sects with the reproduction plane at the position x0.
The reproduced wave field for a circular distribution
of secondary monopole line sources is given by in-
troducing (9) into (7) for the specialized geometry.

x

y

P (x, ω)

∂V
R

n

x

x0

α0

α

∆r

r

Fig. 2: Geometry used to derive the wave fields re-
produced by WFS and HOA. The dots • denote the
spatial sampling positions of the secondary sources.

Figure 2 illustrates the geometry. The reproduced
wave field P (x, ω) reads

P (x, ω) = −
j

4

∫ 2π

0

D(α0, R, ω)H
(2)
0 (k∆r) R dα0 ,

(10)
where ∆r = |x − x0|. The next step is to express
the driving function D(α0, R, ω) as Fourier series

D(α0, R, ω) =

∞
∑

ν=−∞

D̊(ν, R, ω) ejνα , (11)

where D̊(ν, R, ω) denote the Fourier series coeffi-
cients of the driving function. Applying the addition
theorem for Hankel functions [21] and exploiting the
orthogonality of the exponential functions allows to
eliminate the angular integral, resulting in

P (x, ω) =

− j
π

2
R

∞
∑

ν=−∞

Jν(kr)H(2)
ν (kR) D̊(ν, R, ω) ejνα .

(12)

The variable ν can be interpreted as angular fre-
quency. The representation (12), as sum with re-
spect to the angular frequency, is especially useful
in the context of angular sampling. This due to the
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fact, that the angular spectrum of the reproduced
wave field is given by a multiplication of the angular
spectrum of the secondary source spectrum and the
driving function.

4.2. Driving Functions

The particular form of the driving function for WFS
and HOA depends on the desired virtual wave field
to be reproduced. We will consider virtual plane
waves for the comparison of both approaches since
arbitrary wave fields can be decomposed into plane
waves [8].
The HOA driving function for a virtual plane wave
with incidence angle θpw can be derived by equating
the right hand side of Eq. (12) with the desired wave
field of a plane wave. Expressing a plane wave as
Fourier series using the Jacobi-Anger expansion and
performing a comparison of the series coefficients
yields

D̊HOA(ν, R, ω) = −
2

jπR

j−νJν(kr)

Jν(kr)H
(2)
ν (kR)

e−jνθpw .

(13)
Note, that the Bessel function in the numerator and
denominator of Eq. (13) cannot be canceled straight-
forwardly to the zeros of the Bessel function. The
angular spectrum D̊WFS(ν, R, ω) of the driving func-
tion for WFS cannot be derived as straightforwardly
as for HOA, due to the involved window function.
The driving function for WFS is given as [16]

DWFS(α0, R, ω) =

2j
ω

c
apw(α0) cos(α0 − θpw)e−j ω

c
R cos(α0−θpw) , (14)

where the window function for a plane wave
apw(α0) = 1 for cos(α0 − θpw) > 0 and zero else-

where. The Fourier series coefficients D̊WFS(ν, R, ω)
can be computed by performing a Fourier transfor-
mation with respect to the angle α0.

4.3. Spatial Sampling

The discretization of the secondary source dis-
tribution is modeled conveniently by sampling of
the loudspeaker driving function D(α0, R, ω) at N
equidistant angles (as illustrated by the black bullets
in Fig. 2). Angular sampling results in repetitions of
the angular spectrum [19]. The Fourier series coef-
ficients D̊S(ν, R, ω) of the sampled driving function

are given as

D̊S(ν, R, ω) =

∞
∑

η=−∞

D̊(ν + ηN, R, ω) . (15)

Introducing (15) into (12) yields the wave field repro-
duced by a discrete secondary source distribution.
In HOA, the angular bandwidth of the continuous
driving driving function (13) is typically limited as
follows

D̊HOA,N (ν, R, ω) =
{

D̊HOA(ν, R, ω) , for |ν| ≤ (N − 1)/2

0 , otherwise.
(16)

for odd N , analogous for even N . Traditionally this
limitation has been applied due to the underlying
spatially discrete formulation. However, as shown
later, this limitation of the angular bandwidth has
also influence on the properties of the reproduced
wave field with respect to truncation and spatial
sampling artifacts. Truncation artifacts will not be
discussed in this paper. Please refer to e. g. [14, 12]
for a detailed treatment.
The formulation of the reproduced wave field in
terms of angular frequencies given by Eq. (12) and
Eq. (15) can be used to investigate the effects of
spatial sampling. This is performed by splitting up
the reproduced wave field PS(x, ω) into the wave
field PS,0(x, ω) containing no angular repetitions and
PS,al(x, ω) containing all repetitions. The wave field
PS,0(x, ω) would have been reproduced by a contin-
uous secondary source distribution. It is given as

PS,0(x, ω) =

− j
π

2
R

∞
∑

ν=−∞

D̊S(ν, R, ω) Jν(kr)H(2)
ν (kR) ejνα .

(17)

Note, that Eq. (17) inherently includes the trunca-
tion artifacts of HOA in the desired wave field. The
contributions PS,al(x, ω) reproduced by a spatially
discrete secondary source distribution can be derived
by considering only the spectral repetitions defined
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by Eq. (15)

PS,al(x, ω) = −j
π

2
R ×

×
∑

|η|≥1

∞
∑

ν=−∞

D̊S(ν+ηN, R, ω)Jν(kr)H(2)
ν (kR) ejνα .

(18)

The split-up of the reproduced wave field is used
to calculate the energy of the contributions due to
the spectral repetitions with respect to the desired
wave field. The reproduced aliasing-to-signal ratio
RASR [19] is defined as follows

RASR(x, ω) =

∫ ω

0 |PS,al(x, ω′)|
2
dω′

∫ ω

0 |PS,0(x, ω′)|
2
dω′

. (19)

The RASR is a measure for the artifacts due to sam-
pling. The truncation artifacts are explicitly dis-
carded due to the definition of the desired wave field
given by (17).
Note, that the psychoacoustic relevance of the RASR
is unclear at the current stage and will be investi-
gated further. It will be used, however, due to a
lack of alternatives.
The unified formulation of WFS and HOA developed
so far, for a circular secondary source distribution,
lays the theoretical fundament for the comparison of
both approaches.

5. COMPARISON OF THE PROPERTIES OF

WFS AND HOA

The comparison of WFS and HOA is performed in
several steps. The physical properties will be investi-
gated first. Then a closer look is taken at the driving
functions and the resulting reproduced wave fields.

5.1. Physical Properties

The physical properties of both approaches are given
by the underlying basic theory, as presented in Sec-
tion 2, and the particular derivation of the algo-
rithms, as presented in Section 3. The resulting
properties will be discussed in the following. The
influence of spatial sampling will be investigated in
the next sections.
HOA is based on an explicit solution of a simple
source formulation. The simple source formulation
constitutes a boundary integral equation of the first
kind. It is known from the underlying mathemat-
ics that the solution is potentially not unique and

ill-posed. The non-uniqueness doesn’t allow to con-
trol the wave field within the listening area at some
distinct frequencies, while the ill-posedness implies
numerical problems for the calculation of the driv-
ing function. HOA has numerical problems due to
ill-posedness of the driving function. This can be
concluded from (13). Due to the zeros of the Bessel
function, the numerator and denominator is zero at
some frequencies. Depending on the properties of
the numerator numerical problems may arise when
computing the driving function at some distinct fre-
quencies. Standard regularization techniques can be
applied in order to overcome this problem. Both
the non-uniqueness and the ill-posedness occur typ-
ically only at a limited number of discrete frequen-
cies. Outside of these frequencies, the reproduced
wave field matches exactly the desired one within
the entire listening area. The explicit form of the
driving function for HOA depends on the underlying
geometry of the problem. Currently solutions exist
for circular/spherical secondary source contours.
The theoretical foundation of WFS is based on a
Neumann Green’s function describing the wave field
of the secondary sources. WFS applies the Neu-
mann Green’s function for a linear/planar bound-
ary ∂V , since such secondary sources are in gen-
eral impossible to realize for arbitrary secondary
source contours. This function can be realized by
monopole secondary sources. The wave field re-
produced by WFS is only exact for linear/planar
secondary source contours, as a consequence. The
extension to arbitrarily shaped convex secondary
source contours is performed by sensibly selecting
the active secondary sources. For a circular sec-
ondary source contour, the reproduced wave field
will exhibit inaccuracies due to the wrong type of
secondary sources. This holds also for other non-
linear/-planar geometries. However, these inaccura-
cies seem to be of minor relevance in practical imple-
mentations (see e. g. Fig. 6(a)). WFS doesn’t seem
to suffer from non-uniqueness or ill-posedness prob-
lems in typical situations. This is due to the fact
that not all secondary sources are use to reproduce a
particular wave field and hence no resonances occur.
Furthermore, the secondary source driving function,
as given by (14), exhibits no ill-posedness.
Note, that for both approaches a wave field is also
reproduced outside of the listening area, contrary to
the Kirchhoff-Helmholtz integral.
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5.2. Driving Functions

The following sections illustrate the different
properties of WFS and HOA using a numerical sim-
ulation of both systems. For this purpose, a circular
reproduction system with a radius of R = 1.50 m
consisting of N = 56 secondary monopole line
sources was simulated. The driving functions for
both approaches where calculated for a plane wave
as desired virtual wave field. Depending on the
investigation, the plane wave is either assumed to
be monochromatic or a bandlimited Dirac pulse.
The incidence angle of the plane wave is θpw = 270o

for all simulations. For the situations shown in the
various figures, the plane wave travels parallel to the
y-axis from top to down. The angular bandwidth
of the HOA driving signal is bandlimited according
to (16).
Figure 3 depicts the angular spectrum
D̊HOA(ν, R, ω) of the continuous and sampled
HOA driving function. The band-limitation of the
driving function can be seen clearly in Fig. 3(a),
the spectral repetitions due to angular sampling
in Fig. 3(b). Note, that no spectral overlaps
are present in the latter figure due to the band-
limitation of the HOA driving function.
Figure 4 shows the angular spectrum D̊WFS(ν, R, ω)
of the continuous and sampled WFS driving func-
tion. Figure 4(a) reveals that the driving function
for WFS is not band-limited in the angular fre-
quency domain. Consequently, this leads to spectral
overlaps and aliasing when the driving function is
sampled, as can be seen in Fig. 4(b).
It can be deduced from Fig. 3 and 4 that both
driving functions exhibit spectral repetitions due
to angular sampling. However, due to the missing
band-limitation for WFS, in this case the sampled
driving function contains aliasing. According to
Eq. (12), the reproduction of the spectral rep-
etitions in the driving function depends on the
angular spectrum of the secondary sources. If the
secondary sources resemble an ideal low-pass then
none of these repetitions are reproduced. However,
the characteristics of the angular spectrum are
given by the actual type of secondary sources
used. Figure 5 depicts the angular spectrum of
a line source. It is evident that the spectrum is
not band-limited. Hence, the spectral repetitions
present in the driving functions of WFS and HOA
will be reproduced to some extend.

5.3. Reproduction of Monochromatic Plane

Waves

Figures 6 and 7 show the reproduced wave field for
a monochromatic virtual plane wave with varying
frequency fpw. The left rows show WFS, the right
rows HOA. According to Fig. 6(b), HOA provides
accurate reproduction within the listening area for
the lowest frequency shown (fpw = 500). For WFS
some slight deviations from the desired plane wave
are visible at the lower end of the listening area close
to the secondary sources (see Fig. 6(a)). These devi-
ations are due to the fact that the secondary sources
do not match the wave field of the required Neu-
mann Green’s function for that situation. As the
frequency of the plane wave increases, also the re-
produced wave fields of WFS and HOA show an
increasingly amount of artifacts. For instance, in
Fig. 6(e) strong interferences can be observed in the
upper part of the listening area. These constitute
spatial aliasing due to spectral overlaps in the driv-
ing function for WFS. It can be seen in Fig. 6(f) for
HOA, that the area where the reproduced wave field
matches the desired plane wave is approximately a
circular region around the center of the listening
area. Outside of this area strong sampling artifacts
occur. However, these artifacts look quite different
than for WFS.
Hence, the spatial structure of the sampling arti-
facts for WFS and HOA differ significantly. This can
be observed more clearly in Fig. 7(e) and Fig. 7(f).
While the spatial aliasing artifacts for WFS are less
pronounced with an increasing distance of the lis-
tener to the active secondary sources, the reproduc-
tion error of HOA is minimal in the center of the
listening area. Furthermore, the artifacts for WFS
are quite unstructured, while these are much more
structured for HOA. Especially in Fig. 7(f), the ar-
tifacts on the sides constitute approximately plane
waves which are tilted towards the upmost loud-
speakers. This could imply, that these loudspeakers
can be localized quite well by the listeners. Further
investigation of the angular energy distribution of
the driving function supports this observation. Al-
most all energy in the driving function is assigned to
the upmost loudspeaker for higher frequencies. For
WFS this is not the case. For HOA, also the level of
the sampling artifacts varies strongly with frequency
and to some lesser extend with the position. This
could imply strong colorations for listener positions
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Fig. 6: Reproduced wave field for a monochromatic virtual plane wave.
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(c) WFS (fpw = 2500 Hz)
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Fig. 7: Reproduced wave field for a monochromatic virtual plane wave.
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outside of the center in HOA.
For both WFS and HOA, this downsizing of the area
where the desired wave field is reproduced correctly
continues as the frequency increases further.

5.4. Reproduced Aliasing to Signal Ratio

In order to analyze the reproduction errors in a more
quantitative fashion, the RASR was computed for
a band-limited plane wave with varying bandwidth
bpw. The results are illustrated in Figures 8 and
9. The findings from the previous section, with re-
spect to the spatial structure of the spatial sampling
artifacts, are confirmed clearly. It can be seen addi-
tionally that for HOA, similar to WFS, the sampling
artifacts are less pronounced for listeners in the lower
part of the listening area. This is due to the fact that
the upper loudspeakers are the ones driven with the
highest levels. For both, WFS and HOA, the overall
size of the almost artifact free reproduction area is
quite similar. However, HOA has the advantage that
this area is located at a fixed position. Only the size
varies here. For the highest bandwidth shown here
this circular region has a diameter of about 1 m. In
order to be able to reproduce the wave field accu-
rately around the head of one listener, this region
should be at least 30 cm in diameter. Further sim-
ulations revealed that the reproduction of a plane
wave with a frequency up to 10 kHz is possible just
around the head of one listener without severe sam-
pling artifacts.
Its also interesting to note, that the energy of the
aliasing contributions increases in a quite steep fash-
ion.

6. CONCLUSION

This paper presents a comparison of two mas-
sive multichannel sound reproduction techniques,
namely WFS and HOA. We started off with a formu-
lation of both approaches in a common framework
which included their underlying physical basis and
the realization by a spatially discrete distribution
of secondary sources. This mathematical view was
complemented by numerical simulations of the re-
produced wave fields. The results presented in this
paper revealed a number of differences between WFS
and HOA. Some of the differences between both ap-
proaches that have been reported in the literature
where confirmed. However, also a number of new
findings could be derived.
The main findings for WFS are: (1) it provides an

explicit formulation of the driving function for ar-
bitrary convex secondary source contours, (2) the
computations of the driving signals can be realized
quite cheaply, (3) even when discarding spatial sam-
pling, the desired wave field is not reproduced ex-
actly within the listening area for curved secondary
source contours, (4) the area with almost sampling
artifact-free reproduction is not at a constant po-
sition, (5) the sampling artifacts exhibit irregular
structures and (6) are potentially perceived as col-
oration of the virtual source [22].
The main findings for HOA are: (1) explicit formu-
lations of the driving function can only be derived by
considering a particular geometry, (2) the computa-
tion of the driving signals might become quite com-
plex due to the special functions involved, (3) exact
reproduction within the listening area is in principle
possible, (4) almost sampling artifact-free reproduc-
tion is possible in a circular region around the listen-
ing area, (5) the sampling artifacts exhibit quite reg-
ular structures, (6) the sampling artifacts may give
rise to strong coloration of the virtual source and (7)
HOA potentially suffers from non-uniqueness and ill-
conditioning.
These results show that WFS and HOA are not sim-
ilar even when discarding spatial sampling and that
the sampling artifacts of both approaches differ sig-
nificantly from each other. Sound reproduction sys-
tems are mainly designed for human listeners and
hence their perceptual difference is of major inter-
est. The differences between WFS and HOA derived
in this paper are based on mathematical formula-
tions and numerical simulations. Their psychoacous-
tic impact is not clear at the current stage. How-
ever, the results might give some indications. For
instance, the structure of the sampling artifacts for
HOA indicates that listeners perceive the sound as
coming from one distinct position on the secondary
source contour for the reproduction of a plane wave.
This effect was already observed in a first informal
listening test. More work has to be performed for
a subjective comparison of both approaches. The
work presented in this paper may lay the ground for
the design of these experiments.
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(a) WFS (bpw = 500 Hz) (b) HOA (bpw = 500 Hz)

(c) WFS (bpw = 1000 Hz) (d) HOA (bpw = 1000 Hz)

(e) WFS (bpw = 1500 Hz) (f) HOA (bpw = 1500 Hz)

Fig. 8: Reproduced aliasing to signal ratio RASR(x, bpw) for a bandlimited virtual plane wave.
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(a) WFS (bpw = 2000 Hz) (b) HOA (bpw = 2000 Hz)

(c) WFS (bpw = 2500 Hz) (d) HOA (bpw = 2500 Hz)

(e) WFS (bpw = 3000 Hz) (f) HOA (bpw = 3000 Hz)

Fig. 9: Reproduced aliasing to signal ratio RASR(x, bpw) for a bandlimited virtual plane wave.
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