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Abstract: Spatial sound field reproduction involves two steps: spatial sound field capture and subsequent spatial sound

field reproduction. This paper deals with sound field capture within the context of aircraft cabin sound environment re-

production while complying to practical and geometrical constraints. Higher-order Ambisonics (HOA) are common tools

for spatial sound capture. Spherical microphone arrays are often used for this purpose. However, in some practical

situations, one may favor irregular or non-spherical array geometry. This is the purpose of this paper. Sound field ex-

trapolation (SFE) is aimed at the prediction of a sound field in an extrapolation region using a microphone array in a

measurement region different from the extrapolation region. The reported SFE method is based on an inverse problem

formulation combined with a recently proposed regularization method: a beamforming matrix in the discrete smoothing

norm of the cost function. In post-processing stages, we are interested in the derivation of HOA signals from the inverse

problem solution. The HOA signals are derived from the plane wave amplitudes obtained by the resolution of the inverse

problem. This approach gives the B-Format Ambisonics signals at each point of the extrapolation region, thus providing

a virtually movable Ambisonic microphone. Experimental results which validate the proposed SFE method in an extrapo-

lation region are presented. The paper finally presents the predicted Ambisonics signals from the SFE method applied to

the experimental SFE.

Key words: Ambisonics, higher-order Ambisonics, microphone array, sound field extrapolation, beamforming, inverse
problem, virtual acoustics, virtual Ambisonics microphones

1 INTRODUCTION

Spatial sound field reproduction usually involves two steps:
spatial sound field capture and subsequent spatial sound
field reproduction [1]. Metrics derived from the captured
sound field (sound pressure level, sound energy density,
source localization, etc.) will depend on the experimen-
tal technique employed in the sound field capture. Usually,
sound fields are measured in areas such as outdoor places,
concert halls [2], or more confined spaces such as vehicle
interiors. This paper deals with microphone array process-
ing within the context of aircraft cabin sound environment
reproduction [3, 4].

In many situations, the spatial sound capture phase raises
the specific problem of choosing the measurement tech-
nique which will provide the more extended and accurate
sound field measurement while complying to practical con-
straints. Ambisonics-based systems and higher-order Am-
bisonics (HOA) are common tools for this kind of problem
[5]. Through a spherical harmonic decomposition of the
local sound pressure field, they have the ability to provide
sound pressure levels and directions of propagation with a
low number of transmitted channels. The main drawback

is that the sound field information is local and extrapola-
tion of the sound field to other locations is difficult, imply-
ing the need to multiply the number of measurement posi-
tions or to increase the Ambisonics order. Spherical micro-
phone arrays are often used for this purpose. However, in
some practical situations, one may favor irregular or non-
spherical array geometry [1]. This paper considers irregular
array geometry.

For spatial sound field reproduction purpose, one is typi-
cally interested by the use of microphone arrays in order to
extrapolate the sound field outside the measurement region.
In general, sound field extrapolation (SFE) is aimed at the
prediction of a sound field in an extrapolation region using
a microphone array in a measurement region different from
the extrapolation region [6]. SFE finds application in noise
source identification, sound source localization [7], sound
source reconstruction [6, 8, 9] and sound field measurement
for spatial audio [2, 10]. In the context of sound field repro-
duction in a vehicle cabin, we are interested in the deriva-
tion of first-order (B-format) and HOA signals from an arbi-
trary and irregular microphone array. The derivation of Am-
bisonics signals from an irregular array geometry should be
based on a method that circumvents the fact that the spheri-



cal harmonics are not necessarily orthogonal functions over
the spatially-sampled region defined by an irregular or ar-
bitrary microphone array geometry [1]. To circumvent this,
we recently proposed a method based on sound field ex-
trapolation that combines inverse problem theory and beam-
forming [11].

This method is based on an inverse problem formulation
combined with a recently proposed regularization approach:
a beamforming matrix in the discrete smoothing norm of
the cost function. In our application, the inverse solution
is a set of plane waves that best approximates the sound
field captured by the array. The B-Format Ambisonics first-
order signals W , X , Y and Z are finally derived from the
plane wave complex amplitudes obtained by the resolution
of the discrete inverse problem. This approach gives the B-
Format Ambisonics signals at each point of the extrapola-
tion region, thus providing a virtually movable Ambisonics
microphone. Furthermore, the derivation of HOA signals is
possible.

This paper presents the derivation of the HOA signals from
the SFE results along with the first experimental validation
of the proposed SFE method based on the beamforming reg-
ularization matrix.

1.1. Paper structure

Section 2 recalls the recently developed SFE method based
on inverse problem theory and beamforming regularization
matrix. The derivation of the HOA signals from the SFE
solution is presented in Sec. 3.1. Numerical results to ver-
ify the HOA signals derivation method are presented in
Sec. 3.2. The experiments and corresponding results are
described in Sec. 4. To facilitate the understanding of the
potential applications of the proposed approach, Sec. 5 il-
lustrates a possible implementation of the proposed method.
A short conclusion closes the paper. Full-page figures are
presented at the end of the paper.

2 INVERSE PROBLEMS: THEORY

The generic microphone array and coordinate system are
shown in Fig. 1. The array includes M microphones. For
a given frequency, a complex sound pressure field measure-
ment is stored in p̂(xm) ∈ CM . In this paper, bold small
letters represent vectors and capital bold letters represent
matrices.

2.1. Inverse problem: Tikhonov regularization

The general discrete direct sound radiation problem in ma-
trix form is:

p(xm) = G(xm,yl)q(yl), (1)

with
p ∈ CM , G ∈ CM×L and q ∈ CL, (2)

where q is the monopolar source strength [12] vector, G is
the transfer matrix that represents sound radiation and p is
the resulting sound pressure vector at the microphone loca-
tions xm. The l-th source is located in yl. In this paper,
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Figure 1: Illustration of the spherical and rectangular coor-
dinate systems. Microphones are located in xm. Any field
point is denoted by x.

a simpler model of the direct problem is used: q are plane
wave amplitudes. Then: Gml = ejkl·xm with kl being the
wavenumber vector for the l-th plane wave. We adhere to
the e−jωt time convention. The direct problem includes L
sources and M pressure sensors, hence explaining the ma-
trix and vectors dimensions reported in Eq. (2).

The goal of inverse problem is to predict the measured
sound field at the microphone array: p ≈ p̂ using a known
system model G. A typical approach to that problem is to
cast it as a minimization problem with Tikhonov regulariza-
tion [13]

qλ = argmin
{

||p̂ − Gq||2
2

+ λ2Ω(q)2
}

. (3)

Accordingly, the quadratic sum of the prediction error e =
p̂ − p at the microphone array is attenuated. The inverse
problem solution qλ should approach the real sound source
distribution or should, at least, be able to achieve SFE. The
fact that the discrete direct model G is representative of
acoustical wave propagation suggests that if the prediction
is good at the array (i.e. e ≈ 0), the recreated sound field
in the vicinity of the array should also approach the exact
measured sound field. In Eq. (3), || · ||2 represents the vec-
tor 2-norm, λ is the penalization parameter and Ω(·) is a
discrete smoothing norm. For classical Tikhonov regular-
ization, the discrete smoothing norm is the solution vector
2-norm [13]: Ω(q) = ||q||2. The optimal solution of Eq. (3)
the becomes [8, 13, 14]

qλ =
GH p̂

GHG + λ2I
. (4)

Once the inverse problem solution qλ is obtained from
Eq. (4), the extrapolated sound pressure field [Pa] at any
location x is then computed using a linear combination of
plane waves

p(x) =

L
∑

l=1

eikl·xql, (5)

where the complex plane wave distribution ql is “centered”
around the coordinate system origin x = 0. Indeed, one
notes that the sound pressure at the origin is the direct linear
combination of the plane wave complex amplitudes

p(0) =

L
∑

l=1

ql. (6)
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However, one should keep in mind that a plane wave source
model could be replaced with any source model. Therefore,
the selection of the plane wave sources does not limit the
generality of this method.

For any field point x̄ that excludes the array origin, it would
be interesting to obtain an expression similar to Eq. (6)
where a new complex plane wave distribution q̄ would be
centered around the field point x̄. This is expressed as fol-
lows

p(x̄) =

L
∑

l=1

q̄l(x̄), (7)

with
q̄l(x̄) = ejkl·x̄ql. (8)

This simple expression will allow the direct computation of
Ambisonics signals in x̄ from q̄. According to Eq. (5), it is
now assumed that the inverse problem solution ql is a plane
wave description of the measured sound field. It will now
be refereed as the full-spherical plane wave description of
the sound field. This operation somewhat corresponds to a
three-dimensional spatial Fourier (or plane wave) transform
[6] to obtain an angular spectrum. However, it was achieved
here without any assumption about the array geometry. Spa-
tial Fourier transform methods are more constraining: they
need a regular microphone array geometry that fits the spa-
tial transform coordinates system [6].

2.2. Review of beamforming

It is possible to write the simple delay-and-sum beamform-
ing spatial responses QBF ∈ CL using [15]

QBF = GH p̂, (9)

or for the l-th listening direction (or point)

QBFl
= gH

l p̂, (10)

where the columns gl of matrix G (as in Eq. (1)) exactly
corresponds to a classical non-normalized steering vector
used for non-focused (plane waves) beamforming (it is also
possible to use focused beamforming if point sources were
used in the initial direct problem Eq. (1)). Indeed, the steer-
ing vector is the evaluation of the Green function for one
listening direction (or point) at the microphone array. This
corresponds to the G definition.

2.3. Inverse problem: beamforming regularization

In our recent theoretical work [3], we finally reached the
conclusion that inverse problem sensitivity to measurement
noise is best controlled using Tikhonov-like regularization
method. To obtain an even better spatial resolution, we in-
vestigated the possibility to use a ”beamforming regulariza-
tion matrix” L in the discrete smoothing norm: ΩBF(q) =
||Lq||2. The original idea was to take into account a pri-

ori information obtained by delay-and-sum beamforming to
wisely regularize the inverse problem. The diagonal matrix
L is given by

L =
[

diag
(

|GH p̂|/||GH p̂||∞
)]−1 ∈ RL×L. (11)

where | · | denotes elementwise absolute value of the argu-
ment and || · ||∞ is the vector infinite norm [16]. As one
can note, the effect of L is to put a stronger penalization on
the sources in q for which the delay-and-sum beamforming
gives a low output. Solution of the minimization problem
Eq. (3) is

qBFλ
=

GH p̂

GHG + λ2LHL
, (12)

or

qBFλ
=

GH p̂

GHG + λ2

[

diag (|QBF|/||QBF||∞)
2
]

−1
,

(13)
where diag(·)2 represents the elementwise squared values
of a vector placed on the main diagonal of a square ma-
trix. Preliminary theoretical studies provided promising re-
sults. Further theoretical developments and explanations of
this method is the topic of manuscript under review for the
Journal of Sound and Vibration [11].

3 DERIVATION OF AMBISONICS SIGNALS
FROM PLANE WAVE DESCRIPTION

In this section, the derivation of the HOA signals from the
inverse problem solution (qλ or qBFλ

) is first presented. To
illustrate the validity of the proposed derivation method, a
theoretical test case is reported for the direct comparison of
the exact HOA signals with the predicted HOA signals.

3.1. Theory

Within the field of spatial audio, Ambisonics is an estab-
lished method both for sound field reproduction and sound
field capture [17, 18]. As it will be shown in the next para-
graphs, the proposed SFE method based on irregular mi-
crophone array and inverse problem formulation can eas-
ily be used to derive the Ambisonics signals from the in-
verse problem solution qλ or qBFλ

, as long as the spatial
aliasing criterion is respected. Moreover, one of the great
interest of Ambisonics signals derivation from SFE or in-
verse problem theory is that virtual HOA microphones can
be placed anywhere in the effective SFE region. This can-
not be done using a single sound-field microphone [17] in
a given point. This possibility and corresponding nomen-
clature are depicted in Fig. 2. This opens onto many poten-
tial applications, including the post-processing translation
of the sound field capture point that feeds the HOA decoders
at the reproduction stage. This possible dependency of the
HOA signals (W , X , Y , Z , R, S, T , U and V ) on spatial
coordinates x is a new view of the HOA signals. To high-
light this different paradigm, the dependency of the HOA
signals will always be identified as in W (x̄) where x̄ is the
translated coordinate system origin as introduced in Eq. (7)
and shown in Fig. 2.

One can directly derive the B-Format Ambisonics first-
order signals W (x̄), X(x̄), Y (x̄) and Z(x̄) from the zero
and first order spherical harmonics [6] coefficients that cor-
responds to a plane wave distribution q (qλ or qBFλ

) [5].
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Figure 2: Schematic representation of the coordinate sys-
tem and virtual Ambisonics first-order microphone in x̄.

However, in this paper, we will simply rely on the deriva-
tion of the Ambisonics B-Format from virtual microphones
with appropriate directivity (ΓW , ΓX , etc.) in agreement
with the Furse-Malham higher-order format [19]. There-
fore, one writes the first-order Ambisonics signals for any
field point x̄ from the translated plane wave distribution
q̄(x̄,q) (Eq. (8))

W (x̄) =

L
∑

l=1

ΓW (θ′l, α
′

l)q̄l = 1/
√

2

L
∑

l=1

q̄l, (14)

X(x̄) =

L
∑

l=1

ΓX(θ′l, α
′

l)q̄l =

L
∑

l=1

cos(θ′l) cos(α′

l)q̄l, (15)

Y (x̄) =

L
∑

l=1

ΓY (θ′l, α
′

l)q̄l =

L
∑

l=1

sin(θ′l) cos(α′

l)q̄l, (16)

Z(x̄) =

L
∑

l=1

ΓZ(θ′l, α
′

l)q̄l =

L
∑

l=1

sin(α′

l)q̄l, (17)

where the angles θ′l = θl + π and α′

l = −αl are the lis-
tening directions in x̄. They are introduced to distinguish
the plane wave propagation directions θl, αl from the cor-
responding listening directions θ′l, α′

l. In the case of full-
sphere second-order Ambisonics, the R(x̄), S(x̄), T (x̄),
U(x̄), and V (x̄) components are easily derived as follows

R(x̄) =
L

∑

l=1

ΓR(θ′

l, α
′

l)q̄l =
L

∑

l=1

(1.5 sin(α′

l)
2
− 0.5)q̄l (18)

S(x̄) =
L

∑

l=1

ΓS(θ′l, α
′

l)q̄l =
L

∑

l=1

cos(θ′l) sin(2α′

l)q̄l (19)

T (x̄) =

L
∑

l=1

ΓT (θ′l, α
′

l)q̄l =

L
∑

l=1

sin(θ′l) sin(2α′

l)q̄l (20)

U(x̄) =

L
∑

l=1

ΓU (θ′l, α
′

l)q̄l =

L
∑

l=1

cos(2θ′l) cos(α′

l)
2q̄l (21)

V (x̄) =

L
∑

l=1

ΓV (θ′l, α
′

l)q̄l =

L
∑

l=1

sin(2θ′l) cos(α′

l)
2q̄l (22)

x
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Figure 4: Microphone array geometry used for the reported
theoretical and experimental results. The microphone cap-
sules are marked by black dots. To increase the visibility
of the array, vertical black lines are shown between the mi-
crophone acoustical centers and the x1–x2 plane. The grey
lines create an horizontal grid that corresponds to the x1, x2

positions of the microphones.

The typical directivity patterns (ΓW , ΓX , etc.) associated
with these Ambisonics signals are illustrated in Fig. 3 (page
5).

3.2. Verification

To verify the efficiency of the proposed HOA signals deriva-
tion from SFE and corresponding plane wave distribution
as reported in Eqs. (14) to (22), a numerical simulation is
proposed to compare the exact HOA signals (Ŵ (x̄), X̂(x̄),
etc.) to the derived HOA signals (W (x̄), X(x̄), etc.) over
an extended SFE region.

To evaluate the exact HOA signals in x̄ from numerical sim-
ulation, several assumptions are required. First, it is as-
sumed that the HOA microphones used for that purpose are
point-like with ideal directivity patterns (ΓW , ΓX , ΓY , etc.)
[20]. Accordingly, the exact HOA signals are then the exact
local sound pressure p̂(x̄) weighted by the directivity value
that correspond to exact local sound intensity opposite di-
rection θ̂′, α̂′ [20]. Therefore, we write

Ŵ (x̄) = ΓW (θ̂′, α̂′)p̂(x̄), (23)

X̂(x̄) = ΓX(θ̂′, α̂′)p̂(x̄), (24)

Ŷ (x̄) = ΓY (θ̂′, α̂′)p̂(x̄), (25)

Ẑ(x̄) = ΓZ(θ̂′, α̂′)p̂(x̄), (26)

R̂(x̄) = ΓR(θ̂′, α̂′)p̂(x̄), (27)

Ŝ(x̄) = ΓS(θ̂′, α̂′)p̂(x̄), (28)

T̂ (x̄) = ΓT (θ̂′, α̂′)p̂(x̄), (29)

Û(x̄) = ΓU (θ̂′, α̂′)p̂(x̄), (30)

V̂ (x̄) = ΓV (θ̂′, α̂′)p̂(x̄). (31)

The verification test case involves an array of 96 micro-
phones. The microphone array configuration is shown in
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Figure 3: Second-order full-sphere Ambisonics directivity patterns according to Eqs. (14) to (22).

Fig. 4. The microphone array is arranged in a double-layer
(12.25 cm vertical space) rectangular array and aligned on
a horizontal grid with a spacing of 12.25 cm. The source
distribution used in the direct and inverse problems is made
of a spherical distribution of impinging plane waves. The
direction cosines of the propagation direction of the plane
wave distribution is shown in Fig. 5, 642 plane waves are
used for the theoretical verification.

The true sound field and HOA signals at 600 Hz for a single
monopole in x1 ≈ −2.5 m, x2 = x3 = 0 m in free field
are shown in Fig. 14 (page 12). One can note the polarity
reversal of the HOA signals as x̄ changes. This is clear
in the case of Ŷ (x̄) shown in Fig. 14(d) where a movement
along x2 involves a polarity reversal when one crosses x2 =
0. One also observes that Ẑ(x̄), Ŝ(x̄) and T̂ (x̄) are null.
This was expected since the source is located in the x1–x2

plane that corresponds to the illustration plane.

To achieve SFE using inverse problem theory and the beam-
forming regularization matrix, the inverse problem solution
qBFλ

(θl, αl) is obtained from Eq. (9) with λ = 0.00001.
The inverse problem solution qBFλ

(θl, αl) is shown in
Fig. 6 (page 6). From this figure, it is clear that the SFE
method based on inverse problem with the beamforming
regularization matrix is able to localize the sound source
from the negative x1.

The extrapolated sound field p(x̄) and deduced HOA sig-
nals (W (x̄), X(x̄), Y (x̄), etc.) are shown in Fig. 15
(page 13). To identify the effective size of the SFE region,
contour lines of the local quadratic error e2(x̄) (e2(x̄) =
|p̂(x̄) − p(x̄)|2, e2(x̄) = |Ŵ (x̄) − W (x̄)|2, etc.) are su-
perimposed on the field values. Important conclusions can
be drawn from this theoretical verification test case: 1) The
SFE extrapolation method is able to predict the sound field
in a region which is larger that the microphone array and 2)
The inverse problem solution and SFE methods are able to
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Figure 5: Direction cosines of the spherical plane wave dis-
tribution with L = 642 plane waves.

predict the HOA signals in an effective area which is also
larger that the microphone array. This validates the effec-
tiveness of the proposed method for the derivation of HOA
signals from an inverse problem approach to a measured
sound field using an irregular microphone array as reported
in Secs. 2 and 3.1.

We recall that the effective size of the SFE area (and cor-
responding HOA signals predictions) are, like for classical
Ambisonics using single sound-field microphone that pro-
vides first-order directivity pattern shown in Fig. 3, depen-
dent on frequency. Larger effective extrapolation area are
expected for the longer wavelengths while smaller effective
SFE area are expected for smaller wavelengths. This is il-
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Figure 6: Absolute value (normalized to unity) of the in-
verse problem solution |qBFλ

(θl, αl)| (linear (radius) and
dB ref 1 (color) scales) for the verification case.

lustrated in Fig. 16 (page 14) where SFE results and local
quadratic errors are reported for several frequencies for the
same reported configuration. This should be kept in mind
for practical applications: virtual HOA sound field capture
should be done in relative close vicinity of the exact micro-
phone array.

4 EXPERIMENTAL RESULTS

To first validate the efficiency of the proposed method
for SFE and sound source localization, a sound field was
measured using a microphone array in a hemi-anechoic
room. The sound field was created using an omnidirectional
source. The array was moved in the vicinity of the original
source position and the sound field was again measured in
that extrapolation region. Subsequent multichannel signal
processing as presented in Sec. 2 was applied to the first
measurement data to predict the sound field in the extrap-
olation region. To achieve the validation, we present: 1)
the corresponding inverse problem solution (full-spherical
plane wave description of the sound field) for comparison
with the real source known position and 2) the compar-
ison between the measured sound field in the extrapola-
tion region and the extrapolated sound field in that region.
Once this experimental validation of the SFE methods is
achieved, the predicted HOA signals are presented for the
experiments in Sec. 4.3.

4.1. Experimental setup

The setup is shown in Figs. 4, 7, 8(a) and 8(b) (page 7).
The microphone array is made of 96 custom-made micro-
phones arranged in a double-layer (12.25 cm vertical sep-
aration) rectangular array and aligned on a horizontal grid
with a spacing of 12.25 cm. The microphones are made
of electret 6 mm capsules, each microphones sensitivity
is calibrated at 1 kHz. These pressure sensors are con-
nected to eight-channel custom-made preamplifiers using
high-quality analog components. These custom-built hard-

(a) Electret microphones with casing

(b) 8-channel preamplifiers circuits

(c) 24-channel preamplifier rack

Figure 7: Pictures of the custom-built electret microphones
and 24-channel preamplifier racks.

ware parts are shown in Fig. 7. They are designed for in-
flight measurements of aircraft cabin sound environment
evaluation and characterization. The preamplifier outputs
are digitized using four MOTUTM 24IO sound cards con-
nected to a computer through AudiowireTM cables. The ar-
ray was installed in a hemi-anechoic chamber and the orig-
inal sound field was created using a 600 Hz sinus of 1-s
length on a 12-loudspeaker B&K omnidirectional source lo-
cated in the plane of the antenna. The experimental setup is
shown in Fig. 8(a).

4.2. Validation of the sound field extrapolation

The inverse problem solutions using classical Tikhonov reg-
ularization qλ (Eq. (3)) or beamforming regularization ma-
trix qBFλ

(Eq. (12)) are shown in Fig. 9 for the microphone
array located in position b) (see Fig. 8(b)). For these two
cases the regularization parameter λ was set to 1. Also note
that a much denser plane wave distribution of L = 1442
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(a) Photography of the experimental setup in the hemi-
anechoic room.
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(b) Top view of the sound source and microphone array ar-
rangement in hemi-anechoic room.

Figure 8: Photography of the experiments (a) and experi-
mental configuration (b). The sound source is shown as a
large black circle. The acoustic center of the sound source
is shown as a small white dot. Two microphone array posi-
tions are labeled a) and b). For the theoretical test case, the
microphone array position was b). The spatial regions that
corresponds to the SFE evaluation area is circumscribed by
a dash-line square.

plane wave was used. Clearly, the inverse problem solution
with Tikhonov regularization is not accurate: the solution is
not able to localize the sound source nor the floor reflection.
However, this does not mean that SFE based on classical
Tikhonov regularization does not work, it only means that
for this specific regularization parameter, the regularization
was not strong enough. For the inverse problem solution
using the beamforming regularization matrix with a simi-
lar regularization parameter λ, the solution gives something
that is meaningful. Indeed, one can distinguish the direct
sound source (plane waves that propagates along positive
x1) from the floor reflection (plane waves that goes up-
ward). Therefore, this illustrates the fact that the inverse
problem method using the beamforming matrix requires
much less regularization to provide a meaningful result.
The inverse problem solution with classical Tikhonov reg-

(a) Inverse problem solution |qλ|

(b) Inverse problem solution |qBFλ
|

Figure 9: Spherical mapping of the absolute value (nor-
malized to unity) of the inverse problem solutions: (a) with
classical Tikhonov regularization |qλ(θl, αl)| and (b) with
beamforming regularization matrix |qBFλ

(θl, αl)| (linear
(radius) and dB ref 1 (color) scales) (λ = 1) for the experi-
ments with the microphone array position a) (see Fig. 8(b)).

ularization and beamforming regularization with a stronger
penalization parameter λ = 25 are shown in Fig. 10. This
time, the Tikhonov solution is able to localize the sound
source and the ground reflection. However, the spatial res-
olution is much less compared to the inverse problem with
the beamforming regularization matrix shown in Fig. 9(b).

These four inverse problem solutions evaluated from a mi-
crophone array measurement in position b) (see Fig. 8(b))
were then used to predict (Eq. (5)) the sound field in array
position a) (see Fig. 8(b)) for direct comparison of the SFE
predictions with the true measured sound pressure field.
This comparison is presented in Fig. 17 (page 15). Beside
the direct comparison of the original and extrapolated sound
field, the local absolute value of the prediction error is also
shown. Note that the color scale used for the prediction er-
ror is not the same than for the sound fields. As expected
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from the previous remarks, SFE using classical Tikhonov
regularization (Figs. 17(b) and 17(c)) with λ = 1 does not
provide an efficient SFE. SFE using the beamforming reg-
ularization (Fig. 17(d)) with λ = 1 does however provide
a smooth extrapolation that approaches the original sound
field. Moreover, one notes that for this case the prediction
error is lower in the close vicinity of the measurement ar-
ray (x1 closer to 0) and higher as the extrapolation goes
away from the measurement array (toward negative x1):
the extrapolation error increases as one moves away from
the microphone array that provided the original measure-
ment p(xm). Interestingly, SFE using classical Tikhonov
regularization (Figs. 17(b) and 17(c)) with λ = 25 does
provide a relatively efficient SFE. Sound field extrapolation
using the beamforming regularization matrix or classical
Tikhonov regularization with λ = 1 and λ = 25, respec-
tively, are able to provide and efficient SFE, see Figs. 17(d),
17(e), 17(h) and 17(i). This illustrates a specific and advan-
tageous feature of the beamforming regularization matrix in
comparison with the classical Tikhonov regularization: the
former method is much sensitive to the variation and selec-
tion of the regularization parameter. Moreover, one should
keep in mind that the beamforming regularization matrix
method provided the most efficient extrapolation of all the
reported test cases.

To simplify the comparison of the prediction errors shown
in Fig. 17, the normalized quadratic sum of the predic-
tion error in the extrapolation area was computed: E =
1/M

∑M

m=1
|e(xm)|2 [Pa2] for each of the prediction error

field e(x) shown in Fig. 17. For the Tikhonov regulariza-
tion with λ = 1, E = 0.6446 Pa2. For the Tikhonov reg-
ularization with λ = 25, E = 0.2319 Pa2. For the beam-
forming regularization approach with λ = 1, E = 0.2070
Pa2 and with λ = 25, E = 0.2194 Pa2. For the four test
cases, the beamforming regularization approach systemati-
cally gives a lower SFE error in the extrapolation area. This
validates the aforementioned feature. The general behav-
ior of the SFE efficiency for the two methods as function
of the regularization parameter λ is summarized in Fig. 11.
One clearly notes that for the beamforming regularization
method the prediction error goes through a larger minimum
plateau: this highlights the fact that the beamforming regu-
larization is much less sensitive to the selection of the regu-
larization parameter λ.

4.3. Extrapolation of HOA signals

In this section, another experimental test case is reported.
This time, a set of L = 642 plane waves as shown in Fig. 5
is used. This test case corresponds to the source and micro-
phone array positions used for the theoretical test case. The
inverse problem solution based on beamforming regulariza-
tion matrix (Eq. (12)) is shown in Fig. 12 with λ = 0.5. By
comparison with the theoretical test case, one notes the floor
reflection that is superimposed to the direct sound.

Before actually taking a look at the extrapolated sound field
and HOA signals, the comparison of the actual measure-
ment p̂ and prediction p at the measuring microphone ar-

(a) Inverse problem solution |qλ|

(b) Inverse problem solution |qBFλ
|

Figure 10: Spherical mapping of the absolute value (nor-
malized to unity) of the inverse problem solutions: (a) with
classical Tikhonov regularization |qλ(θl, αl)| and (b) with
beamforming regularization matrix |qBFλ

(θl, αl)| (linear
(radius) and dB ref 1 (color) scales) (λ = 25) for the experi-
ments with the microphone array position a) (see Fig. 8(b)).

ray using the inverse problem solution qBFλ
is shown in

Fig. 13. Clearly, the predicted sound field (p = GqBFλ
)

approaches the measured sound field (p̂). This is sup-
ported by a low prediction error at the microphone array
(Fig. 13(c)). Therefore, it is assumed that the inverse prob-
lem solution achieves its goal, i.e. ensures a prediction error
close to zero e ≈ 0 at the measuring microphone array (see
Sec. (3.1)).

The SFE and predicted HOA signals in a SFE area that ex-
tends beyond the microphone array are presented in Fig. 18
(page 16). It is important to keep in mind that the size of
the region surrounded by the walls of the anechoic space
is relatively small (see Fig. 8(a)). Indeed, the SFE region
shown in Fig. 18 (page 16) that covers −2 ≥ x1 ≥ 2,
−2 ≥ x2 ≥ 2 extends somewhat beyond the surrounding
boundary. Therefore, the SFE results are not expected to be
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Classical Tikhonov regularization

Beamforming regularization

Figure 11: Normalized quadratic sum of the prediction er-
ror in the extrapolation area using classical Tikhonov reg-
ularization and beamforming regularization as function of
the penalization parameter λ. The cases with λ = 1 and
λ = 25 are marked by thin vertical dashed lines.

valid in that region. As expected from the equivalent the-
oretical test case, the strongest HOA signals are W , X , Y ,
R, U and V . However, by marked contrast with the theoret-
ical test case, the concrete floor reflection introduces some
significant signals for Z and S. This is expected since the
ground reflection involves a propagative component along
x3. Interestingly, one notes that the Z HOA signal involves
a trace wavelength in the x1–x2 plane that is longer than
for the other HOA signals. This suggests that the Z HOA
signal is able to tackle the ground reflection which involves
a longer trace wavelength in the x1–x2 plane according to
the non-null wavenumber vector component along x3, i.e.
kx3

6= 0 for the ground reflection. This completes the ex-
perimental prediction of HOA signals from an irregular mi-
crophone array measurement.

5 APPLICATION EXAMPLE

To facilitate the understanding and illustrate the potential of
the proposed method, an application example is presented
schematically in Fig. 19 (page 17). For a given sound source
and sound environment (ambient sounds, room acoustics,
etc.), a microphone array measurement is done and the raw
data is stored. Using this raw data, virtual HOA signals are
derived for any given spatial location x̄. These signals are
first obtained by the transformation of the sound pressures
at the microphone array in a plane wave description of the
sound field using inverse problem in the frequency domain
(Sec. 2). Next, the full-spherical plane wave description of
the measured sound field is directly used to compute the
predicted HOA signals using virtual point-like microphone
with appropriate directivity patterns (Sec. 3.1). These HOA
predicted signals are then converted back in the time do-

Figure 12: Absolute value (normalized to unity) of the in-
verse problem solution |qBFλ

(θl, αl)| (linear (radius) and
dB ref 1 (color) scales) for the experiments with the micro-
phone array position b) (see Fig. 8(b)).

main to be used with any classical HOA decoder and 2D or
3D loudspeaker array.

6 CONCLUSION

The aims of this paper were twofold: provide the exper-
imental validation of a recently proposed sound field ex-
trapolation (SFE) method [11] and provide the derivation
of higher-order Ambisonics (HOA) signals from a plane
wave description of a measured sound field obtained from
the SFE method.

In a first instance, the SFE method combining inverse prob-
lem theory and the beamforming regularization matrix was
recalled. The obtained inverse problem solution was used
to directly derive the HOA signals in an extended extrap-
olation area. Generally speaking, the objective of the in-
verse problem approach is to find a potential cause that cre-
ated a measured effect. In applied acoustics, the cause is
an a priori unknown sound source and the effect is an ob-
served sound pressure field. To illustrate the validity of the
proposed SFE method and HOA signals derivation, a sim-
ple theoretical test case was presented. It was shown that
both SFE and HOA signals predictions were efficient in a
extended SFE area. As for classical finite-order Ambison-
ics description or reproduction of a measured sound field,
the effective size of the SFE region tends to get smaller for
smaller wavelengths.

In a second section, we described experiments to evaluate
the efficiency of the new regularization method of the in-
verse problem using the beamforming regularization ma-
trix. The experiments were achieved in known and con-
trolled conditions (an hemi-anechoic room) for validation
purposes. By comparison with classical Tikhonov regular-
ization method it was shown that this technique can offer a
more precise sound source localization. Moreover, the ex-
trapolated sound field seemed even closer to the monitored
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(a) Measured sound field p̂(xm)

(b) Predicted sound field p(xm)

(c) Prediction error e = p̂ − p

Figure 13: Real and imaginary parts (left and right, respec-
tively) of the measurement (p̂(xm)), prediction (p(xm))
and prediction error (e = p̂ − p) of the experimental test
case at 600 Hz at the microphone array.

sound field than for the classical regularization method. At
the light of the results presented in this paper, we believe
in the potential future developments, refinements, applica-
tions of the beamforming regularization method in inverse
problem.

To illustrate the potential application of the HOA signals
derivation for an extended region from the full-spherical
plane wave description of the sound field, the HOA signals
were derived from and illustrated for the experimental SFE
results. Further works could be devoted to the objective
and subjective comparisons of the predicted and measured
HOA signals. Indeed, a direct comparison of the predicted
HOA signals at a given point in space with actually mea-
sured HOA signals in that same position using a Ambison-
ics microphone would allow for an even more rigorous val-
idation of the proposed HOA signals derivation.

The proposed derivation of HOA signals from a generic
plane wave distribution that describes a given measured
sound field opens many new possibilities for subsequent
HOA reproduction. Indeed, from a single microphone array
measurement, one can derive at a latter processing stage the
HOA signals for any points in the SFE effective area. This
is specially interesting for virtual acoustics or sound envi-
ronment reproduction since it would be possible to expose
a listener to an HOA reproduction of a given sound field

in any points of the SFE effective area. Moreover, the pro-
posed method is not limited to the studied microphone array
configuration. Indeed, it can be applied to any microphone
array geometry. This could be subject of further investiga-
tions and verifications.

Beside the evaluation of the HOA signals from the full-
spherical plane wave description of the sound field (or an-
gular spectrum [6]) obtained from the inverse problem ap-
proach, it would also be interesting to apply the deriva-
tion of HOA signals from an angular spectrum obtained
from other methods such as near-field acoustical hologra-
phy (NAH) that typically involves a large microphone array
in close vicinity of the sound source under study. That is
a virtual Ambisonics avenue that could be very interesting.
Indeed, once a sound source is characterized using NAH
in anechoic conditions, it would be possible to derive any
HOA signals for any spatial coordinate using SFE as writ-
ten in the spatial transform domain for NAH. It would then
be possible to listen to the measured sound source at any
relative position from the sound source. This is especially
interesting for virtual acoustic applications, listening tests,
sound quality and comfort studies.
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(a) Exact sound field p̂(x̄) (b) Exact Ŵ (x̄)

(c) Exact X̂(x̄) (d) Exact Ŷ (x̄)

(e) Exact Ẑ(x̄) (f) Exact R̂(x̄)

(g) Exact Ŝ(x̄) (h) Exact T̂ (x̄)

(i) Exact Û(x̄) (j) Exact V̂ (x̄)

Figure 14: Real and imaginary parts (left and right plots of the figures, respectively) of the exact sound pressure field p̂(x̄)
and Ambisonics signal fields (Ŵ (x̄), X̂(x̄), etc.) for the theoretical verification case at 600 Hz with a single monopole
source in free field.
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(a) Extrapolated sound field p(x̄) (b) Extrapolated W (x̄)

(c) Extrapolated X(x̄) (d) Extrapolated Y (x̄)

(e) Extrapolated Z(x̄) (f) Extrapolated R(x̄)

(g) Extrapolated S(x̄) (h) Extrapolated T (x̄)

(i) Extrapolated U(x̄) (j) Extrapolated V (x̄)

Figure 15: Real and imaginary parts (left and right plots of the figures, respectively) of the extrapolated sound pressure
field p(x̄) and HOA signals (W (x̄), X(x̄), etc.) for the theoretical verification case at 600 Hz with a single monopole
source in free field. The local quadratic errors (e2(x̄) = |p̂(x̄)− p(x̄)|2, e2(x̄) = |Ŵ (x̄)−W (x̄)|2, etc.) are identified as
contour lines at e2 = 0.001 (white lines), e2 = 0.01 (black dashed lines) and e2 = 0.1 (black lines).
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(a) Extrapolated sound field p(x̄) at 80 Hz (b) Extrapolated sound field p(x̄) at 160 Hz

(c) Extrapolated sound field p(x̄) at 240 Hz (d) Extrapolated sound field p(x̄) at 320 Hz

(e) Extrapolated sound field p(x̄) at 400 Hz (f) Extrapolated sound field p(x̄) at 480 Hz

(g) Extrapolated sound field p(x̄) at 560 Hz (h) Extrapolated sound field p(x̄) at 640 Hz

(i) Extrapolated sound field p(x̄) at 720 Hz (j) Extrapolated sound field p(x̄) at 800 Hz

Figure 16: Real and imaginary parts (left and right plots of the figures, respectively) of the extrapolated sound pressure
field p(x̄) for the verification case at different frequencies with a single monopole source in free field. The local quadratic
errors (e2(x̄) = |p̂(x̄)− p(x̄)|2) are identified as contour lines at e2 = 0.001 (white lines), e2 = 0.01 (black dashed lines)
and e2 = 0.1 (black lines).
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(a) Measured sound field at the monitoring array p̂(x)

(b) Extrapolated sound field p(x) (Tikhonov reg., λ = 1) (c) Prediction error |e(x)| = |p̂(x) − p(x)|
(Tikhonov reg., λ = 1)

(d) Extrapolated sound field p(x) (Beamforming reg. matrix,
λ = 1)

(e) Prediction error |e(x)| = |p̂(x) − p(x)|
(Beamforming reg. matrix, λ = 1)

(f) Extrapolated sound field p(x) (Tikhonov reg., λ = 25) (g) Prediction error |e(x)| = |p̂(x)−p(x)|
(Tikhonov reg., λ = 25)

(h) Extrapolated sound field p(x) (Beamforming reg. matrix,
λ = 25)

(i) Prediction error |e(x)| = |p̂(x) − p(x)|
(Beamforming reg. matrix, λ = 25)

Figure 17: Real and imaginary parts (left and right columns of (a), (b), (d), (f) and (h)) of the measured sound field p̂(x),
extrapolated sound field p(x) and absolute value of the prediction error |e(x)| = |p̂(x) − p(x)| at the monitoring array
(in an extrapolation area different from the measurement area) for different inverse problem solutions for the experiments
in hemi-anechoic chamber at 600 Hz. The measurement points are shown as black circles. The color scale is different for
the prediction error.
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(a) Extrapolated sound field p(x̄) (b) Extrapolated W (x̄)

(c) Extrapolated X(x̄) (d) Extrapolated Y (x̄)

(e) Extrapolated Z(x̄) (f) Extrapolated R(x̄)

(g) Extrapolated S(x̄) (h) Extrapolated T (x̄)

(i) Extrapolated U(x̄) (j) Extrapolated V (x̄)

Figure 18: Real and imaginary parts (left and right plots of the figures, respectively) of the extrapolated sound pressure
field p(x̄) and HOA signals (W (x̄), X(x̄), etc.) for the experimental case at 600 Hz. Approximate room boundary are
shown as dashed black lines.
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Figure 19: Illustrated application of the proposed method for two virtual Ambisonics microphones signals deduced from
a single microphone array. Once the microphone array data is stored, it is possible to predict the HOA signals for any
position located in the effective SFE area. These predicted HOA signals are then sent to a conventional HOA decoder and
loudspeaker array for subsequent sound field reconstruction at the center of the array where the listener stands.
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