
Audio Engineering Society

Convention Paper
Presented at the 124th Convention

2008 May 17–20 Amsterdam, The Netherlands

The papers at this Convention have been selected on the basis of a submitted abstract and extended precis that have
been peer reviewed by at least two qualified anonymous reviewers. This convention paper has been reproduced from
the author’s advance manuscript, without editing, corrections, or consideration by the Review Board. The AES takes
no responsibility for the contents. Additional papers may be obtained by sending request and remittance to Audio

Engineering Society, 60 East 42nd Street, New York, New York 10165-2520, USA; also see www.aes.org. All rights
reserved. Reproduction of this paper, or any portion thereof, is not permitted without direct permission from the
Journal of the Audio Engineering Society.

Focusing of Virtual Sound Sources in Higher
Order Ambisonics

Jens Ahrens and Sascha Spors

Deutsche Telekom Laboratories, Technische Universität Berlin, Ernst-Reuter-Platz 7, 10587 Berlin, Germany

Correspondence should be addressed to Jens Ahrens (jens.ahrens@telekom.de)

ABSTRACT

Higher order Ambisonics (HOA) is an approach to the physical (re-)synthesis of a given wave field. It is
based on the orthogonal expansion of the involved wave fields formulated for interior problems. This implies
that HOA is per se only capable of recreating the wave field generated by events outside the listening area.
When a virtual source is intended to be reproduced inside the listening area, strong artifacts arise in certain
listening positions. These artifacts can be significantly reduced when a wave field with a focus point is
reproduced instead of a virtual source. However, the reproduced wave field only coincides with that of the
virtual source in one half-space defined by the location and nominal orientation of the focus point. The wave
field in the other half-space converges towards the focus point.

1. INTRODUCTION

Higher order Ambisonics (HOA) is a sound repro-
duction technique that employs a large number of
loudspeakers to physically recreate a wave field in
a specific listening area. Since the so-called near-
field correction has been introduced in [1], accurate
versatile reproduction is possible. The desired wave
field is typically described via its spherical harmon-
ics expansion coefficients [1, 2]. These can be yielded
either from appropriate microphone array record-
ings [3] (data-based reproduction) or virtual sound
scenes may be composed of virtual sound sources

whose spherical harmonics expansion coefficients are
derived from analytical source models (model-based
reproduction). In this paper, we will concentrate on
the latter case.
Besides plane waves, the virtual sound sources are
traditionally modeled as monopole sources and are
typically located outside the listening area. Al-
though approaches for the reproduction of com-
plex sources have been presented recently [4, 5], we
will focus on the investigation of virtual monopole
sources for simplicity. The extension of the pre-
sented approach to complex sources is straightfor-
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ward and a general guideline is given.
Due to reasons of causality, it is not possible to re-
produce virtual sound sources inside the listening
area without artifacts, no matter which reproduc-
tion method is employed. The wave field of a virtual
source inside the listening area can only be recreated
maximally in one half-space defined by the location
of the virtual source and the location of the loud-
speakers. In the other half-space the reproduced
wave field converges towards the location of the vir-
tual source. The wave field simply travels into the
wrong direction there. The reproduction of such a
focused wave field is referred to as reproduction of a
focused virtual source respectively a focused source.
In the context of wave field synthesis (WFS), an al-
ternative spatial reproduction approach, the time-
reversal principle has been exploited to implement
the reproduction of focused virtual sources [6].
One proceeds as follows: First, a virtual source
is created at the position of the intended focused
source but its radiated wave field is recreated be-
hind the loudspeaker array. Then, the driving func-
tions deriving the loudspeaker driving signals from
the source input signal are time reversed, i.e. delays
become anticipations. This results in a wave field
that converges towards the location of the virtual
source and then diverges and makes up the desired
wave field.
This principle can not be adopted straightforwardly
to HOA since contrary to WFS, the listening area
is always surrounded by loudspeakers which all con-
tribute at any time to the reproduced wave field. If
the time of the driving functions is reversed, in any
location inside the listening area there will be both,
a diverging part of the wave field (the desired part)
as well as a converging (unwanted) part.
As discussed in the literature [1], the conventional
Ambisonics formulation does enable to partly repro-
duce the wave field of a virtual source which is po-
sitioned inside the listening area. However, only in
a small area determined by the virtual source’s lo-
cation, the wave fields emitted by the loudspeakers
interfere such that the desired wave field emerges.
Outside this area strong artifacts arise.
In order to minimize artifacts, we propose to explic-
itly model the desired reproduced wave field as con-
verging in one half-space and diverging in the other
half-space. In the remainder, we refer to the lat-
ter as target half-space. The boundary between the

two half-spaces can then be freely rotated around
the focus point. Note that a converging wave field
is essentially a time-reversed diverging one.
The typical Ambisonics approach is based on the
assumption of a finite number of discrete loudspeak-
ers whose emitted wave fields superpose to an ap-
proximation of the desired one. Typically, numeri-
cal algorithms are employed to find the appropriate
loudspeaker driving signals. In order to allow for an
analytical treatment of the subject, we will model a
continuous secondary source distribution as recently
presented by the authors [7]. The theoretical basis
of the presented formulation is the so-called simple
source approach [8] which has gained only little at-
tention in conjunction with spatial audio reproduc-
tion so far.

Nomenclature In the remainder of this paper, we
will assume that the near-field correction is included
in the Ambisonics approach as described in section
2. Thus, when we speak of Ambisonics we implicitly
mean near-field corrected higher order Ambisonics
(NFC-HOA).
The following conventions are used: For scalar vari-
ables, lower case denotes the time domain, upper
case the temporal frequency domain. Vectors are
denoted by lower case boldface. The descriptions
in this paper are restricted to two-dimensional re-
production which means in this context that an ob-
served sound field is independent from one of the
spatial coordinates, i.e. P (x, y, z, ω) = P (x, y, ω).
Confer also to section 2.2.
The two-dimensional position vector in Cartesian co-
ordinates is given as x = [x y]T . The Cartesian
coordinates are linked to the polar coordinates via
x = r cos α and y = r sin α. Confer to figure 1.
The acoustic wavenumber is denoted by k. It is re-

lated to the temporal frequency by k2 =
(

ω
c

)2
with ω

being the radial frequency and c the speed of sound.
Outgoing monochromatic plane and cylindrical

waves are denoted by e−j ω

c
r cos(θpw−α) and H

(2)
0 (ω

c
r)

respectively, with θpw being the propagation direc-
tion of the plane wave.
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Fig. 1: The coordinate system used in this paper.
The dashed line indicates the secondary source dis-
tribution.

2. THE AMBISONICS APPROACH

2.1. General Outline

In the basic three-dimensional Ambisonics approach,
the loudspeakers of the respective reproduction sys-
tem are located on a sphere around the listening
area. Both the desired wave field as well as the sound
fields emitted by the loudspeakers are expanded into
series of orthogonal basis functions [9, 2]. More re-
cent Ambisonics approaches are typically referred
to as higher order Ambisonics. However, the term
higher order is rather a historical rudiment. It sim-
ply emphasizes the fact that the expansions are not
restricted to low (e.g. 0 or 1) expansion orders. The
main motivation for concentrating on low orders is
the fact that sound field recording techniques are
limited to very low orders.
In this paper, we describe a general theoretical
framework whose basic formulation does not take
practical limitations a priori into account. We there-
fore waive the attribute higher order and implicitly
speak of what is termed higher order Ambisonics,
whenever we use the term Ambisonics.
The expansion of the involved wave fields into spa-
tial basis functions allows for a mode matching pro-
cedure which leads to an equation system that is
solved for the optimal loudspeaker driving signals.
These drive the loudspeakers such that their super-
posed wave fields best approximate the desired one

in a given sense:

P (x, ω) =

N−1∑

n=0

D(xn, ω) · G(x − xn, ω) , (1)

where P (x, ω) denotes the desired wave field,
D(xn, ω) the driving signal of the loudspeaker lo-
cated at the position xn = r0 ·[cos αn sin αn]T on the
sphere, and G(x−xn, ω) its spatio-temporal transfer
function. Typically, numerical algorithms are em-
ployed to find the appropriate loudspeaker driving
signals. These algorithms tend to be computation-
ally costly and only little insight into the properties
of the actual reproduced wave-field is gained.
The Ambisonics approach is usually divided into an
encoding and a decoding stage to allow for storing
and transmission of content independently from the
loudspeaker setup. For ease of illustration we will
skip the encoding/decoding procedure and directly
derive the loudspeaker driving signals from the ini-
tial virtual wave field description. The extension of
the present approach to the spatial encoding and
decoding of wave fields is straightforward.

2.2. Two-Dimensional Continuous Formulation

As stated in section 1, we limit our derivations to
two-dimensional reproduction for convenience. In
order to fulfill the requirements of the simple source
approach and therefore for artifact-free reproduc-
tion, we have to assume a continuous circular dis-
tribution of secondary line sources positioned per-
pendicular to the target plane (the listening plane)
[8]. Our approach is therefore not directly imple-
mentable since loudspeakers exhibiting the proper-
ties of line sources are commonly not available. Real-
world implementation usually employ loudspeakers
with closed cabinets as secondary sources. The
properties of these loudspeakers are more accurately
modeled by point sources.
The main motivation to focus on two dimensions is
to keep the mathematic formulation simple in order
to illustrate the general principle of the presented
approach. The extension both to three-dimensional
reproduction (i.e. spherical arrays of secondary point
sources) and to two-dimensional reproduction em-
ploying circular arrangements of secondary point
sources is straightforward and can be found in [7].
The formulation of the Ambisonics reproduction
equation (1) considering the above mentioned as-
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sumptions reads

P (x, ω) =

2π∫

0

D(α0, ω)G2D(x − x0, ω) r0 dα0 , (2)

where x0 = r0 · [cos α0 sinα0]
T . The two-

dimensional free-field Green’s function G2D(x −
x0, ω) representing the spatio-temporal transfer
function of a secondary source at position x0 is
then the zeroth order Hankel function of second kind
H

(2)
0

(
ω
c
|x − x0|

)
[8].

Equation (2) constitutes a circular convolution and
therefore the convolution theorem

P̊ν(r, ω) = 2πr0D̊ν(ω)G̊ν(r, ω) (3)

applies [10]. P̊ν(r, ω), D̊ν(ω), and G̊ν(r, ω) denote
the Fourier series expansion coefficients of P (x, ω),
D(α, ω), and G2D

(
x − [r0 0]T

)
1.

The Fourier series expansion coefficients F̊ν(r, ω) of a
two-dimensional wave field F (x, ω) can be obtained
via [8]

F̊ν(r, ω) =
1

2π

2π∫

0

F (x, ω)e−jνα . (4)

The wave field F (x, ω) can then be synthesized as

F (x, ω) =

∞∑

ν=−∞

F̊ν(r, ω)ejνα . (5)

For propagating wave fields the coefficients F̊ν(r, ω)
can be decomposed as

F̊ν(r, ω) = F̆ν(ω)Jν

(ω

c
r
)

, (6)

whereby Jν(·) denotes the nu-th order Bessel func-
tion [8].
From (3) we can deduct that

D̊ν(ω) =
1

2πr0

P̊ν(r, ω)

G̊ν(r, ω)
. (7)

Introducing the explicit formulation for the Fourier
series expansion coefficients (equation (6)), we find

1Note that the coefficients G̊ν(r, ω) as used throughout
this paper assume that the secondary source is situated at
the position (r = r0, α = 0) and is orientated towards the
coordinate origin.

that the radius r appears both in the numerator
as well as in the denominator in the factor Jν

(
ω
c
r
)

which cancels out for all r where Jν

(
ω
c
r
)
6= 0. Wher-

ever Jν

(
ω
c
r
)

= 0, de l’Hôspital’s rule [11] can be

applied to proof that Jν

(
ω
c
r
)

and thus r also cancel
out in these cases.
Combining (7) and (5) finally yields the driving func-
tion D(α0, ω) for a secondary source situated at po-
sition x0 reproducing a desired wave field with ex-
pansion coefficients P̆ν(ω) reading

D(α, ω) =
1

2πr0

∞∑

ν=−∞

P̆ν(ω)

Ğν(ω)
ejνα , (8)

whereby we omitted the index 0 in α0 for conve-
nience. Note that D(α, ω) is independent from the
receiver position.
The coefficients G̊ν(r, ω) respectively Ğν(ω) describe
the spatial transfer function of the employed sec-
ondary sources. These need not necessarily be mod-
eled as monopole line sources. In principle, any two-
dimensional secondary source transfer function that
does not exhibit zeros can be handled in the pre-
sented approach. However, the directivity charac-
teristics have to be equal for all loudspeakers. We
assume monopole line sources in the remainder of
this paper for convenience.
Equation (8) can be verified by inserting it into (2).
After introducing the Fourier series expansion of the
secondary source wave fields according to (6), ex-
changing the order of integration and summation,
and exploitation of the orthogonality of the circular
harmonics ejνα [8] one arrives at the Fourier series
expansion of the desired wave field, thus proving per-
fect reproduction. Note however that the coefficients
P̆ν(ω) respectively Ğν(ω) are typically derived from
interior expansions. This implies that (8) is gener-
ally only valid inside the secondary source distribu-
tion.

2.3. Conventional Reproduction of Virtual Sound

Sources

In this section, we briefly outline the properties of
the conventional approach of reproducing virtual
sound sources. Exemplarily, we assume the vir-
tual source as well as the secondary sources to be
monopole line sources.
The wave field S(x− xs, ω) of such a monopole line
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source situated at position xs reads [8, 12]

S(x − xs, ω) = H
(2)
0

(ω

c
|x − xs|

)

=

=

∞∑

ν=−∞

Jν

(ω

c
r
)

H(2)
ν

(ω

c
rs

)

e−jναs

︸ ︷︷ ︸

S̆ν(ω)

ejνα . (9)

Note that (9) only holds true for |x < xs|.
Introducing (9) for the wave fields of the secondary
sources as well as for the wave field of the vir-
tual source into (8) yields the driving function
Dconv(α, ω) for a continuous circular distribution of
secondary monopole line source reproducing a vir-
tual monopole line source at position xs. Explicitly,

Dconv(α, ω) =
1

2πr0

∞∑

ν=−∞

H
(2)
ν (ω

c
rs)

H
(2)
ν (ω

c
r0)

ejν(α−αs) .

(10)
As long as rs > r0, thus as long as the virtual line
source is located outside the listening area, the line
source’s wave field can be perfectly reproduced in-
side the listening area. However, when rs < r0 the
reproduced wave field only coincides with the desired
one inside the disc with radius rs. Outside this disc
strong artifacts arise, most notably a strong boost
of bass frequencies [1]. Thus, the closer the virtual
source is to the coordinate origin, the smaller is the
disc on which the desired wave field is reproduced.
Confer to figure 2 for an illustration.
In the following sections, we derive a strategy to min-
imize the artifacts that the reproduction of virtual
sound sources positioned inside the listening area im-
plies.

2.4. Modeling of a Wave Field Exhibiting a Focus

Point

In this section, we derive a mathematical formula-
tion for the wave field which we intend to repro-
duce, i.e. a wave field converging in one half-space
towards a focus point and diverging into the target
half-space. In the target half-space, we want the di-
verging wave field to resemble that of a virtual sound
source located at the position of the focus point. For
convenience, we choose this virtual source to be a
monopole line source.
The wave field of a such a monopole line source sit-
uated at the origin of the coordinate system reads

S(x, ω) = H
(2)
0

(ω

c
r
)

. (11)
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Fig. 2: Wave field generated by a circular setup
of 56 secondary line sources with a radius of r0 =
1.5 m reproducing a virtual line source at position
(rs = 0.75 m, αs = − 3π

4 ). The emitted frequency is
f = 1000 Hz. The values of the sound pressure are
clipped as indicated by the colorbars. The marks
indicate the positions of the secondary sources.

The spatial spectrum S̃(k, ω) of S(x, ω) can be ob-
tained via a spatial Fourier transform yielding [13]

S̃(k, ω) =
j

(k)2 −
(

ω
c

)2 +
1

k
δ
(

k −
ω

c

)

, (12)

whereby δ(·) denotes the Dirac delta function [10].
The spatial spectrum S̃(k, ω) of a wave field S(x, ω)
describes a spatial composition of S(x, ω).
The first addend in (12) describes the evanescent
part of S(x, ω), the second added the propagating
part [14]. We will ignore the evanescent part in the
remainder of this paper.
An inverse spatial Fourier transform of (12) would
yield the temporal spectrum Sprop(x, ω) of the prop-
agating part of S(x, ω). However, due to the causal-
ity restrictions mentioned in section 1, Sprop(x, ω)
can only be reproduced in one half-space. We there-
fore perform the inverse Fourier transform exclu-
sively over the half-space where we want to repro-
duce Sprop(x, ω) (the target half-space). For conve-
nience, we choose the half-space bounded by the y-
axis and including the positive x-axis as target half-
space. The inverse spatial Fourier transform of the
propagating part of (12) over the target-half space
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reads then

P (x, ω) =
1

4π2

∞∫

0

π

2∫

−
π

2

δ
(
k − ω

c

)

k
e−jkr cos(θ−α) dθdk .

(13)
Exploiting the sifting property of the Dirac delta
function [10], the double-integral in (13) can be sim-
plified to an integral from −π

2 to π
2 along a semicircle

of radius ω
c

reading

P (x, ω) =
1

4π2

π

2∫

−
π

2

e−j ω

c
r cos(θ−α) dθ . (14)

Introducing the Jacobi-Anger expansion [15]

e−j ω

c
r cos(θ−α) =

∞∑

η=−∞

j−ηJη

(ω

c
r
)

ejη(α−θ) (15)

into (13) yields a the temporal spectrum of a wave
field diverging from the origin of the coordinate sys-
tem into the target half-space reading

P (x, ω) =
1

4π2

π

2∫

−
π

2

∞∑

η=−∞

j−ηJη

(ω

c
r
)

ejη(α−θ) dθ =

=

∞∑

η=−∞

j−η

4π
sinc

(η

2

)

Jη

(ω

c
r
)

ejηα , (16)

whereby sinc(x) = sin(πx)
πx

[10]. Note that P (x, ω)
converges towards the coordinate origin in the other
half-space.
In order to rotate the target half-space around the
coordinate origin (the focus point of P (x, ω)), we
introduce the nominal orientation αn of the focus
point (confer to figure 3) into (16) as

P (x, ω) =

∞∑

η=−∞

j−η

4π
sinc

(η

2

)

Jη

(ω

c
r
)

ejη(α−αn) .

(17)
αn denotes the direction of the normal on the half-
space boundary pointing into the target half-space.
Equation (17) reformulated for arbitrary positions
xfoc of the focus point reads

P (x, ω) =

∞∑

η=−∞

j−η

4π
sinc

(η

2

)

Jη

(ω

c
r′(x)

)

×

× ejη(α′(x)−αn) , (18)

α

αfoc

α′

αn

x

n

xfoc

x

y

y′

x′

r′

rfoc

r

Fig. 3: Definition of the local coordinate system and
the nominal orientation of the focus point situated
at position xfoc. The normal vector n points into
the target half-space which is indicated by the grey-
shaded area and bounded by the dashed line.

whereby the prime indicates that the respective
quantity belongs to the local coordinate system with
origin at xfoc whose axes are parallel to those of the
global coordinate system (confer to figure 3). How-
ever, in order to yield the coefficients P̆η(ω) (equa-
tion (6)) which the driving function (8) incorporates,
we have to expand (18) around the origin of the
global coordinate system. We therefore introduce
the addition theorem for cylinder harmonics [12]

Jη

(ω

c
r′

)

ejηα′

=

=

∞∑

ν=−∞

Jν

(ω

c
r
)

Jν−η

(ω

c
rfoc

)

×

× e−j(ν−η)αfocejνα (19)

into (18) finally yielding

P (x, ω) =
∞∑

ν=−∞

∞∑

η=−∞

j−η

4π
sinc

(η

2

)

e−jηαn×

× Jν

(ω

c
r
)

Jν−η

(ω

c
rfoc

)

e−j(ν−η)αfocejνα . (20)

for the wave field P (x, ω) focused at the point xfoc =
rfoc ·[cos αfoc sin αfoc]

T and with nominal orientation
αn.
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Fig. 4: Wave field P (x, ω) exhibiting a focus point
at the coordinate origin. The nominal orientation
of the focus point is αn = π

2 . The expansion orders
are limited to the interval [−20; 20]. The dashed line
indicates the boundary of the target half-space. The
arrows indicate the local propagation direction. The
emitted frequency is f = 1000 Hz.

The wave field described by equation (20) is illus-
trated in figure 4. It depicts a wave field with a focus
point in the coordinate origin and nominal orienta-
tion αn = π

2 . The wave field converges in the half-
space including the negative y-axis and diverges in
the half-space including the positive y-axis (the tar-
get half-space).
Note that the expansion orders of P (x, ω) are lim-
ited to the interval [−20; 20]. However, even a radi-
cal extension of the angular bandwidth does not sig-
nificantly reduce the distortions in the wave fronts.
We assume that these distortions are artifacts due to
the limitation of the aperture introduced in equation
(13) (Gibbs phenomenon [16]). Note that the choice
of the aperture angle in (13) as well as weighting of
angular spatial spectrum provide potential to reduce
these artifacts.
Note also that although not apparent in figure 4,
there is no phase discontinuity in the focus point as
opposed to focus points generated in WFS by apply-
ing the pure time-reversal approach (confer to sec-
tion 1).

2.5. Focusing Virtual Complex Sources

In order to reproduce a focused virtual complex
source (i.e. a directional or spatially extended one,
confer to [4, 5]), the procedure outlined in sec-
tion 2.4 can be straightforwardly applied. The in-
verse Fourier transform over the target half-space of
the far-field radiation characteristics of the complex
source (confer to (13)) leads to the desired formula-
tion of the corresponding focused wave field.

3. RESULTS

From equation (20) we can extract the expansion
coefficients P̆ν(ω) (confer to (6)) of the focused wave
field reading

P̆ν(ω) =
∞∑

η=−∞

j−η

4π
sinc

(η

2

)

e−jηαn×

Jν−η

(ω

c
rfoc

)

e−j(ν−η)αfoc . (21)

In order to reproduce a wave field given by (20) with
a circular distribution of loudspeakers, the coeffi-
cients P̆ν(ω) have to be incorporated into the driving
function equation (8). When the secondary source
array is a continuous distribution of secondary line
sources perpendicular to the listening plane, the de-
sired wave field is perfectly recreated inside the lis-
tening plane as derived in section 2.2. The detailed
analysis of the properties of the wave field repro-
duced by a setup of discrete loudspeakers is beyond
the scope of this paper.
To get a first impression of the properties of the
presented approach, we provide numerical simula-
tions in figure 5. Figure 5 depicts wave fields gener-
ated by a circular setup of 56 secondary monopole
line sources with a radius of r0 = 1.5 m repro-
ducing a focused monopole line source at position
(rfoc = 0.75 m, αfoc = − 3π

4 ) with different nominal
orientations αn. The emitted frequency is f = 1000
Hz.
As noted in section 2.4, the distortions of the wave
fronts apparent in figure 5 are suspected to be un-
avoidable due to a limitation of the aperture. Figure
5 illustrates the freedom that the arbitrary choice of
the nominal orientation αn of the focus point en-
ables. Knowledge of the listeners’ positions can be
exploited to orientate the virtual source such that
the target half-space covers as many listeners as pos-
sible.
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(b) αn = π

2

Fig. 5: Wave field generated by a circular setup of 56 secondary line sources with a radius of r0 = 1.5 m
reproducing a focus point at position (rfoc = 0.75 m, αfoc = − 3π

4 ) with different nominal orientations αn.
The emitted frequency is f = 1000 Hz. The arrows indicate the local propagation direction of the wave
field. The dashed line indicates the boundary of the target half-space. The values of the sound pressure are
clipped as indicated by the colorbars. The marks indicate the positions of the secondary sources.

4. CONCLUSIONS

A basic framework for the reproduction of virtual
sound sources inside the listening area (so-called fo-
cused sources) in higher order Ambisonics was pre-
sented. Actually, the approach does not intend to re-
produce a virtual source but a wave field exhibiting
a focus point at the position of the intended virtual
source. In one half-space determined by position of
the focus point, the reproduced wave field converges
towards the focus point. In the other half-space, the
target half-space, the wave field diverges and evokes
the perception of a virtual source at the position of
the focus point. This strategy avoids certain limita-
tions of the conventional straightforward approach
as discussed.
The target half-space may be freely rotated around
the focus point. This fact enables the optimization
of the reproduction for given listener positions. We
presented numerical simulations of reproduced wave
fields to illustrate the general properties of the pro-
posed approach. However, a thorough analytical in-
vestigation was beyond the scope of the paper.
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