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ABSTRACT

This article deals with spatial analysis of real 3D sound fields, and presents an optimal beamforming algorithm min-
imizing the power of side lobes, used to improve the spatial representation of sound fields. Optimal tap vectors are
computed for a set of incidence directions mapping the whole sphere. The robustness of the algorithm to sensor-
positioning errors and to sensor noise is tested with real data, acquired using microphone and loudspeaker arrays. It is
shown that there is good agreement between the real and the corresponding simulated data regarding the incidence di-
rection. Moreover, early reflections, providing new peaks in the representation depending on the location of secondary
sources are also clearly visible.

1. INTRODUCTION

This article deals with the problem of experimental 3D
sound field analysis. Sound field analysis is the disci-
pline concerned with the knowledge of the parameters
associated to a specific sound field model. Among the
different possibilities of sound field descriptions, a vast
amount of literature is dedicated to sound field analysis
based on spherical harmonics. The articles of Poletti [10]
and Daniel [2] constitute excellent reviews in this do-
main. Besides spherical harmonics, other ways to repre-
sent the sound field inside a given region of space exist,
such as the Kirchhoff-Helmholtz integral equation [14],
or the plane wave decomposition [14].

The objective of experimental sound field analysis is to
estimate the parameters of the chosen sound field de-
scription from real data acquired by a microphone ar-
ray. Several articles deal with the estimation of the coef-
ficients of the spherical harmonic decomposition using
a spherical microphone array [11, 6, 1, 7]. These ar-
ticles attempt to orthogonalize the spherical harmonics
basis truncated to a specific order observed only at dis-
crete positions located on a sphere of a particular radius.
Other strategies use more general array geometries with
the same objective in mind [5].

In this article, the sound field description used is the
plane-wave decomposition [3, 4]. The equivalence be-
tween spherical harmonic and plane wave decomposi-
tions has already been investigated earlier [9]. The sound

field analysis scheme described in this article consists
in estimating the values of the spatial Fourier transform
of the sound field. At a given frequency, the interest-
ing zone to be analyzed in the wave vector domain is
the sphere defined by the dispersion relationship [3]. In
a previous article [3], we have proposed a beamform-
ing algorithm which uses the nice properties of gener-
alized prolate spheroidal wave sequences [13] to focus
the power of the spatial filter in a particular direction of
incidence. In this article, we want to test the behavior
of this algorithm confronted to real data acquired by a
microphone array, and particularly the robustness of the
algorithm to slight position errors and to sensor noise.

This article first describes the electroacoustic chain used
for data acquisition, as well as the calibration procedures
used to correct the time-frequency responses of the elec-
troacoustic devices and to automatically estimate the po-
sitions of loudspeakers and microphones. In section 3,
the main results of the beamforming algorithm are re-
called. This beamforming strategy is then used to com-
pute a set of spatial filters aiming to estimate the spatial
Fourier transform of the sound field, thus giving a car-
tography of it at a specified frequency. In section 4, this
sound field analysis scheme is used on real data and is
compared to simulated data. Moreover, the performance
of this strategy are highlighted by comparing sound field
analysis using optimized spatial filters to uniform spatial
filters. Finally, some concluding remarks and perspec-
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tives are made.

2. MATERIAL DESCRIPTION

2.1. Electroacoustic chain description

The electroacoustic chain used for the sound field mea-
surement was constituted of:
• 16 loudspeakers Tannoy System 600. They have

been placed in an anechoic chamber. 12 loudspeak-
ers were mounted on a circular aluminum frame and
4 were laid down on the ground. See figure 1 for
more explicit details on the configuration.

• 3 six-channels power amplifiers Yamaha CM 6150.

• 8 omnidirectional microphones Schoeps MK 2,
amplified by 4 stereo pre-amplifiers Behringer

Ultragain Pro.

• The reference signals sent to the loudspeakers and
the recorded signals are synchronized using a 24-
track hard disk recorder Tascam MX-2424.

Fig. 1: Loudspeaker array used: circular array of radius
1.1 m with 12 loudspeakers regularly spaced, and 4 other
loudspeakers at a different height (partially visible on
this photo).

The 8 microphones were combined in a lin-
ear logarithmically-spaced microphone ar-
ray, visible on figure 2. The microphones
are located at x-axis reference coordinates
[0.025,0.050,0.075,0.119,0.200,0.336,0.565,0.950] m.

This elementary microphone array was rotated 12 times
to generate 8 circular arrays with logarithmically-spaced
radii, as visible on figure 3.

Fig. 2: Microphone sub-array used: linear array of 8 mi-
crophones logarithmically spaced from 2.5 cm to 95 cm.

The impulse responses were sequentially measured for
each position of the elementary array, between each
loudspeaker and each microphone using sweeps sig-
nals [8]. They have been measured twice for each posi-
tion of the elementary antenna to prevent some potential
errors due to presence of impulse noise for instance.

Calibration of the electroacoustic chain has been per-
formed. The calibration is not absolute, but relative to
one microphone, one pre-amp channel and one input of
the hard disk recorder, taken as a reference. Firstly, the
eight microphones were used to measure the same im-
pulse response using the same pre-amp and sequencer
channel, in order to only correct the frequency response
of microphones. It appears that the response of the mi-
crophones were identical in the whole frequency band to
±1 dB. The differences measured at high frequencies
were not considered significant because of the difficulty
to position the microphones exactly at the same position.
Indeed, the small position errors generate differences in
the measured impulse responses mainly at high frequen-
cies where the involved wavelengths become compara-
ble to the magnitude of error positions. Secondly, the
pre-amplifiers have been calibrated using only one mi-
crophone and one input of the hard disk recorder. The
frequency responses of the pre-amplifiers were identi-
cal except for a global gain. These gain differences oc-
cur even if we have taken care of using notched poten-
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tiometers with the same graduation. Thirdly, the chan-
nels of the hard disk recorder have also been calibrated.
They exhibit a perfectly flat response in the range of au-
dio signals, but show different time delays according to
the channel used. This has certainly to be linked to in-
ternal recording synchronization of the device. Finally,
the global calibration consists only in adjusting the time
delays and the gains between the different channels: it
does not constitute an overwhelming challenge, but the
correction deserved to be set up, in order to have coher-
ent signals before applying the sound field analysis algo-
rithm.

2.2. Automatic position calibration

The array processing used in the beamforming algorithm
described at section 3 is very sensitive to error posi-
tions, so that an automatic position calibration procedure
is greatly appreciated. The procedure described in [12]
was used to automatically calibrate the position of loud-
speakers and microphones. It consists in first estimating
the positions of the loudspeakers and microphones from
the knowledge of the time of flight matrix by a classical
multidimensional scaling process. Then, this first esti-
mation is refined by an iterative Levenberg-Marquardt
procedure to compute the maximum-likelihood estima-
tion of the loudspeakers and microphones positions. This
automatic position calibration only requires to attach ad-
ditional microphones in the neighborhood of each loud-
speaker. The estimated positions are displayed on fig-
ure 3. It confirms that the array deployed in practice is
in the main trend conform to the reference one, that is
circular arrays with logarithmically-spaced radii. But it
also shows slight differences compared to the reference
one, useful to be taken into account in order to have good
performance for the sound field analysis.

3. SOUND FIELD ANALYSIS

The initial sound field p(r, t) is sampled by a micro-
phone array in the space domain at the microphone po-
sitions located by rm, m ∈ [1, . . . ,Mmic]. If the mi-
crophones are omnidirectional, the sampled sound field
could be modeled as [3]:

psam (r, t) = p(r, t) .
Mmic

∑
m=1

δ(r− rm) (1)
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Fig. 3: Result of the automatic position calibration pro-
cedure: estimated loudspeakers and microphones posi-
tions.

It is more appropriate to work in the frequency do-
main for the purpose of beamforming, because sound
fields satisfy the propagation equation. Thus, they sat-
isfy the dispersion relationship k = ω

c
where k is the

wavenumber, norm of the wave vector k, which is
to space what frequency is to time. The sound field
to be analyzed is weighted by a tap vector w(ω) =
[

w1 (ω) , . . . ,wMmic (ω)
]T to enable a more flexible anal-

ysis [3]:

pana (r,ω) = p(r,ω) .
Mmic

∑
m=1

wm (ω)δ(r− rm) (2)

The spatial Fourier transform of the sound field to be an-
alyzed is given by the following equation:

pana (k,ω) = p(k,ω)∗3

Mmic

∑
m=1

wm (ω)e−ik·rm (3)

∆
= p(k,ω)∗3 h(k,ω) (4)

where ∗3 denotes three-dimensional spatial convolution
product, and h is the response of the spatial filter.

3.1. Beamforming algorithm

The beamforming algorithm has been presented in de-
tails in [3]. A brief summary is given here. The beam-
forming algorithm aims at focusing the power of the spa-
tial filter h(k,ω) in a given direction (φ0,θ0) where φ0

AES 28TH INTERNATIONAL CONFERENCE, PITEÅ, SWEDEN, 2006 JUNE 30–JULY 2

Page 3 of 8



GUILLAUME AND GRENIER Experimental 3D sound field analysis

is the azimuth and θ0 is the colatitude. Let us state the
spatial convolution product of eq. (3):

pana (k,ω) =
ZZZ

k1∈R3
p(k1,ω)h(k−k1,ω) d3

k1 (5)

We define the output signal of the beamformer steered in
the direction (φ0,θ0) as:

p(φ0,θ0) (ω)
∆
= pana (k0,ω) (6)

=
ZZZ

k∈R3
p(k,ω) .
h(φ0,θ0) (k0 −k,ω) d3

k

(7)

where k0 =
[

ω
c
,φ0,θ0

]

in spherical coordinates. The up-
dated notation of the spatial filter h(φ0,θ0) indicates that
it is dependent on the incidence direction. The area of
the wave vector domain which deserves to be studied at
pulsation ω for the spatial Fourier transform p(k,ω) of
the sound field is the sphere defined by the dispersion
relationship |k| = ω

c
. The spatial filter h(φ0,θ0) is opti-

mized so that it focuses its power in the neighborhood
of k0 compared to the global power of the spatial filter
in the neighborhood of the sphere defined by the disper-
sion relationship. In mathematical terms, this leads to the
following optimization procedure:

w(ω)= max
[w1,...,wMmic ]∈C

Mmic

ZZZ

k∈S(k0,kres)

∣

∣h(φ0,θ0) (k0 −k)
∣

∣

2 d3
k

ZZZ

k∈C(0, ω
c −kres,

ω
c +kres)

∣

∣h(φ0,θ0) (k0 −k)
∣

∣

2 d3
k

(8)

In this equation, S (k0,kres) indicates a sphere of center
k0 with radius kres, and C

(

0, ω
c
− kres,

ω
c

+ kres
)

is the in-
terior of the domain delimited by the two spheres of cen-
ter 0 with radii ω

c
− kres and ω

c
+ kres. Thus, the philoso-

phy of the criterion (8) is that the corresponding spatial
filter h(φ0,θ0) minimizes the influence of potential inter-
ference signals located outside the sphere S (k0,kres).

The details of the computation of the optimal tap vector
w(ω) could be found in [3].

At frequency f = 3932 Hz, for the incidence direction
defined by azimuth φ0 = 0 dg and elevation 90− θ0 =

44 dg, we have represented the spatial Fourier transform
of the corresponding spatial filter h(φ0,θ0) computed on
the sphere of radius k = 2π f /c = 72 m−1 with a uniform
and an optimized tap vector on figure 4. Granted that the
microphone array is almost bi-dimensional, the antenna
cannot distinguish two different plane waves symmetri-
cal with respect to the antenna plane. This explains the
presence of two main lobes in the response of the spatial
filter. The lobes are not perfectly symmetrical because
of the slight position errors in the deployed microphone
array.

The power focusing ratio and the white noise gain [11]
of the microphone array have been averaged on a set of
incidence directions spanning the whole sphere and the
result has been plotted along frequency on figure 5. It
is seen that the power focusing ration is improved by
almost a factor 2 until 7 kHz using optimal tap vectors
compared to uniform tap vectors. The wavelength corre-
sponding to this frequency is 5 cm. It coincides with the
diameter of the smallest circular array used in the global
array. Concerning the amplification of noise, we use a
regularization parameter in the beamforming algorithm,
so that the noise is only amplified at the most by +5 dB
compared to uniform weighting.
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Fig. 5: Mean power focusing ratio (top) and white noise
gain (bottom) of the antenna versus frequency. Uniform
(dashed) and optimized (solid) tap vectors

3.2. Global sound field analysis scheme

In the previous paragraph, we have developed a beam-
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Fig. 4: Spatial filter response for uniform tap vector (left) and optimized tap vector (right).

forming algorithm which filters the incident sound field
from a given direction (φ0,θ0) at a pulsation ω. The out-
put of the spatial filter (6) could be considered as an es-
timator of the spatial Fourier transform evaluated for the
wave vector k0, that is p̂(k0,ω) . The sound field anal-
ysis step at a pulsation ω consists in computing the es-
timated values of the spatial Fourier transform p̂(k0,ω)
for several wave vectors k0 spanning the sphere defined
by the dispersion relationship. Thus, it requires the com-
putation of as many spatial filters h(φ0,θ0) as the number
of wave vectors used in this spherical mesh.

Then, there exists three different manners to repre-
sent a cartography associated to the computed values
p̂(k0,ω0):

• For each wave vector of the spherical mesh,
|p̂(k0,ω0) | corresponds to a point of the sphere
with same azimuth and elevation than k0. The am-
plitude is given by a color map in decibel scale.
This representation is used at the bottom of figures 6
and 7. The sphere is viewed from two angles to have
a more global view of the estimated spectrum.

• The spectrum |p̂(k0,ω0) | is plotted on a flattened
sphere, using the same color map as in the previous
case. Examples of this representation are given at
the top left of figures 6 and 7.

• The last method is analog to directivity diagrams,
extended to three dimensions. The representation is
defined as r (φ,θ) = |p̂

(ω0
c

,φ,θ,ω0
)

|. For a specific

angle (φ,θ), the radius is equal to the module of the
estimated spatial Fourier transform |p̂

(ω0
c

,φ,θ
)

|.
Examples of this representation can be viewed at
the top right of figures 6 and 7.

4. EXPERIMENTAL RESULTS

The spectrum of a real loudspeaker was estimated at fre-
quency f = 1034 Hz using uniform tap vectors first. It
is represented on figure 6 using the three different man-
ners introduced in the previous paragraph. The spec-
trum is constituted of a main lobe in the direction az =
270 dg, el = 0 dg, and also of several significant side
lobes. The representation of the spectrum uses a deci-
bel scale of 15 dB extent. The position of the main
lobe agrees very well with the estimated position of the
transducer during the automatic position calibration step
(az = 270 dg, el = 3 dg).

The same spectrum is plotted on figure 7, using a set of
optimal tap vectors instead of uniform tap vectors. We
can see that the spectrum is more localized in the wave
vector domain and that side lobes almost disappear using
a range of dynamics of 15 dB. Thus, the estimation of the
spectrum is enhanced compared to the one using uniform
tap vectors.

Sound field analysis using optimal tap vectors can ex-
hibit the presence of early reflections, whereas the analy-
sis based on uniform tap vectors failed to render so subtle
details. This is shown on figure 8. At the top of the figure
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Fig. 6: Different sound field cartographies for the loudspeaker located by [r = 1.1 m,az = 270 dg,el = 3 dg] by uni-
form tap vectors. Flattened sphere (top left), directivity-like diagram (top right), sphere from first view angle (bottom
left), sphere from second view angle (bottom right).

is represented the cartography of the real loudspeaker us-
ing either uniform or optimal tap vectors, whereas at the
bottom of the figure is represented the cartography of the
sound field corresponding to a monopole source located
at the estimated position of the loudspeaker analyzed, us-
ing either uniform and tap vectors. The cartography of
the sound field using uniform tap vectors seems noisier
than the cartography of the simulated loudspeaker. On
the other hand, the cartography of the real transducer us-
ing optimal tap vectors exhibits clearly new lobes corre-
sponding to early reflections. These reflections are those
generated by the loudspeakers located at the opposite of
the circular array (see Fig. 1). We can see that these new
lobes are not present on the cartography of the simulated
loudspeaker.

5. CONCLUSION AND PERSPECTIVES

In this article, we have used a beamforming algorithm
on real data acquired by a microphone array. The sound
field analysis of real loudspeakers agrees very well with
the sound field analysis of simulated loudspeakers, po-
sitioned at the same locations than the real ones. The

only differences between real and simulated loudspeak-
ers concern the presence of early reflections in the case
of real transducers. These early reflections go unnoticed
when using uniform tap vectors so that optimal tap vec-
tors based on generalized prolate spheroidal wave se-
quences represent an appreciable contribution to the do-
main of sound field analysis.

It has been shown that the microphone array, made up
with several circular arrays with logarithmically-spaced
radii, achieves a good power focusing ratio over a large
frequency band, until 7 kHz. The wavelength corre-
sponding to this frequency is 5 cm: it coincides with the
minimal diameter of the circular arrays used during the
measurement campaign. Moreover, the power focusing
ratio using optimal tap vectors is improved by a factor 2
compared to the use of uniform tap vectors while keeping
the amplification of noise to a satisfying level.

The main characteristics of the sound field analysis
scheme described in this article are the resolution and
the dynamics range. It has been shown that optimal tap
vectors achieve good performance regarding the power
focusing ratio when the resolution expected is fixed to a
reasonable level. Moreover, the sound field cartography
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Fig. 7: Different sound field cartographies for the loudspeaker located by [r = 1.1 m,az = 270 dg,el = 3 dg] by opti-
mal tap vectors. Flattened sphere (top left), directivity-like diagram (top right), sphere from first view angle (bottom
left), sphere from second view angle (bottom right).

uses a larger extent of dynamics using optimal tap vec-
tors compared to uniform tap vectors, thus enabling the
detection of early reflections.

The results obtained in this article can be further im-
proved in different manners:

• The use of three-dimensional array geometries
could remove the ambiguity between up and down
relative to the use of two-dimensional arrays, thus
enabling a further improvement of the power focus-
ing ratio.

• Granted that the direct sound component is cor-
rectly estimated in an anechoic chamber, it would
be interesting to study real reverberant rooms with
this sound field analysis scheme.

• Currently, the range of dynamics of 15 dB is suf-
ficient to characterize the direct sound component
and the first reflections, but seems insufficient to
characterize the late reverberation. This range of
dynamics could be improved either by studying

other microphone array geometries, or by increas-
ing the number of microphones used, or by low-
ering the expectancies concerning the resolution of
the acoustics imaging.
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