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pROBLEMS OF ERROR-MASKING IN AUDIO DATA COMPRESSION SYSTEMS

Michael A. Gerzon

Technical ConsuLtant, 52 Walton Crescent, Oxford OX1 2JQ, U.K.

Abstract

This paper notes the failure of spectral masking of coding errors by
wanted signals when the error is highly cross-correlated with the signal.
This can reduce masking thresholds by 30 dB. The existence of such
cross-correlation is proved for all Shannon-efficient audio data
compression systems. At low bit rates, these_ can exhibit up to 4dB gain
modulation. An improved cross-spectral class of models for masking
taking account of these effects is discussed.

1. INTRODUCTION

In recent years, there has been much interest in developing systems
for data compression of very high quality audio into bit rates of less
than about 4 bits/sample/audio channel. Any system operating at such low
bit rates produces objectively quite large error signals, and the
perceptual quality of such systems relies on the error in the coding/
decoding process_being masked by the wanted signal.

It is the object of this paper to note that conventional models for
spectral masking of errors break down in certain situations, and that
errors as much as 30 dB smaller than those deemed inaudible by conventional
models of spectral masking can be heard in some situations. A further aim
of this paper is to suggest precisely aspects of what causes spectral
masking models to break down - briefly we suggest that masking breaks down
when the error is highly cross-correlated with the wanted signal.

A specific problem that renders errors audible is identified - namely
the effect of varying signal-dependent amplitude modulation of wanted
signal components. Such amplitude modulation produces an "unstable" effect
skin to the familiar symptoms of mistracking in noise reduction systems.
By means of a general geometric argument from Shannon information theory,
this paper proves that all Shannon-efficient coding systems produce
highly significant amounts of amplitude modulation of the wanted signal,
and that the error-signal in such coding systems is highly cross-correlated
with the wanted signal. Despite the generality of this result, we are
unaware of any prior account of it in the literature apart from a recent
early version of this paper [1_.

We go on to propose a modified model for spectral masking which involves
not only the spectra of the wanted and error signals, but also their
cross-spectra, which takes into account cross-correlations between the
signal and the error. An appendix discusses the notion of short-term
spectra and cross-spectra and their measurement. Cross-spectral ideas are
also applied to the problem of directional masking in stereo signals,
since conventional monophonic masking can break down if the direction of
the error signal differs from that of the wanted signal.
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The pape_ also discusses some strategies for audio data compression that
can reduce or even totally eliminate amplitude modulation and error
correlation effects. These all involve modifying the quantisers for
signal components, and, by the earlier result, inevitably compromise the
Shannon-efficiency of the coding.

While much of this paper is necessarily at a quite theoretical level,
it is important not to be "blinded by the science" into not realising the
empirical significance of this work in high-quality audio applications.
The theoretical complexities of coding theory (see the collection of
references [2_)can mean that experts in that theory can be inadequately
aware of the perculiar subtletie_ of high quality audio. We therefore
deem it appropriate to begin with a general discussion of the specific
problems associated with high quality audio from the viewpoint of skilled
audio professionals, since we feel that traditional engineering eriteria
often do not take adequate account of these.

2. HIGH QUALITY AUDIO

Traditional work on audio data compression dating from the 1960's and
1970's [2_ was largely aimed at telephone-grade audio, and it is tempting
to regard high-quality audio data compression as being quantitatively but
not qualitatively different from these. Among the obvious quantitative
differences between low- and high-quality audio are the following:
(i) improved signal-to-noise ratio (up to around 100 or 120 dB)
(ii) enlarged dynamic range
(iii) widened frequency range to beyond 20 kHz
iv) lower required modulation noise
v) lower required nonlinear distortion
vi) a wider range of signal statistics
vii) tightened frequency and phase response flatness
viii) a wider range of transient attack and decay characteristics
ix) a wider dynamic range between different simultaneously-occuring

components of the power spectrum.

A classic text of G. Slot [33 from the early 1960's is an excellent
summary of this traditional engineering approach that regards high quality
audio as differing from low-quality audio mainly in these quantitative
aspects.

Over the last 15 years, both among hi-fi experts and a_ong studio
professionals, it has become widely believed that these quantitative
improvements are not, by themselves, enough to ensure excellent perform-
ance on high-quality program material. While this has given rise to
heated debate between a so-called "objectivist" and "subjectivist" schools
of thought, it is not our intention to enter into this debate, but simply
to note that, compared to telephone-grade audio, there are also some
profound qualitative differences in high-quality audio not encompassed
by the quantitative differences listed above.

In telephone-grade audio, the signal generally consists of just a single
sound source (a human voice) conveying primarily a verbal message, and
also some cues conveyed by tone of voice and articulation about emotional
content. In contrast, a high-quality music signal can consist of numerous
separate sound sources - e.g. 100 orchestral instruments, or up to 48 mono
sounds from a multitraok tape - plus additional reverberant and ambient



information derived either from a large numbercf reflections from the
boundaries of an actual room or from a large number of effects units such
as digital reverberators. Moreover, the music is derived from an inter-
active process whereby each musical line affects the performance of the
others. Thus high-quality audio not only conveys a large number of
separate messages, each of which can be followed separately, but there are
numerous inter-relationships between these messages, and a listener might
choose to listen at a level that concentrates on these complex inter-
relationships. The process of listening, and of determining what kind of
messages or inter-relationships between messages are derived by the
listener, is well beyond current knowledge, and we have no good theoret-
ical model for the listener's processing of information.

This ignorance does not preclude the attempt to find objective
parameters that correlate with the subjective performance of a high-
-quality audio system, but it does suggest that parameters derived either
from tests on simplified test stimuli or from tests on listeners with a
narrow range of analytic listening modes on complex stimuli_ may be
misleading.

Because of this difficulty, any "objective" hypothesis about acceptable
signal degradation should be treated conservatively, with a constant
suspicion that there may be circumstances in which much smaller
degradations may still be audible. The use of "objective" hypotheses
should ideally be backed up by a detailed model of how such degradations
might be measured - even if the measurement is in practice difficult - in
order to avoid untestable hypotheses. In the design of high-quality
coding systems, one should, as far as reasonably possible, eliminate any
faults capable of being avoided altogether.

Besides the qualitative difference of a multiplicity of sound sources,
high-quality audio also differs from telephone-grade audio in its use of
stereo. Stereo signals cannot be treated merely as bwc separate mono
channels, but the precise relationships between the signal components in
the two channels are also important.

In engineering for high-qualityaudio, it is a definite advantage to
have extensive practical experience of the problems of recording and
reproducing sound, and of the kind of cues a listener is capable of
perceiving in recordings - there is much that is not in any text book or
research paper that is a matter of experience among practitioners. By way
of example, it is found that certain recording techniques [4] and
equipment preserve cues about the distance of sounds - and it is thought
that these cues involve preserving the amplitude and time delay of
early reflections. It is a matter of subjective experience that much
highly-specified equipment disturbs or destroys the sense of distance,
whereas other more poorly specified equipment can preserve it. Although
the factors involved are not well understood, it is believed that
accurate preservation of signal envelope information may be important,
and that signal-dependent alterations of gain too small to be audible
on simple test stimuli may be enough to damage this cue.

3. SPECTRAL MASKING

It is not the intention of this paper to specify any detailed model of
how spectral masking works, but merely to discuss a class of models, and
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to show that one has to go outside this whole class of models to get
reliable information about masking.

Spectral masking is based on the following general idea: If one has
two signals, a wanted signal and an error signal, then the masking of the
error signal by the wanted signal can be predicted purely from the power
spectra of the two signals. From the power spectrum of the wanted signal,
one computes a spectral threshold, and if the error power spectrum lies
below this threshold at all frequencies, the error is presumed to be
inaudible.

This basic theoretical model of spectral masking needs to be fleshed out
with quite a blt of detail to be useful for predicting error audibility.
First, the model only fully applies to signals with stationary statistics,
and under transient signal conditions, it is important to ensure quite
a high degree of temporal coincidence of the short-term power spectra
of the signal and error (to with the order of 2 ms) to use spectral
masking - and there is an uncertainty as to what precisely constitutes a
short-term power spectrum for this application. In practice, the trade-
offs for assessing spectral masking for transient signals are determined
in a partly empirical way.

The actual determination of the spectral threshold for a given wanted-
signal power spectrum is also not completely understood, but the general
procedure used is along the following lines. One first determine_
experimentally the threshold for narrowband wanted and error signals as
the frequency of the two signals varies. Such masking curves are very
familiar [5,6_ and for each masking frequency resemble the power
response of a moderately high-Q resonant filter, at least until they reach
down to the level of the absolute threshold of hearing.

For a complex signal with an extended power spectrum, the spectral
threshold is determined by a convolution-type me%hod - although no-one can
be sure that any precise procedure is quite right. Essentially, for each
frequency, one computes the spectral threshold curve at that frequency for
the signal power within a critical bandwidth of that frequency, and then
computes an integral, weighted by the power density of the power spectrum,
of all the values of the thresho/dspectrum caused by different frequency
components of the wanted-signal spectrum. This computation in effect
computes the original power spectrum convoluted, in a frequency-dependent
fashion, by the masking threshold curves for each frequency.

It is specifically found that error signals within the critical band of
a masking signal are masked at levels only a few dB lower - typically
between 4 and ii dB down. Although the masking threshold falls rapidly
as the difference between error and wanted signals increases, when the
two signals have similar frequency content, errors only a few dB down are
well masked.

Although the precise details of concrete spectral masking models may be
somewhat uncertain, the above encapsulates all we need to know about
these models. We shall show that this class of models, as stated above,
is conceptually flawedand not in accordance with the facts, and suggest
an alternative that includes the undoubted successes of spectral masking
models while taking account of situations where they fail to work.
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4. ERROR CORRELATION

We now demonstrate that spectral masking models fail to work in some
situations by means of a concrete and well-understood example. It is well
known that for middle frequencies and normal middle sound levels, the ears
can typically hear gain changes of the order of 1 dB, and that at the most
critical levels and frequencies, gain changes of 0.3 dB are audible.

Our example is simply to consider an amplitude modulated signal with a
0.3 dB gain change, where the gain change is sufficiently slow to prevent
modulation side:bands being widely separated in frequency from the original
signal - e.g. if the modulation waveform has no components above say 20 Hz,
and where the extreme gains are held long enough for the ear to register
the gain change - for example consider a sinewave modulated by a
bandlimited step waveform, where the gain varies from I - 0.016 to 1
1 + 0.016, as in figure 1. The total gain variation iB around 0.3 dB.
However, compared to the original signal, the error signal has amplitude
gain varying between -0.016 and +0.016 - i.e. is about 36 dB below the
original signal. (see figure 1).

In this example, we have seen that an error signal with identical power
spectrum to the wanted signal can have an audible effect even if 36 dB
down - yet a spectral masking model would predict that it should not be
audible until it is between 4 and tl dB down.

This example is rather a trivial one, and commonsense would prevent
anyone from attempting to use a spectral masking model to predict the
audibility of th_ error. However, it does illustrate that certain kinds
of error signal are much more poorly masked than others with an identical
power spectrum. The problem arises with much more complex wanted and
error signals. How can one know whether an error is of a kind to which
spectral masking theory can be applied, and when it is of an unsuitable
kind?

It is certainly not possible to give entirely definitive answers to
this question, hut there ilsa reasonable way of distingishing amplitude
modulation type error from other errors. This is to look not just at the
spectra of the wanted and error signals, but also at their cross-spectra.
This is related to the generally more familiar notion of cross-correl-
ation.

For two signals f(t) and g(t), functions of time t, their cross-
correlation is the function

Cf,g(_) = it -_-1Y-TTf(t)g(t+_,) dt . (1)T--_

The cross-correlation of a signal with itself is termed the
auto-correlation of that signal, and its Fourier transform is well-known
to be the power spectrum of that signal. In a similar manner, the
Fourier transform of the cross-correlation between two signals is termed
the cross-spectrum of the two signals. While the power spectrum of a
signal is positive at all frequencies, the cross-spectrum is a complex-
-valued quantity.

The theory of cross-spectra is given in the textbook of Yaglom [7], It
is often convenient to specify the spectra and cross-spectra of signals
by means of the spectral matrix. Let f(t) be a wanted signal, and let the
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modified signal after passing through a coding and decoding system be
denoted by Qf(t), so that the error signal is

g(t)= Qf(t)-f(t). (2)

Then the spectral matrix of the signal f and error g is the matrix

I Sf'f(F)Sf'_(F)I (3)%,f(F) S_,_(F) ,

where S_ (F) as a function of frequency F denotes the cross-spectrum,
i.e. th_'_ourier transform cf equ. (i), of two signals f and g. The
cross-spectral matrix is a positive matrix, which means that:

,f(F)'_ 0 (4a)Sf

S_,%(F) >.- 0 (4b)

Sf,_(F)* = S ,f(F) (4°)

and [Sf,a(F)[ 2 _ Sf,f(F) S_,_.(F) , (4d.).

where * indicates taking the complex conjugate of a complex number.

If we denote the real and imaginary parts of a complex number e by Re_
and Ime respectively, then we can specify the degree of cross-correlation
of the signal f(t) with the error signal _(t) at frequency F by the two
quantities:

_l

-1 <_ Re[Sf,_(F)}/{SF,f(F)S¢,%(F)_ z <_.i (5)
and

_m{Sf,_(F)}/{Sf,f(F)%,_(F)__ _ 1 , (S)
which are respectively the real and imaginary parts of the correlation
index of the signal and error at frequency F.

If the error has the form of a random noise signal, or of an amplitude-
modulated random noise signal, then the cross-spectrum, and hence cross-
correlation is zero. Experiments on masking normally use signals with
zero cross-spectrum. However, in the case of an amplitude-modulation
error, where _(t) is an amplitude modulation of f(t), then the cross-
-spectrum becomes nonzero, with a zero imaginary part, but with a real
part that causes the correlation index to become +t. If instead, the
error signal is caused by a (small) degree of phase modulation of f(t),
then it can be shown that the real part of the correlation ihdex is zero,
but that the imaginary part becomes near + 1.

Th,,sa non-zero cross-spectrum between signal and error is indicative
of the error containing components caused by gain errors (for real parts
of the cross-spectrum) at frequency F,and components caused by phase
errors (for imaginary parts of the cross-spectrum). In the absense of
gain and phase ez"rors,i.e. when the cross-spectrum is zero, it is
reasonable to use spectral masking theory to predict error audibility.

However, if the c_oss-spectrum is non-zero, and especially if it
corresponds to a_continually fluctuating gain or phase, then it is not to
be expected that spectral masking theory will necessarily be applicable.
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We are unaware of any reliable data on the perceptual effect of
signal-dependent gain and phase modulation errors, although it is known
that errors caused by random amplitude modulation are much more audible
than those of a similar energy caused by random phase or frequency
modulation. Empirical experience with the design of dynamic filters,
including both those with phase compensation (which do not suffer from
phase modulation effects) and those without (which do), suggests that
when there is signal-dependence, phase and amplitude modulation may have
similar degrees of audibility, but that they have perceptually different
qualities.

Noiselike errors with zero cross-spectrum tend to sound like added
noises rather than as modifications of the quality of the wanted signal
(although if the noise spectrum imitates that cf the wanted signal
closely, this partially ceases to be true, and the error then takes on a
distinctive "vocoder" quality rather like the wanted signal with an added
"gargling" effect). In contrast, amplitude modulation errors which have
a real cross-spectzum with the signal tend to cause a distinctive quality
of "instability" which is perceived not as an added sound, but as a
modification of the character of the wanted sound. This effect is

familiar in dynamic processors and also in drop-out effects with analogue
tape. Phase-modulation errors are aisc heard as a modification of the
quality of the wanted signal, but have a perceptual effect commonly
associated with "phaser" effects devices, which is heazd as pitch changes
in components of the wanted sound - providing the phase modulation is not
too fast.

In the absence of experimental data, it is difficult to quantify the
degree to which different kinds of error are audible, but in general, the
effect of errors with large cross-spectrum is quite different from that of
uncorrelated errors, and the former type of errors are capable of being
heard in much smaller quantities. We shall later discuss the possible
uses of the cross-spectr-m to study masking of errors in more detail.

However, we have already seen that amplitude modulation by around 0.3
dB is certainly audible in some situations, so that it seems wise to keep
any amplitude modulation effects in coding/decoding systems at least down
to this level. Experience suggests that on critical high-quality audio
material containing complex distance cues, much smaller degrees of
signal-dependent amplitude modulation may still have an audible effect on
such cues, so that ideally, amplitude modulation effects should be
virtually eliminated in systems intended for very high quality use.

The above cross-spectral account of gain and phase modulation effects
has an important weakness - namely that the notion of cress-correlation
(1), and hence of cross-spectrum, used involved taking an average over all
time. In practice, one needs a notion of short-term spectra and
cross-spectra that involve averages taken typically over time intervals of
the order of 30 to 50 ms, but which preserves the positivity of the
spectral matrix. The general theory of such short-term spectra and
cross-spectra appears not to have been published elsewhere, and is too
complex for the main body of this paper. However, we present a summary
of such a theory, based on that for the Wigner distribution, in
appendix A of this paper. That appendix also describes relatively
simple means of measuring short-term spectra and cross-spectra of signals
and errors.
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5. GAIN MODULATION IN EFFICIENT CODING

Thi_ section gives a theorem that is the central theoretical result of
this paper, which asserts that Shannon-efficient coding/decoding systems
always have gain erro_-s iu the wanted signal, and the error-signals of
such coding systems are cross-correlated with the wanted signal. The gain
error is preoeisely quantified and shown to be of a magnitude likely to
have audible consequences in low bit rate systems.

There is a long-known basic theory, known as Shannon Rate-Distortion
theory (see Davisson [8]) that, for any given wanted-signal power spectrum
and an upper bound on the desired error-signal power spectrum, gives a
lower bound, in principle attainable to an arbitrarily close approxim-
ation, on the bit rate required to convey the wanted signal with the
des ired error spectrum. We do not need the details cf this theory here,
see [8], but note that this theory is strictly applicable only to wanted
signals with Gaussian statistics, but actually works reasonably well also
for the mildly non-Gaussian statistics of typical audio signals. Practical
coding systems approximate reasonably well to the bit rates of ideal
Shannon coding for a given wanted-signal power spectrum and desired error-
-signal power spectrum, giving of the order of 2 dB greater noise power
than the ideal Shannon case.

Coding systems approximating the Shannon ideal include principal-value
coding methods [9,10,11] which involve separate quantisation of a fairly
large number of transform or spectral-band components, and adaptive pulse
code modulation (ADPCM) or predictive coding methods [i0,12], which use
prediction with noise shaping [13] of the error component to achieve
similar results. There also exist hybrid systems, such as the Solid State
Logic apt-X 100 system, that split the audio signal into a small number of
rather wide frequency bands and use predictive coding within each band. A
layman's summary of the potential advantages and problems in these
approaches is given by the author in ref. [14].

The Shannon theory is at the root of all modern efficient audio coding
methods, and all approximations to ideal Shannon coding attempt to
minimise a (suitably spectrally weighted) rms error energy for the bit-
-rate used within the class of coding strategies used. Although there has
_een much questioning of the appropriateness of wieghted rms error
criteria in the coding literature (e.g. see [8]), this questioning has
generally taken the form of finding an alternative error magnitude measure
such as a weighted n-th root mean n-th power measure, but in both audio
and image coding applications, no such measure that reliably predicts the
perceptual effects of ezTor signals has been found.

We are unaware of any study that concentrates not on the magnitude of
the error itself (however weighted and computed) but on the cross-correl-
ation of the error with the wanted signal - but we have seen earlier that

this may be perceptually far more important in some situations. (Although
not strictly applicable to this paper, we report that we have found that
cress-correlations between the wanted and error signals are also of
perceptual importance in video and image coding systems). This may be a
reason why the following theorem in coding theory is not generally known.
We are unaware of any account of this result in the literature, although
this may simply be our own ignorance.



The definition of "efficiency" in Shannon coding theory has involved

minimising a (suitably weighted) mean square error energy, and coding

strategies that do not minimise error energy (with an appropriate

perceptual weighting) have been regarded as ,,inefficient". Since these

terms have a judgemental quality, it is relevant to note that such notions

of "efficiency" are based on a very narrow technical criterion that

in general may be perceptually inappropriate.

Let the wanted signal be f and the result of coding and decoding that

signal be Qf, and denote the error signal by

_f = Q/ - f . (7)

Moreover, denote the (weighted) r.m.s, level of a signal f by the

notation IfU. signals can be regarded as vectors in an abstract space

(known tecttnically as Hilbert Space [15]) having a geometric length

IlfU in that space. Although we shall use geometrical arguments in

this space in a heuristic cor_nonsense fashion, the arguments used can

be made mathematically rigorous in Hilbert Space [15].

Theorem Let f, Q_ and &f = Qf- f be respectively a wanted signal,

a signal that results from the wanted signal passing through a coding

and decoding system, and the resulting error signal. Suppose further

that we have a specified class of encoding/decoding systems such that

whenever one system within the class gives result Qf, another system

within the class will give results kQ_for arbitrary positive gain k.

Further,suppose that the coding system used is ',efficient" in the

Shannon rms sense, i.e. that within the specified class of coding/decoding

systems and for a chosen weighted rmsmeasure f-+ Ilfl],the coding
system minimises the rms error Ilcfl].

Then

BfU2= 110_112+ Ilefll2 (8)
and the component of Qfcross-correlated with f eguals

f_ IIQ,f H2: f, (9)

which has an amplitude gain

I}Qf]12/llf)l 2 = 1 - ( II 6fJ]2/llf]l 2) · (10)

The component of the error tf cross-correlated with f equals

II s,fll2 f (11)

Ufll 2

and the rms magnitude of the component _ of the error ef un-cross-corr-

elated with f is

}1_}1= ()lr_f_lMII)ll_fll· (12>

In other words, this theorem asserts that "efficient" coding systems,

in the Shannon rms sense described earlier, inevitably involve amplitude

modulation of thew anted signal with gain 1 - (_f12/]]fl]2). We first

sketch the proof of the theorem before applying it to cases of practical

consequence.
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In figure 2, we show the two vectors representing the wanted signal

and the coded/decoded signal Qf, along with the vector along the

third side of the triangle representing _. If the length I}_1] of

8f is supposed to be minimised, then since kQf is, for arbitrary k,

a permissible coded/decoded signal within the class of possible

coding/decoding systems considered, then we conclude that the vector

¢_must be at right angles (or "orthogonal,') to Qf as in figure 3, so

that its length is minimised. By Pythagoras' theorem applied to the

largest right angled triangle in figure 3, we get equ. (8) of the theorem.

The component of Q/cross-correlated with f is obtained by taking the

orthogonal projection _^ of Qfas shown in figure 3, and simple geometry

shows that _^ in figure 3 is given by equ. (9) of the theorem. Equ.

(10) of the theorem follows from equs. (8) and (9). The component of

_fcross-correlated with f is the orthogonal projection f - _' of _f

onto _ as shown in fig. 3, and its length is II_ - _^_ =

II_^l{(1- [[JQ/I[2/I_I(2]) by equ. (10) = I{_ 1](ll_l12/)]fl]2) by equ. (8),

which gives equ. (11).

Finally, the component _ of _fun-cross-correlated with f is that

component orthogonal to f shown in figure 3, and by similarity of
triangles,

which gives equ. (12), completing the sketch proof of the theorem.

I_principal-value coding systems [9], we can quantify the actual

amplitude gain (9) and the uncorrelated (i.e. noise-like) error

magnitude actually encountered in practical systems that use quantisers

that minimise (weighted) r.m.s, error, such as those of J. Max [16]

for Gaussian signal statistics, or those of Paez and Glisson [17]

for Laplacian and Garm_a probability distribution function signal

statistics. In these papers, the error energy )l_12/_lf_ 2 for least

rms error n-level guantisers were computed, both for the cases of

equilevel quantisers and for optimum (in the least error energy

sense) non-uniform quantisers, and the associated optimum coding

entropy (bit rate) for these quantlsers was also computed by Max

- we have performed s similar computation for the entropy of the

quantisers of Paez & Glisson [17] for the Laplacian signal statistics

case. Wood [18] has shown that, for a given error energy, equilevel

optimumquantisers generally Give the lowest value of coding entropy

(bit rate), although this is only an approximate result.

Based on the results tabulated by Max [16] for equilevel optimum

quantisers for Gaussian signal statistics, we have used equs. (10)
and (12) to compute for each n the gain modulation and un-cross-

-correlated error signal level (in dB relative to the wanted signal

level) for a Max n-level quantiser, and the results are tabulated

in Table 1 and figure 4. The last colum_ of table 1 will be explained

later. The "gain" column shows the amplitude gain of that component

_^ of Q/cross-correlated with _ relative to that of _, and the
"uncorrelated noise" column the level in dB of _ relative to that

of $.

Table 2 shows similar results based on the data of Paez and Glisson

[17] for "optimum" equilevel n-level quantisers for Laplacian

signal statistics - a statistics often approximated in the coding

of many audio signals such as speech and some "spikey" musical
waveforms.
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For Gaussian signal statistics, it will be seen from table 1 and

figure 4 that the gain errors at low bit rates exceed 0.3 dB for

Max quantisers with 8 levels or less, corresponding to (entropy

coded) bit rates below 2.76 bits. Thus all audible signal compon-

ents encoded at below this bit rate are liable to perceptually

significant gain errors. These errors reach a dramatic 3.92 dB

for a rate of 1 bit, 1.83 dB for 1.536 bits, and 1.10 dB even at

a rate of around 2 bits. The gain error does not fall below 0.1

dB (which may well still be perceptually significant in practice)

until more than 16 levels, i.e. a bit rate of over 3.6 bits, are

used. The results for gain error versus bit rate are very similar

for equilevel quantisers matched to Laplacian signal statistics,
as shown in Table 2.

Therefore, transform or spectral-band coding systems using "optimum"

Max-type quantisers matched to signal statistics in each band at

a bit rate of less than about 3 bits in any perceptually significant

band at any time are liable to suffer from perceptually significant

gain modulation effects and errors.

Unfortunately, even this still understates the true gain errors

encountered in encoding systems using Max-type gnantisers, for several
reasons:-

(i) in practice, not the whole bit rate allocated to each sub-

-band or transform component is allocated to conveying just the

quantiser outputs - a significant overhead is taken up by the error

protection redundancy required with entropy coding, and by additional

information required to convey the quantiser gain, quantiser statistics
and bit-allocation data.

(ii) the results of tables 1 and 2 assume that the quantiser is

perfectly matched to the instantaneous signal statistics. In practice,

it is impossible to have certain knowledge of the actual signal

statistics at each moment due to statistical fluctuations in the

means used to estimate them. This results in all additional,

generally very significant, unpredictable gain fluctuation of the

quantised signal component due to the mismatch.

(iii) if n stages of coding and decoding are used in series, then

random-type noise errors build up in power proportional to n, but

correlated (e.g. gain) errors build up in amplitude proportional

to n& since they add up coherently, giving an error power proportional

to n_. Thus the effect of cascading coding/decoding systems affects
gain errors much more severely than random (uncorrelated) noise-

-type errors. If, for professional uses, one requires that the

results of up to 10 stages of coding and decoding to be permissable

(as suggested in [14], and often required by broadcasters), with

a combined gain error of 0.3 dB, then one has to use a bit rate

of not less than 4.45 bits for coded signal components according

to table 1 - which would mean in practice using systems coding at

a rate of at least 5 or 6 bits per sample per audio channel.

(iv) There is also a distinct possibility that for critical audio-

phile material, the ears might actually hear degradations due to

signal-dependent fluctuating gain errors well below 0.3 dB. Most

workers aware of this possibility believe that gain fluctuations

should be below 0.1 dB, and a few have suggested that much smaller

fluctuation - of the order of 0.01 dB or even 0.001 dB might have
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audible significance for critical listening over good audio equip-

ment to very high quality prograranes. Such a worst-case situation

would require the use of Max quantisers with over 160 levels for

a 1-pass encoding/decoding system, and not less than 500 levels

for a 10-pass professional coding/decoding requirement. Such systems,

coding at 9 or more bits per sample per audio channel, would no

longer qualify for the appelation "low bit rate"{ Admittedly, this

is a worst-case extreme, but it does illustrate the potential

difficulties encountered in audiophile applications with gain
modulation effects.

6. REDUCING GAIN MODULATION EFFECTS

The above results suggest that, in some situations, serious signal-

-dependent gain modulation effects of some signal components will

be encountered with all practical low-bit-rate coding systems using

bit allocation among transform or spectral band signal components,

if the systems use Max-type optimal quantisers. We therefore seek

strategies for reducing or eliminating such gain modulation effects.

There are two broad strategies that can be used: the first strategy

is to continue to use Max quantisers but to increase the reproduced

gain of the quantised signal to compensate for the computed gain

loss in the quantiser. Such "gain compensated', Max quantisers

produce a coded/decoded signal Q'f and error &'f as shown in figure

5, and here the error vector is at right angles to the wanted signal

f, so that $'f is un-cross-correlated with the wanted signal f.

One price to be paid is that the error enercw is now increased

by the square of the amplitude gain }Jf{12/lIQf_12_as shown in the

last columns of tables 1 and 2. The resulting noise energy is

larger than that of the original quantisers without gain compens-

ation listed in refs. [16] and [17], since the gain compensated

quantiser is no longer designed to minimise mean square error energy

without constraint, but rather to minimise the mean square error

energy subject to the constraint that the error have zero cross-

-correlation with the wanted signal. Inevitably (according to

the theorem of the last section), this reduces the Shannon coding

efficiency, to the extent that a 3-level gain compensated Max

quantiser has about the the same un-cross-correlated noise level

as a two-level Max quantiser (see table 1). This increased noise

level may require some alteration of the bit-allocation strategy

in coding systems using low bit rates in order to retain masking
of noise.

However, while gain compensated Max quantisers will reduce

systematic gain errors, they will not overcome the problem that

one does not have _priori knowledge of signal statistics, and

that, especially under transient signal conditions, there may be

a marked mismatch between assumed and actual signal statistics,

resulting in unpredictable gain errors (item (ii) above).

If a signal indeed has Gaussian statistics (and even this is
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uncertain), then a quantiser optimised for a different r.m.s, signal

level _ to that u A of the actual signal will suffer from a gain

error equal to the ratio of the length of the orthogonal projection

of the gain-compensated coded signal Q'_ onto _ (see fig. 6) to that

of _. While we have not systematically computed the graph of this

gain error against C/c A , it is very dependent on the precise

quantiser used. For example, 2-level and 3-level gain-compensated

Max quantisershave a gain curve of the general form shown schematically

in figure 7.

It is possible to design quantiser characteristics using 3 or more

levels that minimise the gain error caused by errors in C/_ A near
u/c A = 1, but such quantisers will no longer be gain-compensated

Max quantisers, and will suffer an even larger loss of Shannon coding

efficiency. While we believe that the theoretical optimisation of

such quantisers which are gain-insensitive to level mismatch will

be a worthwhile excercise, one then also has the additional problem

of minimising gain errors also for departures from Gaussian statistics.
The more one attempts to make the quantiser gain insensitive to

mismatches in both level and statistics, the poorer is the Shannon

efficiency, and the larger the number of quantisation levels

required.

Pending the results of detailed numerical design studies, it is

our best guess ghat the gain-compensated quantiser route to reducing

slgnal-dependent gain modulation effects is likely to result in poor

coding efficienoy in the quantiser, and we are sceptical that this

approach is the best way forward.

A second, and much more promising, route for reducing gain modulation

effects is to replace deterministic quantisers by stochastic

quantisers - i.e. those whose performance is probabilistic. Such

a quantiser was first described by Roberts [19], namely the subtractive-

ly dithered quantiser [20] shown in fig. 8. In this quantiser,

a pseudo-random noise ("dither") is added to the signal which is

then quantised by an n-level equilevel quantiser, and is decoded

by subtracting a synchronised reconstructed replica of the dither

from the output of the quantiser. The optimum dither noise in this

application is that with a uniform probability distribution function

(pdf) with peak-to-peak level difference equal to the step size of

the quantiser.

Such a subtractive uniformly dithered quantiser gives an output

which equals the input plus an uncorrelated uniform pdf noise signal,

provided only that the input signal level does not exceed the + or

- peak quantiser levels. Larger signals suffer from clipping distortion.

(See [19-20].

So, provided that one chooses an n-level quantiser whose peak levels

exceed that of the signal component to be quantised, a Roberts subtr-

actively dithered quantiser gives an error that has zero cross-correl-
ation with the wanted signal, and no gain error (or, indeed, any

nonlinear distortion) of the wanted signal.

However, subtractive dither oniy wor_s correctly with equilevel

("uniform") quantisers, although entropy coding of the output of

such a quantiser can be used to reduce the transmitted bit rate.
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Unfortunately, unlike the case of un_dithered equilevel quantisers,

one cannot accept occasional large-level signal excursions beyond

the peak levels of the subtractively dithered quantiser, since these
cause clipping and amplitude modulation effects. This means that

much greater care has to be taken to scale the gain of the signal

to be quantised to avoid clipping, and for a given signal-to-noise

ratio one has to use quantisers with many more levels - which requires

the use of more complicated entropy coding strategies to bring the

bit-rate back down again.

Thus the use of subtractive dither somewhat complicates the

practical design of quantisers and their associated entropy coding,

bit rate allocation and gain ranging. In general, the use of

subtractive dither round an n-level quantiser reduces its signal

-to-noise ratio to that associated with an (n-1)-level undithered

equilevel quantiser, resulting in a significant loss of Shannon

efficiency at iow bit rates.

However, in compensation, the subtractively dithered equilevel
quantiser is insensitive to signal statistics, since such mismatches

do not cause any error cross-correlation or gain modulation effects,

but only an increase in the bit rate required for a given signal-
-to-noise ratio.

We conclude that, by replacing the quantisers in existing systems

with subtractively dithered quantisers, and modifying the associated

bit-allocation and entropy-coding strategies accordingly, it is

possible to design coding systems free of any gain modulation or

error/wanted signal cross-correlation effects - and indeed free of

any nonlinear distortion effects. The price to be paid is some

increase in bit rate and a possible increase in quantiser complexity.

In a future publication, we hope to present detailed design methods

for optimising subtraetively-dithered coding systems entirel free

of error/signal cross-correlation effects and without any non-

linearity. We are somswhat more pessimistic about the prospects

for systems using modified and gain-compensated undithered quantisers.

7. CROSS-SPECTRAL MASKING

Although we have just shown that it is possible to design coding

systems avoiding cross-spectral error components altogether, not

all coding systems use subtractively dithered quantisers or may have

other sources of nonlinearity. Thus it is important to have some

models for studying the masking of errors when cross-spectral errors
do occur. This section is devoted to a speculative generalisation

of spectral masking models that incorporate such effects.

Also, it is not entirely certain, in the presence of uncorrelated

noiselike error components, that a zero cross-spectrum is necessarily

subjectively optimal. For example, it may conceivably be that the

ear could prefer a coded/decoded signal that neither mlnimises

(weighted) error energynor one which eliminates error/signal cross-
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correlation, but might instead prefer, for example, a coded signal

that has identical spectral energy content to the original signal.

If Q_ is the Max-quantised signal, then this ,,unchanged spectral

power" stategy would imply that the ear might prefer a decoding that
reconstituted

JlZ
I Q,fJf Q/' (13)

rather than Q2_ (Max quantisation) or (_}I2/IIQ_)I2)Q_ (gain-compensated

Max quantisation).

Interestingly, both the gain-compensated Max quantisation strategy
that minimises cross-correlation between the error and wanted signal,

and the unchanged spectral power strategy retain the reqired property

after any number n of stages of coding/decoding, whereas even just

two stages of coding/decoding using Max quantisers no longer

preserves the Max quantisation property, as seen from figure 9.

The class of models we shall propose for the audibility of cross-

-spectral error components has the following general form. For a

given wanted-signal power spectrum, instead of producing a single

"spectral thresshold" curve, we propose that 3 separate curves

Ti(F), T2(F), T3(F) be derived, one Ti(F) describing the masking

of the error power spectrum Sz,e(F) as in conventional spectral
masking theory, the second T2(F) describing the masking of the real

part ReSf,¢(F) of the cross-spectrum, and the third T3(F) describing

the masking of theimaginary part ImSf,_(F) of the cross-spectrum..

We suggest that the requirements for masking be

Se,_(F) < Ti(F) ,

ImeSf,a(F)l < T2(F) ,

IImSf,_(F)l < T3(F) (14)

It is not suggested that such a model is the most general possible,

since one can consider a more general model in which one has a

'threshold region' R(F) derived from the spectrum Sf,f(F) which is
a solid region in 3-dimensional space, depending on frequency F,

and have masking if and only if the vector

(S&,_(F), ReSf,e(F ), ImSf,t(F) ) (15)

lies within the threshold region R(F) for all frequencies F. However,

equ. (14) is at least a starting point not introducing too many

variables for experimental investigations.

The earlier results suggest that T2(F) and T3(F) willgenerally
have much lower values than the conventional masking threshold Ti(F).

For example, a -6 dB spectral masking threshold corresponds to

Ti(F) = %Sf,f(F), and a -36dB threshold for gain-type errors

corresponds to T2(F) = 0.O16Sf,f(F).

In general, looking at masking of cross-spectral as well as spectral

components experimentally should allow spectral masking models to

have an improved predictive value. However, one needs to look not
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only at the case where the spectra and cross-spectra are stationary,

but where they vary with time. For this purpose, one will need

to use a notion of short-term spectra and cross-spectra of the type

discussed in appendix A.

Nevertheless, a spectral matrix approach including cross-spectra

as well as spectra of error signals provides a unified theoretical

framework for investigating the simultaneous audibility of

simultaneous gain errors, phase errors and uncorrelated noise errors,

errors which hitherto have been regarded as isolated and distinct

in nature. By representing such errors as components of the spectral

matrix, one has a space of parameters whichcan be subjected to

experimental investigation.

However, investigations of the case where the spectral and cross-

-spectral components are stationary with time will probably not

be adequate to reveal the audible effects of fluctuating and signal-

dependent errors. There is some evidence that fluctuating errors

can be significantly more audible than stationary errors.

Additionally,it is now well established (see Moore [21]) that if

the errors are un-crosscorrelated, but if the wanted signal

has fluctuating levels in different frequency bands that vary in

a mutually correlated fashion, then this results in a marked reduction

of the masking thresholds. This suggests that for complex signals,

nearly all signal-dependent errors may prove to be more audible
in some circumstances than suggested by traditional masking theory

[5,6]. This is in addition to the effects of amplitude modulation

discussed in this paper.

8. STEREO SPECTRAL MASKING

Cross-spectral ideas are particularly valuable for conceptualising

the problems of directional masking of errors in stereo systems.

At an informal level, it is known that if a first signal masks a

second one in monophonic reproduction, then such masking can cease

to work in stereo when the two signals are reproduced from two

different perceived stereophonic directions. Indeed, it is precisely

this "directional unmasking" that encouraged the standardisation

of stereo rather than mono in domestic audio, since this greatly

enhanced intelligibility of multi-source prograr_e material

is probably more significant than directional effect per se.

Informal listening tests on complex musical material suggest that

directional unmasking reduces masking thresholds by at least 6 dB
in a worst-case situation - i.e. lines remain audible at a level

at least 6 dB lower in stereo than in mono - but that the degree

of directional unmasking call be much higher in some situations -

possibly up to the order of 25 dB.

Most conventional audio data compression systems are mono, and

simply use separate mono coding of the two stereo channels. There

is a clear risk here that, even if each channel separately mono-

phonically masks coding/decoding errors, such errors may nevertheless

be unmasked in stereo or binaural reproduction. This is because
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the perceived direction of coding errors may well be different from

that of the wanted signal. Spectral matrix theory can be used to

design stereo coding/decoding systems that avoid such directional

discrepancies.

The spectral matrix

[SL,L(F) SL,R(F) 1 (16)

LsR,L(F) SR,R(F)]
of respective left L and right R stereo channel signals is a positive

matrix that can be written in the form

[1 + x(F) y(F) + jz(F)1

½(SL'L(F)+ SR'R(F))[y(F) - jz(F) 1 - x(F) ] , (17)

where positivity of the matrix (see equs. (4)) can be shown to be

equivalent to

x(F)2 + y(F)2 + z(F)2 _ 1 (18)

The coordinates

(x(F),y(F),z(F)) (19)

thus lie within a sphere of unit radius. This sphere has been

termed the enerq/ sphere by the author - see ref. [22] for a full

account of its properties and uses in connection with 2-channel

stero and surround-sound systems. The position of a spectral matrix

frequency component within this sphere thus describes the distribution

of energy within the stereo channels at frequency F. The point

(19) within the unit sphere may thus be taken to describe the stereo

position of the signal at frequency F - although if quadrature

phase aspects of localisation are ignored, one can suppress z(F)

and describe localisation by the point (x(F), y(F)) inside the
unit circle.

In a similar way, if the left and right error signals are respectively

denoted by _(t) and p(t), then the spectral matrix of the stereo

error signal may be written in the form

[ i+xE(F) yE(F)+3zE(F)]
½(S_,_(F)+S_,p(F))LyE(F)_jz_(F) 1-xE(F)J (2O)

where the point

(XE(F),YE(F),ZE(F)) (21)

within the unit-radius sphere describes the stereo position at

frequency F of the stereo error signal.

In general, directional masking of a stereo error signal is likely

to be best masked if the stereo position of theerror signal, as

defined by the energy sphere point (21), roughly coincides with

the stereo position of the wanted signal as defined by the energy

sphere point (19).
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The stereo situation is in general much more complicated than

the mono, since the total spectral matrix of the 4 signals L, R,

_, and _ is a 4 x 4 positive complex matrix containing 16 real

components at each frequency F, of which we have considered only

8 above. The other 8 components describe cross-correlations between

the error signals and the wanted signals, and describe gain, phase

and stereo positioning errors. For simplicity in this paper, we

shall not attempt to describe this most general case (it is said
that an art is a science with more than 7 variables - and the error

signals contribute to 12 variables in the 4 _ 4 spectral matrix{).

Rather, we shall assume that a coding/decoding system is used that

is designed to avoid these cross-correlations between error and

_-anted signals - e.g. by the use of quantisers with subtractive
dither.

Even so, we are still left to consider the 8 spectral matrix

components in equs. (17) and (20). We thus adopt a simplified

directional masking strategy, which may not actually be optimal,

by imposing the requirement that a coding/decoding system be designed

to ensure that the energy sphere points of the error and wanted

stereo signals be substantially the same at all frequencies. With

such a restriction, we can be fairly sure that if monophonic masking

works, then it will still work for the stereo signal. Such a

strategy is very likely to give much better directional masking

than independent monophonic coding of the two channels.

We now examine practical means of achieving this identity of energy

sphere points (19) and (21). In a transform codlng [9,11] or

sub-band coding system, one can use pricipal-value quantisation

of the stereo signal within each transform or frequency band

component - i.e. one determines (from the eigenvectors of the

correlation matrix or otherwise ) the two orthogonal stereo directions

that contain maximum and minimum signal energy in that frequency

band (shown in terms of an XY oscilliscope display [23] in figure

10), and quantises these two components separately. If the two

quantisers have the same number of bits but have levels adapted

to each of the two components separately, then the error signal

at each frequency or in each transform component will have the same

stereo distribution as the wanted stereo signal, as required. This

method is easiest to implement for the real components of stereo

position ignoring z(F) and ZE(F), and complex principal- component

quantisation of the stereo signal will require the use of 90 ° phase

shifts applied to the signals.

If instead of using the same number of bits to quantise the two

principal stereo components in each frequency band, one were to

quantise them using bit-allocation [9-11], one would get lower

objective error energy in each band for a given bit rate (perhaps

typically reducing the number of bits per stereo sample by ½ bit),

but one would pay the price of increased directional unmasking.

It is possible that a compromise strategy allocating a number of

bits to each principal stereo component intermediate between an

equal number and mean-square-optimal bit allocation might work better

subjectively than either.
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Therefore we suggest that, as a starting point, stereo principal

component quantisation in each frequency band or transform component

be used for transform or sub-band coding of stereo signals, possibly

using an identical number of bits for both components, and using

subtractively dithered quantisers.

Rather than using two independent monophonic quantisers, it is

possible to use a stereo vector quantiser using, for example, a

regular hexagon quantisation region, and using a subtractive

two-dimensional dither signal with a uniform probabilty distribution

function over the hexagonal region. For signals using more than

two channels, similar higher-dimensional subtractive dither

quantisation strategies can be used, based, for example, on a

rhombidodecahedral region in 3 dimensions or a regular 24-hedroid

quantisation region in 4 dimensions [24]. Such vector quantisers

improve the Shannon-efficiency of a joint quantisation of variables,

reducing the 1.53 dB loss caused by separate quantisation even with

ideal entropy coding. The signal-to-noise ratio gains, however,

are not large and might not justify the extra complication - and

significant gains might require, say, the use of the close-sphere

-packing region in 23 dimensions.

Improved direction masking of stereo error signals can also be

achieved using predictive coding (DPCM) systems, by replacing the

monophonic prediction filter

P(z-1) = alz-1 + a2z-2 + ... + anz-n , (22)

where z-1 represents a 1-sample time delay, by a stereo prediction
matrix

p(z-1)= Its(z-l)Ps_(z-1)I?RL(z-l) PRR(z-l)I ' (23)

where each of the 4 filters PLL , PLR , PRL , and PRR is of a form

similar to (22). Such prediction filters can be derived by a natural

extension of the monophonic case discussed by Makhoul [12] if one

simply wished to minimise objective means square noise. In this

case, the matrix filter I - P would be a whitening filter for the

stereo signal, and the stereo quantiser (whether a pair of mono

subtractively dithered quantisers or a stereo vector quantiser)

could use principal-component coding of the resulting prediction

error signal, which in general will have more energy in some stereo

directions than others, such as shown in fig. 10.

Without going into too much detail here, figures 11 and 12 show

in schematic form the basic algorithms for stereo prediction and

stereo noise shaping that can be used for stereo predictive coding.

To avoid error/wanted signal cross-correlations, the stereo quantiser

should be subtractively dithered as in the monophonic case, and

the predictor matrix, noise-shaping matrix and stereo quantiser

can all be made adaptive as in monophonic ADPCM. We postpone

detailed consideration of stereo ADPCM to a future paper or papers

- the details are far from trivial, although ultimately, the theory

is a natural generalisation of the monophonic case.
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Thus we have shown that it is possible to design coding systems

that achieve good directional masking using any of the philosophies

of transform coding, sub-band coding or predictive coding by the

use of principal-component matrix methods to replace monophonic

coding. It is evident from the above that such schemes are more

complex than doubled-up mono coding. Nevertheless, stereo matrix

coding schemes will in general be capable of better results than

bimonophonic coding schemes in that they take automatic account

of channel cross-correlations, and are likely to retain the masking

of errors even if subject to subsequent rematrixing operations
such as those involved in stereo width enhancement, surround-sound

or Ambisonic decoding or multlspeaker stereo reproduction. It is

also obvious that the above schemes generalise to cases with more

than 2 related channels (e.g. multichannel stereo or surround-sound

systems) without any conceptual change.

9. PROBLEMS

We have almost reached the end of our tour of error-masking problems

in high-quality audio coding systems. We have two remaining areas

of unresolved difficulty besides that of the practical design of

systems of coding and decoding that minimise unmasked errors.

First, our notion of cross-spectra involves averaging over all

time, and to measure cross-spectral effects, we need to use a

relatively short-term averaging, certainly not generally exceeding

50 ms. While we have been able to summarise the general theory

of this in Appendix A, the result of taking finite time averages

over a limited number of samples is that we are measuring a statistical

quantity concerning signals from limited data - which inevitably

involves fluctuations in the measurements for purely statistical

reasons. These fluctuations are rather larger than might at first

be imagined. Both theoretical analysis and measurement of practical

cross-correlators used to derive control signals in surround-sound

logic decoders have shown a measured correlation index that varies

by _ % approximately for reasonable values of time constants.

Such large fluctuations in the measured cross-spectrum mask the

ability to measure whether or not the cross-spectrum of an error

with a Wanted signal is substantially zero or not. Since transient

cues are important in interpreting sounds, this makes direct measurement

of cross-spectral errors on actual transient signals effectively

impossible. The only way to get round this problem is to generate

a large ensemble of transient signals having the same non-stationary
statistics, and to average the measured cross-spectrum over all

these measurements. This is a very lengthy and time-consuming process

if one wishes to measure, say, transient gain errors of the order

of 0.1 dB, since one has to average over around 2000 measurements

to reduce fluctuations below the desired level.

Thus, although in principle it ispossible to measure signal-dependent

gain and phase errors as a function of frequency and time for arbitrary
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encode/decode systems using the short-term cross-spectrum, in practice

this is an involved, time-consuming and expensive process. It is

thus probably better to adopt the attitude that, if one can design

encoding/decoding systems free of cross-spectral errors (and we
have shown that it is possible by using subtractively dithered

quantisers), one should, in order to prevent the possibility of
severe transient distortions.

Of course, this immediately raises the question that, if it is

so difficult to measure cross-spectral error components of transients,

then how does the ear manage to hear the effect? After all, no

matter how intelligent the signal processing in the ears and brain,

ultimately, all they can do is to analyse the incoming signal.

Our conjecture is that the brain performs a similar averaging of

data over multiple similar sound events as does the averaging method

of making measurements suggested above. If this is the case, it

implies that this type of information involves gathering data over

a period of time in an acoustic environment, and so will not

operate when there is a sudden change of acoustical environment

such_as encountered in blind AB testing. We hope to explore the

consequences for the design of "objective" psychoacoustic testing

of audio equipment elsewhere in another publication.

A second point arising from the cross-spectral model is that it

is not evident why the ears and brain should only be sensitive to

spectral matrices, which are quadratic in the input signal (see

[25] and Appendix A), and not to higher order nonlinearities [25].

It is possible to extend the theory of spectral matrices to higher-

order polyspectral tensors, as did the author in an unpublished

butquite widely circulated paper [26]. The advantage of using

subtractively dithered quantisers in coding/decoding systems is

that, because they eliminate al____lnonlinear distortions in the

quantisation process, and give noise that is un-cross-correlated

with every nonlinear function of the wanted signal, they also avoid

al___lhigher order cross-polyspectral correlations between the error

and the wanted signal. A full discussion of this point is beyond

the scope of this paper - but it is worth noting that subtractive

dither has advantages beyond those predicted by cross-spectral

analysis.

10. CONCLUSIONS

This paper has explored a number of mechanisms whereby coding/

decoding errors in audio data compression systems may have significant

audible effects despite satisfying the requiements of naive spectral

masking theory.

In particular, we have shown that all Shannon-efficient coding

systems, and those that minimise a weighted rms error over a

restricted class of coding Strategies, automatically produce errors

cross-correlated with the wanted signal, and we have given evidence

that the resulting_rarying gain errors are likely robe audible
at much lower levels than uncorrelated noiselike errors.
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The failure of conventional spectral masking theory in this

situation is explained by introducing the cross-spectra of signals

and error. The resulting spectral matrix can be used to devise

more widely applicable models for masking. Cross-spectral models

are also useful for discussing the directional unmasking of errors

in stereo systems.

These concepts have been used to suggest coding/decoding strategies

that avoid these failures of masking. Specifically, we noted that

replacing Max quantisers by subtractively dithered quantisers with

entropy coding avoids error cross-spectral effects, and that the

use of principal-component coding of stereo transform or sub-band

components or of stereo matrix predictors can improve directional

masking in the stereo case.

This paper contains many sketchy technical details that will

require further publications to flesh out, but we believe that we

have introduced here most of the basic tools required to improve

subjective results by closing the gap between objective criteria

and subjective perceptions a little.

The use of cross-spectral ideas in a general Shannon coding theory

context, and in particular our Theorem about the need to depart

from "ideal" Shannon coding if one is to avoid error/signal

cross-correlations, is, we believe, an important conceptual clarific-

ation of the foundations of the Shannon theory, since it places

emphasis on the statistics of the 2-vector signal whose components

are the %ranted signal and the error signal rather than merely their
separate statistics. We hope in future to present an abstract

formulation of these results with applications to other kinds of

signals - indeed, we first discovered our theorem in connection

with image data compression systems, where error/_ranted signal

cross-correlations also have a marked psychovisual effect.

In conclusion, we hope that designers of commercial audio data

compression systems feel able to take on board the results of this

paper, although it may require some additional work on their part

to modify their systems to take account of the effects discussed

here. Although the paper involves a lot of theoretical concepts,

our aim has been to bridge the gap between the perceptions of the

skilled practitioners of high quality audio and those of engineers

trained in coding theory, by giving the latter theoretical tools

that take on board many of the subjective perceptions of the

practicing audio professional and audiophile.

To my ears, some of the low-rate prototype audio data compression

systems that have been demonstrated clearly suffer from audible

"pumping" and gain modulation of thew anted signal of the kind

predicted by the work of this paper. If the cormmunication gap between

skilled audio professionals and engineers persists, there is a risk

that audio data compression systems might come into widespread use

that will be found to be seriously flawed by users despite meeting

previously-defined engineering criteria such as the criteria of

spectral masking theory. We hope that an improved understanding

of the problems, and their solutions, will prevent this undesirable

situation from occuring.
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APPENDIX A, SHORT-TERM CROSS-SPECTRA

A short-term spectral analyser is a device whose outputs, one for

each frequency F, are functions of time t that estimate the spectrum

of a signal f(t) at frequency F around a time t by means of processing

signal information covering a restricted tima interval around time

t. These outputs are required to be positive.

A basic short-term spectral analyser can be achieved as in figure

A1 in which to each frequency F one has an associated linear filter

with impulse response _F(t) (which may be real or complex-valued)
centred around frequency F, followed by a squaring of the absolute

value of the output of the filter to ensure a positive output

QF,t(f ) = IS_F(t_z)f(_) d% I 2 (Al)

If all the filters have identical bandpass shapes apart from centre

frequency F, then for every frequency F :

_F(t) = e 2_jFt_0(t) . (a2)

The output of a basic analyser as in figure A1 and equ. A1 with

complex-valued filter impulse responses _F(t) can be realised as
the sum of the outputs of two basic analysers with real-valued filter

impulse responses, since for all real-valued signals f(t) :

= /_[Re_F(t-T)]f(_)d_{ 2 + [S[Im_F(t-_)]f(T)dz} 2 , (A3)

where the integrals are evaluated over all time, i.e. from -_ tom.

Fluctuations in the output of such an analyser having frequencies

of the form Fi+F 2 for frequencies FI and F 2 in the input signal

f(t) can be avoided if _F(t) is an analytic signal, i.e. of the

form _F(t) - jHSF(t) where H is the Hilbert transform (see reis.

[27-2_) or 90° phase shift.

An alternative to the use of an analytic filter (i.e. one with an

analytic-signal impulse response) to reduce high frequency ripples

is to introduce low-pass filters at the outputs of the basic spectral

analyser as shown in fig. A2; in order to preserve positivlty, these

filters must have a convolution kernel (impulse response) that is

non-negative - e.g. a first-order low pass filter or running-average

filter. Yet another stategy is to average the outputs of several

basic spectral analysers having different filter characteristics,

so as to average out output fluctuations. The problem here is simply

that one has a wide variety of possible short-term spectral analysers,

and to understand their behaviour, it is usefu% to have a unifying

theory of all of them independent of the actual practical mode of

realisation used in any particular case. This Appendix provides

that unifying theory, based on the spectral theory of positive

operators discussed in ref. [15] in abstract Hilbert space language,

We then go on to modify the theory to include short-term cross-spectra.
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A general spectral analyser is a quadratic functional Q_ _(f)

acting on signals f(t) , defined for each frequency F and_time-t,

given by an equation of the form :

QF,t(f) = _3kF(t-_ 1, t-T2)f(_l)f*(_ 2) d_ld_ 2 , (a4)

where the function kF(t 1, t2) of 2 variables satisfies the hermitian

property :

kF(t2, tl)=k(t1, t2)*. (A5)

For such a quadratic [25] analyser, we can write:

QF,t(f)= _(AF,tf)(_2)f*(_2)d_2 , (A6)

where AF, t is the linear operator acting on signals defined by

(aF,tf)(_2)= _kF(t-_l,t-_2)f(_l)d_l. (a7)

the function kF(t-_l, t-_2) of _1 and _2 is termed the kernel of

the linear operator AF, t defined by equ. (A7). In order to keep
the output of the analyser finite for finite energy signals, we

in general require that the operator AF, t be bounded (defined in

ref. [15] whether or not the kernel kF can be defined as an explicit

function of two variables. An important special case of practical

interest is when KF is s__quare-integrable, i.e. when

_lkF(tl, t2)[2 dtldt2 < oo ; (A8)

in this case, the linear operator AF,t is said to be a Hermitian
Hilbert-Schmidt operator. In this case, we have the following

important and non-trivial theorem (see [15]), which is a version

of the spectral theorem (warning: the term spectrum here has nothing

to do with frequency spectrum; it refers to what is termed the

"spectrum" of a linear operator - i.e. the set of its eigenvalues,

although the frequency spectrum is actually the "spectrum" in this

sense of the Fourier transformation operator).

Spectral Theorem

Let AF, t be a linear operator defined by equ. (A7), where the kernel

kF is hermitian (A5) and sguare-integrable (A8), i.e. where AF, t
is a Hermitian Hilbert-Schmidt operator. Then there exist a unique sequ-

ence of real numbers

AF,1_ _F,2 ) _F,3 _ ---_ _F,n _ .... (ag)

and a sequence of square-integrable functions _F,n (n = 1,2,3,...)
of a real variable, satisfying :

(i) _ (_F,i)2 < oO (alO)
i=l

(ii) the functions _F,n for a fixed F form an orthonormal
basis for the square integrable ructions, i.e.

3_F,i(_)[_F,k(_)]*dT = _ik , (all)

where $ik TM 0 if i _ k and _ik = 1 if i = k, and where every square-

-integrable function can be expanded uniquely as a convergent linear

combination of the _F,n 's,

and
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(iii) kF(t1, t2) = _ _F,i _F,i(_l)[_F,i(t2)]* · (Al2)
i=l

Moeover, for all (square-integrable) signals f,

(AF,tf)(z2) = _ _F,i_F,i(t-%l)_,i(t-T2)f(T1)dT 1 , (Al3)
i=l

and

i=l

Moreover, the _F i's are the eigenvalues of the linear operator

AF, t associated with the elgenvector _F,i(t-_O, i.e.

(AF,t_F,i(t-.))(_)= _F,i_F,i(t-_). (alS)

The most important aspect of the above spectral theorem is that

it asserts that all quadratic spectral analysers (satisfying the

purely technical Hilbert-Schmidt condition (A8)) giving a real

analyser output (this is the content of the hermition condition

(A5)) can be expressed as linear combinations (Al4) of the outputs
of basic spectral analysers as described earlier in equ. (Al).

Moreover, knowing the eigenvalues _F,i and eigenvectors _F,i of
a specific quadratic spectral analyser gives us a powerful theoretical

tool for understanding its properties.

Although the case where some eigenvalues are negative is actually

of practical interest in some measurement applications, we are mostly

interested in the case that the spectral analyser has non-negative

output, i.e. when the analyser is positive , i.e. when for all

signals f(t)

QF,tf _ 0 . (Al6)

Theorem A2

Let QF,t be a quadratic spectral analyser with associated linear
operator A_ _ as in equ. (A6) and kernel km(tl, to) as in equ. (A4)

such that AF( t is Hermitlan and Hilbert-Schmidt.
Then QF,t is a positive analyser if and only all of the eigenvalues

_F,i of the Spectral Theorem above are non-negative.

This result is a direct consequence of the theorem found in [15]

that the spectrum of a positive linear operator is positive.

It is thus possible to specify a positive short-term spectral

analyser either by specifying for each frequency F a kernel kF(tl,t2)

of a positive operator or a sequence of non-negative eigenvalues

IF, i satisfying equs. (A9) and (Al0) and a sequence of orthonormal

filter impulse responses _F,i(t), which for the larger eigenvalues
should be designed only to let through frequencies close to F.

If one requires that all analyser outputs have the same shape of

"bandpass" characteristic aPPart from a frequency translation, then

analogously to equ. (A2), one should put

kF(tl,t2) = e2KjF(tl-t2)ko(tl,t2), (al7)

which ensures that all the eigenvalues become independent of

frequency F and that all the eigenveetors satisfy equ. (A2). This

frequency-translation invariant case is of particular interest
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since it only requires the specification of the eigenvalues _i and

eigenvectors _i at frequency 0 to specify them at 91% frequencies
via equs. (A2) or (Al7).

We now relate this work to the Wigner Distributon method of

simultaneous time-frequency analysis of signals (also termed the

time-varying spectrum by Mark [30] who rediscovered it independently).

The Wigner distribution was first published in connection with

quantum statistical mechanics by Wigner [31] in 1932, and some of

its more abstract theory %fas developed in an abstract mathematical

language by Pool [32], whose methods we have borrowed here in more

concrete notations. The audio applications of the Wigner distribu-

tion were first noted by de Bruijn [33] (in Dutch - which may

explain the spate of Audio publications using it emerging from

Holland), and it is available on some con_nercial signal analysis

packages such as MLSSA - however, it does not present information

in a form accessible to the eye, having a large amount of confusing

visual clutter. It does have a useful role, however, in

understanding short-term spectral analysers as we shall now see.

The Wigner Distribution of a signal f(t) is defined by

Wf,f(F,t) = yf (t+½T)f*(t-_z)e-2_jF_d_ (alS)

which can be written in a more abstract notation similar to that

of Pool [32]

Wf,f(P,t) = _lp(f_f*) (F,t) , (al9)

where we define

tok(tl,t2) = k(t2+%tl, t2-½tl) , (a20)

_lk(F,t2) = SM(tl,t2)e-2_jFtl dt I , (a21)

and

(f_g)(fl,t2)= f(tl)g(t2) (A22)

for all functions f of 1 variable and k of 2 variables.

Now, both_ 1 and R are "unitary" (see [15]), i.e. they preserve
square-integrals, orthogonality and inner products of functions

in 2 variables. By using this unitary property, we can write a

quadratic (Hilbert Schmidt) short-term spectral analyser {A4) in
the form

QF,t f = _f kF(t-_l, t-_2)(f_f*)(_l,_2)d_ld_ 2

=ffWkF(-_',t-_)Wf,f(F',_)OF'dZ, (A23)
where we define

WkF(F',t') = (_l_kF)(F',t')

= _kF(t'+½_', t'-½_)e-2_J P_' d_' . (A24)

This means that the output of a short-term spectral analyser can

be obtained by convoluting (in time and frequency) the Wigner distribu-

tion (Al8) and (Al9) of the signal with the Wigner distribution

(A24) of the kernel k F of the spectral analyser, and evaluating

the result along the time axis (i.e. F'=O) of the Wigner distribution

plane.
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In the case (Al7) where the properties of the analyser are frequency-

invariant, we can rewrite (A23) in the convenient form

QF,tf = _Wk(F-F',t-t') Wf,f(F',t') dF'at'

= Wk , Wf,f(F,t), (A25)

where k(tl,t 2) = ko(ti,t2) and , indicates convolution - in this case
in two variables.

Thus the output of an arbitrary frequency-invarisnt short-term

spectral analyser is simply obtained by convoluting the Wigner

Distribution of the signal f by the Wigner Distribution of the

analyser's DC kernel k(tl,t2). The actual computation of (A25) in

signal analysis software can most easily be done by computing the
Fourier transform (in both_ariables) of beth Wigner distributions,

i.e. Wk(t,,,F,,) = (_ _ k)(t",F") (A26)
and A

Wf,f(t",F")= (_ g(f_f*))(t",F") , (A27)

where _ indicates the inverse Fourier transform in the 2nd srariable,

multiplying the two together, and then taking the Fourier transform

back again to the (F,t) plane. This is not an excessively complex

computation to do using the Fast Fourier Transform. Moreover, the

form of W k or of its Fourier transform gives an easily visualised
picture of how much "smearing" in the time and frequency domains

an analyser gives. The larger the area of the time-frequency

domain over which the smearing occurs, the poorer the resolution of

the analyser, but the lower the level of statistical fluctuations

in the outputs. A 2-dimensional Gaussian convolution kernel for

W_maybe a good choice for many applications, with an appropriate

choice of standard deviations o'F and°' T along the time and frequ-

ency axes - a special case of this is when one has a basic analyser

whose filters have Gaussian impulse responses, when one gets what

is termed the Husimi Transform discovered by Husimi in 1940 [34].

For an arbitrary (Hilbert-Schmiat) frequency-invariant analyser,

one can use the spectral theorem along with (A25) to write

QF,tf= _ _i W_i,_i(F,t)*Wf,f(F,t),
(A28)

i=l

which expresses the output, when the analyser is positive, as a

positive linear sum of the smoothing of the Wigner distribution of

the signal f by a kernel that is the Wigner distribution of a

DC convolution kernel _i'

The spectral theorem expansion can be used to estimate the

fluctuations in the outputs of a positive short-term spectral

analyser. One can define such an analyser to have "unit gain" if

_F,i = 1 . (A29)
i=l

In this case, one is averaging the outputs, with weights nm _ ,

over orthogonal (and hence, for white noise input signals, statist-

ically independent) components. Thus if one has signals that within



- 28 -

a region of the time frequency plane (i.e. for a duration and within

a given frequency range) have a locally white spectrum, , the
standard deviation of the fluctuations caused by the quadratic

spectral analyser are a factor

_.(_F,i)2 (AB0)i=l

times smaller than for a basic analyser of unit gain, i.e. the rms

fluctuation is proportional to

i=l

This result shows, for example, that an analyser that averages

over 4 orthonormal vectors _i will have half the amplitude of

fluctuations in its output than a basic analyser.

This averaging, of course generally reduces the available time-

-frequency resolution. If the time smear is _t and the frequency

smear is AF, then by the uncertainty principle

6FXAt _ ½ (A32)

for a basic analyser , whereas for the general case satisfying (A29):

AF_At) 1 (A33)

2 ___1(_F,i )2

for other analysers. We shall not attempt to make these results

precise here, but this gives a general idea of the tradeoffs

between fluctuations and time/frequency resolution.

For signals whose bandwidths near a frequency F are narrower than

AF, then the fluctuations will be larger than indicated above,

because fewer of the eigenvectors _F,i are excited by the signal
and the averaging is thus over fewer components.

We now extend the above methods to short-term cross-spectra.

The above results all extend to cross-spectral analysis simply by

replacing f* throughout by a second signal g*, where g(t) is a

second square-integrable signal. By way of example, we have the

short-term cross-spectrum

QF,t(f,g) = _fkF(t-T1, t-T2)f(_1)g*(T2)d_ldT2 (A34)

= _(AF,tf)(_l)g*(_2)d_ld_2 (A35)

= _WkF<-F,,t-_>Wf,g<F',_)dF'd_, (A36)
where

Wf,g(F,t) = Sf(t+½ _)g*(t-½_)e-2_jF_ d_ (A35)

= Wf_g,(F,t) ,

and equ. (Al4) becomes
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o_

QF,t(f,g> = _, _F,i[_F,i(t-T)f(_)d_][;_F,i(t-_)g(_)d_]*. (A36)
i=l

All the earlier results can, with this modification, be applied

to describing not just the short-term spectrum of a single signal,

but also the short-term cross-spectrum QF,t(f,g) of two signals f
and g. It is then quite easy to prove:

Theore_A3

Let QF,t be a positive short-term spectral analyser. Then the short-

-term Spectral matrix of two signals f(t) and g(t) :

QF,t(f, f) QF,t(f,g )]QF,t(g,f) QF,t(g,g) (A37)

is a positive matrix for all frequencies F and time t, i.e.

QF,t(f,f)= QF,tf _ 0 (a38a)

QF,t(g,g) = QF,tg _ 0 (a38b)

QF,t(f,g)*= QF,t(g,f) (A38c)
and

{QF,t(f,g)12_ (QF,tf)(QF,tg). (a38d)

This theorem allows one to handle the short-term spectral matrix in

very much the same way as the ordinary spectral matrix in the main

body of this paper.

While in principle this has given us all the basic tools of short-

-term cross-spectral analysis, if we wish to use the imaginary part

of the short-term cross-spectrum in a meaningful way, it is necessary

to restrict the kind of analysers we consider to those that handle

90°-phase shifted components of signals well. This is best done by

replacing real signals in the above by analytic signals [27] of

the form f = f - jHf, where H is the Hilbert transform or 90 ° phase

shift operator. We define a short-term cross-spectral analyser

QF,t to be analytic if and only if there is a second short-term spectral

analyser QF,t such that for all real signals f and g :

QF,t(f,g)= QF,t(f-jHf,g~jHg). (A39)

For an analytic short-term cross-spectral analyser QF,t , one then has

QF,t(Hf,g) = QF,t(H(f-jHf),g-jHg) = QF,t(j(f-jHf),g-jhg)

= jQF,t(f,g), (A40)

so that , as one would require, aHilbert transform (90° phase shift)

acting on the signal f has the effect of multiplying the short-term

cross-spectrum by j =%/2_when the analyser is analytic. It is

not difficult to prove that the eigenvectors _F,i.of an analytic
spectral analyser are also analytic signals, but in general they

will no___ttbeequal to _F,i - JH_F,i where _F,i are the eigenvectors of

the non-analytic analyser QF,b of equ. (A39).

The general analytic positive quadratic analyser can be expessed

as before by the spectral theorem and theorem A2 as a positive sum

of basic analysers based on orthbnormal analytic eigenvectors - the
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proof of this and other theorems about analytic analysers lies in

the replacement of the Hilbert space of square-integrable complex-

-valued signals by the Hilbert space of analytic (i.e. positive

frequency) signals.

We therefore describe one implementation of a basic analytic

cross-spectral analyser by way of example, since all others are

positive linear combinations of such basic analysers. One can

also use the Wigner distribution method of computing the output

of analytic cross-spectral analysers as described earlier of the

spectral analyser case.

Figure A3 shows the implementation of a single frequency-band

output of an analytic cross-spectral basic analyser, using a Hilbert

transform (90© phase shift) network block: the basic concepts used

here were described, in a more general setting by the author in refs.

[28] and [29]. The implementation shown in fig. A3 requires 4

real multiplications of pairs of signals per analyser output -

this representing one multiplication of a pair of complex signals.

We shall not go into a complete analysis of fig. A3's operation

here, leaving it to the reader to verify that the output is merely

the product of the result of the analytic signals f-jHf and

(g-jHg)* = g+jHg passing through the filters _F and then being

multiplied together as complex signals.

Using fig. A3, one can implement basic spectral and cross-spectral

analytic analysers directly, and more complex analytic analysers by

taking positive l_near combinations of the outputs of several such

analysers. The Wigner distribution method of computation, using

the FFT, is more appropriate when the non-analytic filters _F i
are frequency translations of a DC filter characteristic, using

convolution with the Wigner distribution of the kernel of the

analytic analyser, for reasons of computational efficiency.

We omit further details here, since there is detailed material for

many possible future publications. However, our main aim has been to

show that a comprehensive theory of short-term cross-spectral

analysis is possible maintaining the main features (e.g. positive

spectral matrix responding appropriately to the effect of 90 © phase

shifts) of the long-termcross-spectral analysis used in the main

body of the paper. We have also given basic information allowing

implementation and computation of short-term spectra and cross-

spectra, and also a basic analysis of the fluctuations in their

outputs and the compromises involved (in time/frequency resolution)
when attempting to reduce these fluctuations. This all makes it

possible to give a systematic analysis of cross-spectral errors

encountered when actual systems respond to transient or non-

-stationary signals and to measure such effects - a necessary

prerequisite if the theory of this paper is to be useful.

However, we make no claim that such measurements are easy :

section 9 of the main paper discusses why such measurements are

likely to be time-consuming - basically because one needs many

repeated measurements to reduce the statistical effects of output
fluctuations.
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no. of Entropy Gain uncorrelated gain-compensated
levels (bits) dB noise dB noise dB

1 0.000 -_,_ -_ +c_
2 1.000 -3.92 -6.36 -2._4
3 1.536 -1.83 -8.12 -6.29
4 1.904 -1.10 -9.80 -8.70

5 2.183 -0.745 -11.22 -10.48
6 2.409 -0.543 -12.44 -11.90
7 2.598 -0.417 -13.50 -13.08
8 2.761 -0.331 -14.43 -14.10

9 2.904 -0.271 -15.27 -14.99
10 3.032 -0.224 -16.02 -15.79
11 3.148 -0.192 -16.70 -16.51
12 3.253 -0.165 -17.33 -17.16

13 3.350 -0.144 -17.91 -17.77
14 3.440 -0.127 -18.45 -18.32
15 3.524 -0.113 -18.95 -18.84
16 3.602 -0.101 -19.43 -19.33

20 3.876 -0.069 -21.08 -21.01
25 4.146 -0.047 -22.74 -22.69
32 4,449 -0.030 -24.59 -24.56
36 4.594 -0.025 -25.47 -25.45

1. Performance of n-level equilevel Max quantiser for Gaussian
signals, based on data of J. Max [16] and equations (9)
and (10), and showing the gain of thew anted-signal
component of the coded signal, the level of the
un-cross-correlated component of the error signal, and
the level of the error for a gain-compensated quantiser.

no. of Entropy Gain uncorrelated gain-compensated
levels (bits) dB noise dB noise dB

1 0.000 -_ -0o +_
2 1.000 -6.02 -6.02 0.00
4 1.751 -1.90 -8.02 -6.12
8 2.392 -0.646 -11.77 -11.12
16 3.077 -0.223 -16.06 -15.84
32 3.776 -0.076 -20.64 -20.57

4* 1.742 -1.69 -8.38 -6.69
8* 2.610 -0.490 -12.86 -12.37

2. As for table 1, but for optimum equilevel quantiser for a
Laplacian pdf statistics, based on the data of Paez and
Glisson [17], except for * which is data for "optimum"
non-uniformquantis_s for Laplacian pdf signals.
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c,F _ c

Figure 1. Effect of small amplitude modula%ion (b) of wanted signal
(a), showing the error signal (c). The gain change is
exaggerated for illustrative clarity.

0
Figure 2. Triangle consisting of vectors representing the wanted

signal f, the coded/decoded signal Qf and the error signal
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Figure 3. The case when r.m.s, error liefII is minimised, showing the

orthogonal projection _ of Q_ onto f.
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Figure 4. Gain in dB of the correlated component of the coded/decoded
signal via equilevel Max quantisers for signals with
Gaussian statistics, plotted against the Entropy-coded
bit rate as shown intable 1.
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\\

Figure 5. Gain-compensated Max quantiser signals O'_.

0

Figure 6. Gain modulation effects caused by erroneous gain-compensated
quantisation Q"_ caused by signal/quantiser gain mismatch.
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Figure 7. General form of the gain errors of 2-level and 3-level
gain-compensated Max quantisers optimised for r.m.s, level

when actual r.m.s, signal level is VA. The 3-level
graph is only a rough sketch not based on precise
computations.
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Figure 8. Subtractively dithered quantiser (after [19] and [20]).
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0
Figure 9. The Max quantisation QQ_of a Max guantisation Q/of a signal

is not a Max quantisation of _, since in general, the angle Q

90° . The figure should be viewed as a vector diagram in 3
dimensions.

Figure 10. Principal-component axes A and B for quantising a stereo

signal component whose ")fY" oscilliscope display has
the form shown.
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Figure 11. Schematic of a stereo prediction system, with predictor

as in equ. (23). The stereo quantiser can be equpped

with stereo noise-shaping as in figure 12.
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Figure 12. Schematic of stereo noise shaping around a stereo

quantiser to modify the spectral matrix content of the

stereo quantisation noise. This is a stereo version of

ref. [13]. The stereo quantiser may be subtractively

dithered as in figure 8.
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Figure Al. Basic real-time spectral analyser using multiple bandpass

filters g_F, one centred at each frequency F, followed by a
square-of-absolute value operation to ensure a positive

output.
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Figure A2. The basic filter-bank spectral analyser of fig. Al with
additional output low-pass filters to reduce output
fluctuations.
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Figure A3. Derivation of the real and ImaGinary comDonents of the
cross-spectral output at frequency F of a basic analytic
spectral analyserbased on bandpass filters _F'


