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ABSTRACT

Wave field synthesis is a spatial sound field reproduction technique aiming at authentic reproduction of
auditory scenes. Its theoretical foundation has been developed almost 20 years ago and has been improved
considerably since then. Most of the original work on wave field synthesis is restricted to the reproduction
in a planar listening area using linear loudspeaker arrays. Extensions like arbitrarily shaped distributions
of secondary sources and three-dimensional reproduction in a listening volume have not been discussed in
a unified framework so far. This paper revisits the theory of wave field synthesis and presents a unified
theoretical framework covering arbitrarily shaped loudspeaker arrays for two- and three-dimensional repro-
duction. The paper additionally gives an overview on the artifacts resulting in practical setups and briefly
discusses some extensions to the traditional concepts of WFS.

1. INTRODUCTION

Wave field synthesis (WFS) is a spatial sound field
reproduction technique that utilizes a high number
of loudspeakers to create a virtual auditory scene
over a large listening area. It overcomes some of the
limitations of stereophonic reproduction techniques,
like e. g. the sweet-spot.
A first concept, of what is nowadays known as WFS,
was presented by Snow et al. [1] more than 50 years
ago. However, technical constraints prohibited the
employment of a high number of loudspeakers for

sound reproduction. The authors therefore em-
ployed only some few loudspeakers and essentially
laid the theoretical fundament for stereophonic tech-
niques. It took quite some time until the initial ideas
of Snow have been taken up again.
The theoretical framework of WFS was initially for-
mulated by Berkhout et al. at the Delft University
of Technology almost 20 years ago [2]. However, it
seems that the term ’wave field synthesis’ has been
mentioned the first time some years later [3]. Also
around that time first laboratory setups of WFS sys-
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tems have been realized. Sound reproduction using
WFS has gained quite some attraction in the spatial
audio research community. Besides various research
projects, like e. g. the EC IST funded project CAR-
ROUSO [4], also a number of PhD theses have been
written in the context of WFS so far [5, 6, 7, 8, 9, 10,
11, 12, 13, 14]. General overviews on WFS can be
found e. g. in [15, 16, 17, 18, 19, 20, 21, 22, 23, 24].
Most of the original work on WFS considers
the reproduction in a planar listening area (two-
dimensional wave field synthesis), using a linear dis-
tribution of loudspeakers. Although the theory of
WFS has been extended in various aspects, topics
like arbitrarily shaped distributions of loudspeak-
ers and three-dimensional reproduction have gained
only little attention so far. This paper will revisit
the physical background of WFS and will present a
unified framework that covers these aspects.
For this purpose our paper begins in Section 2 with
the generic formulation of the underlying physical
problem using the Kirchhoff-Helmholtz integral. It
will be shown how to derive a formulation from this
fundamental principle that is applicable in practi-
cal setups. Section 3 specializes the generic the-
ory of WFS developed so far, to the case of three-
dimensional reproduction in a volume. The three-
dimensional formulation serves as basis for the de-
scription of the conventional two-dimensional WFS
schemes introduced in Section 4. In order to span
the bridge to the traditional theory of WFS, the
loudspeaker driving functions derived within this pa-
per will be compared to the classical WFS literature.
Besides revisiting the foundations of WFS, Section 5
will give an overview on the artifacts resulting from
further assumptions and simplifications performed
in practical setups. Finally some extensions to WFS
will be discussed in Section 6.
The following conventions are used throughout this
paper: For scalar variables lower case denotes the
time domain, upper case the temporal frequency do-
main. The temporal frequency variable is denoted
by ω = 2πf . Vectors are denoted by lower case
boldface. The three-dimensional position vector in
Cartesian coordinates is given as x = [x y z]T . Two-
dimensional wave fields are also considered within
this paper. The required reduction in dimensional-
ity is performed by assuming that the reproduced
wave field is independent from the z-coordinate,
e. g. P (x, y, z, ω) = P (x, y, ω).

2. BASIC THEORY

This section introduces the basic theory of wave field
synthesis.

2.1. The Kirchhoff-Helmholtz Integral

A loudspeaker system surrounding the listener can
be regarded as an inhomogeneous boundary condi-
tion for the wave equation. This will be illustrated
in the following.
The solution of the homogeneous wave equation
for a bounded region V with respect to inhomoge-
neous boundary conditions is given by the Kirchhoff-
Helmholtz integral [25]

P (x, ω) = −
∮

∂V

(

G(x|x0, ω)
∂

∂n
P (x0, ω) −

P (x0, ω)
∂

∂n
G(x|x0, ω)

)

dS0 , (1)

where P (x, ω) denotes the pressure field inside a
bounded region V enclosed by the boundary ∂V
(x ∈ V ), G(x|x0, ω) a suitable chosen Green’s func-
tion, P (x0, ω) the acoustic pressure at the boundary
∂V (x0 ∈ ∂V ) and n the inward pointing normal
vector of ∂V . The abbreviation ∂

∂n
denotes the di-

rectional gradient in direction of the normal vector
n. For instance ∂

∂n
P (x0, ω) is

∂

∂n
P (x0, ω) = 〈∇P (x, ω),n(x0)〉

∣
∣
∣
x=x0

, (2)

where 〈·, ·〉 denotes the scalar product of two vectors.
The wave field P (x, ω) outside of V is zero and V is
assumed to be source-free. Figure 1 illustrates the
geometry.
The Green’s function G(x|x0, ω) represents the so-
lution of the inhomogeneous wave equation for exci-
tation with a spatio-temporal Dirac pulse at the po-
sition x0. It has to fulfill the homogeneous bound-
ary conditions imposed on ∂V . For sound repro-
duction typically free-field propagation within V is
assumed. This means that V is free of any objects
and that the boundary ∂V does not restrict prop-
agation. The Green’s function is then given as the
free-field solution of the wave equation and is re-
ferred to as free-field Green’s function G0(x|x0, ω).
The free-field Green’s function can be interpreted as
the spatio-temporal transfer function of a monopole
placed at the point x0 and its directional gradient
as the spatio-temporal transfer function of a dipole
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Fig. 1: Illustration of the geometry used for the
Kirchhoff-Helmholtz integral (1).

at the point x0, whose main axis points towards n.
Equation (1) states that the wave field P (x, ω) in-
side V is fully determined by the pressure P (x, ω)
and its directional gradient on the boundary ∂V .
If the Green’s function is realized by a continuous
distribution of appropriately driven monopole and
dipole sources which are placed on the boundary ∂V ,
the wave field within V is fully determined by these
sources. This principle can be used for sound re-
production as will be illustrated in the following. In
this context the monopole and dipole sources on the
boundary are referred to as (monopole/dipole) sec-
ondary sources.
For authentic sound field reproduction it is desired
to reproduce the wave field S(x, ω) of a virtual
source inside a limited area (listening area) as closely
as possible. In the following, the listening area is as-
sumed to be the bounded region V (see Fig. 1). Con-
cluding the considerations given so far, authentic
sound field reproduction can be realized if a distri-
bution of secondary monopole and dipole sources on
the boundary ∂V of the listening area V are driven
by the directional gradient and the pressure of the
wave field of the virtual source S(x, ω), respectively.
Thus P (x0, ω) in Eq. (1) is given by the values of
S(x, ω) on ∂V . The wave field P (x, ω) inside the lis-
tening area V is then equal to the wave field S(x, ω)
of the virtual source. The Kirchhoff-Helmholtz inte-
gral and its interpretation given above lay the theo-
retical foundation for WFS and other massive mul-
tichannel sound reproduction systems.

It is desirable for a practical implementation to dis-
card one of the two types of secondary sources that
the Kirchhoff-Helmholtz integral employs. Typi-
cally the dipole sources are removed, since monopole
sources can be realized reasonably well by loud-
speakers with closed cabinets. According to [25]
two different techniques exist to derive monopole
only versions of the Kirchhoff-Helmholtz integral:
the simple source approach and a modification of
the free-field Green’s function used in the Kirchhoff-
Helmholtz integral. These two approaches will be
discussed in the following two subsections.

2.2. Simple Source Approach

The dipole secondary sources in the Kirchhoff-
Helmholtz integral can be discarded by considering
two equivalent but spatially disjunct problems. The
simple source approach is derived by constructing an
exterior and separately an interior problem with re-
spect to the boundary ∂V and linking both problems
by requiring that the pressure is continuous and the
directional gradient is discontinuous at the bound-
ary ∂V [25]. This procedure results in

P (x, ω) =

∮

∂V

µ(x0, ω)G0(x|x0, ω) dS0 . (3)

Equation (3) states that a distribution of monopole
sources on ∂V driven by µ(x0, ω) fully determines
the wave field P (x, ω) within and outside of V . Note,
that contrary to the Kirchhoff-Helmholtz formula-
tion the wave field outside of V will not be zero in
this case.
It is stated in [25] that the simple source approach
delivers the same results as the Kirchhoff-Helmholtz
formulation when considering either an interior or
exterior problem. Sound reproduction can be re-
garded as interior problem. The source strength
µ(x0, ω) is given by the underlying physical prob-
lem which satisfies the stated boundary conditions.
For authentic sound field reproduction it is required
that the field P (x, ω) within V is equal to the wave
field of the virtual source S(x, ω). The appropriate
secondary source strength µ(x0, ω) can be derived
by constructing an exterior field that satisfies the
required boundary conditions. In general this will
only be possible by considering special geometries of
the secondary source contour ∂V .
In higher-order Ambisonics [26, 27], and other repro-
duction techniques [28, 29, 30] which are inherently
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based on the simple source approach, Eq. (3) is ex-
plicitly solved with respect to µ(x0, ω). This is typ-
ically performed by expanding the respective wave
fields using orthogonal wave field expansions. The
simple source formulation (3) ensures that a unique
solution for the secondary source strength µ(x0, ω)
exists.

2.3. Elimination of Dipole Secondary Sources in

WFS

The second term in the Kirchhoff-Helmholtz inte-
gral (1), representing the dipole secondary sources,
can be discarded by modifying the Green’s function
used in the Kirchhoff-Helmholtz integral [25]. The
modified Green’s function GN(x|x0, ω) has to obey
the following condition

∂

∂n
GN(x|x0, ω)

∣
∣
∣
x0∈∂V

= 0 , (4)

in order to eliminate the dipole secondary sources.
Condition (4) formulates a homogeneous Neumann
boundary condition imposed on ∂V . The modi-
fied Green’s function is typically termed Neumann
Green’s function. As a consequence of the condi-
tion given by Eq. (4), the boundary ∂V will be
implicitly modeled as an acoustically rigid surface
for the secondary sources. The desired Neumann
Green’s function GN(x|x0, ω) can be derived by
adding a suitable homogeneous solution (with re-
spect to the region V ) to the free-field Green’s func-
tion G0(x|x0, ω). The explicit form of the Neu-
mann Green’s function depends on the geometry of
the boundary ∂V . A closed form solution can only
be found for rather simple geometries like spheres
and planar boundaries. Additionally, the such de-
rived Neumann Green’s function has to be realized
by physically existing secondary sources. Depending
on the explicit form of the Neumann Green’s func-
tion such secondary sources may be hard to realize
in practice.
In the context of WFS linear secondary source con-
tours have been considered mainly so far. A suit-
able Neumann Green’s function for a planar/linear
boundary ∂V is given by [25]

GN(x|x0, ω) = G0(x|x0, ω)+G0(xm(x)|x0, ω) . (5)

A solution fulfilling Eq. (4) is given by choosing the
receiver point xm(x) as the point x mirrored at the
planar boundary ∂V at the position x0. Note, that

due to the specialized geometry |x − x0| = |xm − x0|
and thus [24]

GN(x|x0, ω) = 2 G0(x|x0, ω) . (6)

Hence, in this special case GN(x|x0, ω) is equal to a
point source with double strength.
Introducing GN(x|x0, ω) into the Kirchhoff-
Helmholtz integral for a planar geometry derives
the first Rayleigh integral, which is the basis for the
traditional derivation of WFS [2, 5, 6, 7]. However,
this theoretical basis holds only for linear/planar
secondary source distributions. In the following an
extension to arbitrarily shaped secondary source
contours will be developed.

2.4. Extension to Arbitrarily Shaped Contours

It is assumed that Eq. (5) holds also approximately
for other geometries. In this case the receiver point
xm is chosen as the point x mirrored at the tangent
to the boundary ∂V at the position x0. The elimina-
tion of the secondary dipole sources for an arbitrary
secondary source contour ∂V has two consequences:

1. the wave field outside of V will not be zero, and

2. the reproduced wave field will not match the
virtual source field exactly within V .

The first consequence implies that the boundary ∂V
has to be convex, so that no contributions from the
wave field outside of the listening area V propa-
gate back into the listening area. The second is a
consequence of approximating the Neumann Green’s
function for arbitrary geometries using the solution
given by Eq. (5). As mentioned before, the bound-
ary ∂V will be implicitly modeled as rigid bound-
ary. The appropriate Neumann Green’s function
for a particular geometry compensates inherently for
these reflections. Using the Neumann Green’s func-
tion Eq. (5) for bend secondary source contours leads
to artifacts in the reproduced wave field. The most
prominent are that the reproduction of the desired
wave field will be superimposed by undesired reflec-
tions. These artifacts can be attenuated by a modi-
fication of the driving function, as will be illustrated
in the following.
The main energy of the undesired reflections is re-
produced by those secondary sources where the local
propagation direction of the virtual wave field does
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not coincide with the normal vector n of the sec-
ondary source. Since we are free to choose the sec-
ondary sources used for reproduction, these unde-
sired reflections can be attenuated by muting those
secondary sources which reproduce the reflections.
Following this concept, the reproduced wave field
reads

P (x, ω) =

−
∮

∂V

2a(x0)
∂

∂n
S(x0, ω)G0(x|x0, ω) dS0 , (7)

where a(x0) denotes a suitably chosen window func-
tion. This function takes care that only those sec-
ondary sources are active where the local propaga-
tion direction of the virtual source at the position x0

has a positive component in direction of the normal
vector n of the secondary source at that position. It
was proposed in [31, 32] to formulate this condition
analytically on basis of the acoustic intensity vector

a(x0) =

{

1 , if 〈ĪS(x0, ω),n(x0)〉 > 0,

0 , otherwise.
(8)

The time averaged acoustic intensity vector ĪS(x, ω)
for the wave field of the virtual source is defined as

ĪS(x, ω) =
1

2
ℜ{S(x, ω)VS(x, ω)∗} , (9)

where VS(x, ω) denotes the particle velocity field of
the virtual source S(x, ω), ℜ{·} the real part of its
argument and the superscript ∗ the conjugate com-
plex of a variable.
The Green’s function in Eq. (7) characterizes the
field of the secondary sources, the remaining terms
their strength. The strength will be termed as sec-
ondary source driving function in the following. The
secondary source driving function D(x0, ω) is given
as

D(x0, ω) = 2a(x0)
∂

∂n
S(x0, ω) . (10)

The secondary source driving function plays an im-
portant role since it determines the loudspeaker sig-
nals in a practical implementation. It is the basis
for three- and two-dimensional WFS approaches dis-
cussed within the scope of this paper.
Summarizing the results of this section, the sound
pressure P (x, ω) inside the listening area can be ex-
pressed by the secondary source driving functions

D(x0, ω) and the Green’s functions G(x|x0, ω) of the
monopoles at the boundary ∂V as

P (x, ω) = −
∮

∂V

D(x0, ω)G0(x|x0, ω) dS0 . (11)

For an arbitrarily shaped boundary ∂V the repro-
duced wave field will not exactly match the virtual
source field S(x, ω) within V . However, practice
has revealed that the assumptions used to derive
the driving function provide a reasonable approxi-
mation for sound reproduction purposes. A detailed
analysis of the resulting artifacts is an open research
topic.

2.5. Virtual Source Models

Model-based rendering of a virtual sources requires
appropriate models for their wave fields. This sec-
tion explicitly introduces two commonly used virtual
source models, plane and spherical waves. It is also
shown how to determine the window function a(x0)
from (10) for these two special cases.
The wave field of a plane wave is given as

Spw(x, ω) = Ŝpw(ω) e−j ω

c
n

T

pwx , (12)

where npw denotes the propagation direction of the

plane wave and Ŝpw(ω) its spectrum. The window
function apw(x0) for a virtual plane wave can be de-
rived by evaluating (9) for the pressure Spw(x, ω)
and velocity field Vpw(x, ω) of a plane wave as [31]

apw(x0) =

{

1 , if 〈npw,n(x0)〉 > 0,

0 , otherwise.
(13)

The wave field of a spherical wave with stationary
position is given as

Ssw(x, ω) = Ŝsw(ω)
e−j ω

c
|x−xS|

|x − xS |
, (14)

where xS denotes the center position of the spherical
wave and Ŝsw(ω) its spectrum in radial direction.
The window function asw(x0) for a virtual spherical
wave is given as [31]

asw(x0) =

{

1 , if 〈x0 − xS ,n(x0)〉 > 0,

0 , otherwise.
(15)

Besides these two basic types of virtual sources
also other models have been developed in the past.
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Models for complex sources and appropriate driv-
ing functions for WFS have been developed by
e. g. [33, 34, 35, 36]. However, most of this work
is based upon the assumption of a linear secondary
source distribution which requires no sensible selec-
tion of the active secondary sources. Following the
generalization of the linear case to curved and closed
secondary source contours, given in Section 2.3, the
acoustic intensity vector of the complex source can
be used to select the active secondary sources in the
general case.
The model of a spherical wave given by Eq. (14) is
based on the assumption of a stationary source po-
sition. Most of the current implementations of WFS
systems render moving sources as a sequence of sta-
tionary source positions that change over time [37].
Recently this situation has been improved by explic-
itly applying models of moving sources [38].
The underlying theory of WFS assumes that the lis-
tening area V is free of sources. Consequently no
virtual source S(x, ω) can be placed within the lis-
tening area in order to determine an appropriate
driving function for that situation. However, it is
possible to reproduce a point source (with some re-
strictions) in the listening area by applying the time-
reversal principle [39, 40]. Such sources are termed
as focused sources. Recently, the theory of focused
sources has been extended to allow the reproduction
of directional focused sources [41]. Note, that the
proposed secondary source selection scheme (8) has
to be modified to cover focused sources [31].

3. THREE-DIMENSIONAL WAVE FIELD SYN-

THESIS

The generic theory of WFS developed in Section 2
holds for two- and three-dimensional WFS systems.
This section will specialize the theory to the case
of three-dimensional reproduction in a listening vol-
ume.
The Green’s function used in the reproduction equa-
tion (11) determines the characteristics of the sec-
ondary sources. The specific form of the free-
field Green’s function depends on the dimensional-
ity of the problem. The three-dimensional free-field
Green’s function is given as [25]

G0,3D(x|x0, ω) =
1

4π

e−j ω

c
|x−x0|

|x − xS |
. (16)

Equation (16) can be interpreted as the field of a

point source with monopole characteristics located
at the position x0.

3.1. Arbitrarily Shaped Secondary Source Con-

tours

Three-dimensional WFS can be realized by sur-
rounding the listening volume V by a continuous
distribution of point sources placed on the bound-
ary ∂V . These secondary sources are driven by the
secondary source driving function (10). The driving
function is given by the directional gradient of the
virtual source wave field and the window function
a(x0). Hence, the explicit form of the driving func-
tion depends on the virtual source and the geometry
of the sound reproduction system. The driving func-
tion for a plane wave is determined by the direction
gradient of the wave field of a plane wave (12) and
the window function (13) as

Dpw,3D(x0, ω) =

− 2apw(x0)
nT

pwn(x0)

c
jωŜpw(ω)e−j ω

c
n

T

pwx0 . (17)

A time-domain version of the driving function (17) is
useful to derive an efficient implementation of WFS.
Inverse Fourier transformation of Eq. (17) reveals
the time-domain version of the driving signal

dpw,3D(x0, t) =

− 2apw(x0)
nT

pwn(x0)

c

d

dt
ŝpw(t −

nT
pwx0

c
) , (18)

where the differentiation theorem of the Fourier
transformation was used. Equation (18) states that
the driving signal for a plane wave can be com-
puted efficiently in the time-domain by weighting the
derivative of the time-shifted source signal ŝpw(t).
However, the differentiation of the virtual source sig-
nal may also be performed by filtering the signal by a
filter with jω-characteristic. This is especially useful
when considering the effects of spatial aliasing (see
Section 5.1).
The driving function for a virtual spherical wave can
be derived by following the same procedure as out-
line above for a virtual plane wave. In the frequency
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domain it is given as

Dsw,3D(x0, ω) = −2asw(x0)
(x0 − xS)Tn(x0)

|x0 − xS |2
×

×
(

1

|x0 − xS |
+

jω

c

)

Ŝsw(ω)e−j ω

c
|x0−xS| . (19)

The time-domain version of the driving signal for a
spherical wave is derived by inverse Fourier transfor-
mation of Eq. (19)

dsw,3D(x0, t) = −2asw(x0)
(x0 − xS)Tn(x0)

|x0 − xS |2
×

×
(

1

|x0 − xS |
+

1

c

d

dt

)

ŝsw(t − |x0 − xS |
c

) . (20)

For a spherical wave, the driving signal in the time-
domain is given by a weighted linear superposition of
the time-shifted source signal ŝsw(t) and its deriva-
tive.
Practical implementations of three-dimensional
sound reproduction systems typically exhibit spher-
ical or cuboid shape. The detailed discussion of
spherical WFS systems is out of scope in this pa-
per. A planar secondary source distribution is the
basic building block of a cuboid shaped reproduc-
tion system. A planar distribution will be discussed
in detail in the next section.

3.2. Planar Secondary Source Distribution

The closed contour integral (11) over the surface ∂V
can be degenerated to an integral over an infinite
plane. In brief, this degeneration is achieved by
splitting the closed contour ∂V into a planar bound-
ary and a half-sphere. The integration over the half-
sphere can be omitted by applying the Sommerfeld
radiation condition [25].
It will be assumed in the following, without loss of
generality, that the secondary source distribution is
located on the xz-plane at y = 0. Other cases can
be regarded as simple translation or rotation of this
special case.
The reproduced wave field for a planar distribution
of secondary point sources on the xz-plane is given
as

P (x, ω) =

−
∫∫ ∞

−∞

D3D(x0, ω)G0,3D(x|x0, ω) dx0dz0 , (21)

with x0 = [x0 0 z0]
T . Equation (21) is known as the

first Rayleigh integral. The reproduced wave field
P (x, ω) will be mirrored at the secondary source dis-
tribution as a consequence of the Neumann bound-
ary condition (4). Hence, the reproduced wave field
is only correct in one of the two half-volumes sep-
arated by the secondary source distribution. The
direction of the normal vector n specifies the consid-
ered half-volume. We will consider the half-volume
with y ≥ 0 as the listening area in the sequel. The
normal vector for this case is given as n = [0 1 0]T .
The secondary source driving function for a virtual
plane wave is given by specializing Eq. (17). Due to
the symmetry of the reproduced wave field with re-
spect to the secondary source distribution it is rea-
sonable to limit the incidence angle of the virtual
plane wave to the case ny,pw > 0, hence to plane
waves traveling into the positive y-direction. Ac-
cordingly to Eq. (13), the value of the window func-
tion for selection of active secondary sources will be
apw(x0) = 1.
The driving function for a virtual spherical wave is
given by specializing Eq. (19). Due to the symme-
try of the reproduced wave field with respect to the
secondary source distribution it is reasonable to con-
strain the possible positions of the point source to
yS < 0. Accordingly to Eq. (15), the value of the
window function for selection of active secondary
sources will be asw(x0) = 1 in this case.
Up to now, the secondary source distribution was
assumed to be of infinite size and continuous. Prac-
tical implementations of three-dimensional planar
WFS systems will consist of a limited number of sec-
ondary sources placed at discrete positions. Since
loudspeakers will be used as secondary sources in
practice, these discrete distributions of secondary
sources are termed as (planar) loudspeaker arrays.
Two types of artifacts may emerge from the spatial
truncation and discretization: (1) truncation and (2)
spatial aliasing artifacts. Truncation artifacts can be
analyzed by multiplying the driving function with a
window modeling the aperture of the loudspeaker
array, spatial sampling by multiplying the driving
function with a series of spatial Dirac pulses. A de-
tailed analysis of both artifacts is beyond the scope
of this paper. However, both have been analyzed
already for linear loudspeaker arrays [42]. The re-
sults derived here can be applied straightforwardly
to planar loudspeakers arrays due to the separability
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of the Cartesian coordinate system. A summary of
aliasing, truncation and other artifacts of WFS can
be found in Section 5.
The reproduced wave field for a planar continuous
distribution of infinite size will exactly match the
wave field of the virtual source within the listening
area. This can be proven by inserting the driving
functions into the reproduction equation (21). Arti-
facts will occur for other geometries of the secondary
source distribution. This is due to the fact that
the derived Neumann Green’s function only fulfills
the required Neumann boundary condition exactly
in this special case.

3.3. Example for Planar Secondary Source Dis-

tribution

Figure 2 illustrates the wave field reproduced by a
planar loudspeaker array in the plane z = 0. The
loudspeaker array consist of 100× 100 point sources
with a distance of ∆x = ∆y = 0.15 m between
them. The rather high number of loudspeakers has
been chosen to avoid significant aperture and alias-
ing artifacts in the illustrated region. Figure 2(a)
shows the reproduced wave field when using the
plane wave driving function (17) for the reproduc-
tion of a monochromatic virtual plane wave with
frequency fpw = 500 Hz and propagation direction
npw = [0 1 0]T . Accordingly to [42] spatial aliasing
will only occur for frequencies above 2 kHz for this
configuration.
Figure 2(b) shows the reproduced wave field when
using the spherical wave driving function (19) for
the reproduction of a monochromatic virtual spher-
ical wave with frequency fsw = 500 Hz and position
xS = [0 −2 0]T m. It can be seen clearly that both
wave fields are reproduced accurately by the planar
distribution of secondary point sources.

4. TWO-DIMENSIONAL WAVE FIELD SYN-

THESIS

The technical realization of a three-dimensional
WFS system would involve a very high number of
loudspeakers and reproduction channels. The ma-
jority of WFS systems realized so far are therefore
restricted to the reproduction in a plane only. This
reduction of dimensionality is reasonable for most
scenarios due to the spatial characteristics of human
hearing. Preferably this listening plane should be
leveled with the listeners ears. Such systems will
be termed as two-dimensional WFS systems in the

following. The reduction in dimensionality has one
major drawback: two-dimensional WFS systems are
not capable to reproduce wave fields which have con-
tributions emerging from sources above or below the
plane where the loudspeakers are contained in. How-
ever, this restriction holds also for most of the cur-
rently applied surround systems. Note, that in the
following all position vectors are assumed to be two-
dimensional.

4.1. Line Sources as Secondary Sources

The generic theory of WFS developed in Section 2
can be specialized to two-dimensional reproduction
by using the two-dimensional free-field Green’s func-
tion as wave field for the secondary sources. The
two-dimensional free-field Green’s function is given
as [25]

G2D(x|x0, ω) =
j

4
H

(2)
0 (

ω

c
|x − x0|) , (22)

where H
(2)
0 (·) denotes the zeroth-th order Hankel

function of second kind [43]. For the definition of a
two-dimensional wave field used within the context
of this paper, Eq. (22) can be interpreted as the field
of a line source. This line source is located parallel
to the z-axis and intersects with the reproduction
plane at the position x0.
Loudspeakers that approximately have the proper-
ties of line sources are hardly available. For instance
such a loudspeaker should have infinite length which
is not realizable. Hence, using line sources as sec-
ondary sources for WFS serves more as theoretical
framework to derive various properties of WFS and
for illustration purposes. Therefore, this scenario is
only discussed in brief here.
Note, that in a truly two-dimensional wave propa-
gation scenario, Eq. (22) represents the wave field
produced by a spatio-temporal Dirac pulse at the
position x0.
The driving function for virtual plane wave, as de-
rived in Section 3.1, is independent from the un-
derlying dimensionality of the wave fields. Hence,
Eq. (17) holds also for two-dimensional WFS (with
nz,pw = 0) using line sources as secondary sources.
The driving function for a virtual plane wave can
be derived straightforwardly from Eq. (17) by us-
ing the two-dimensional normal vector npw =
[cos θpw sin θpw]T where θpw denotes the incidence
angle of the plane wave.
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(a) plane wave (fpw = 500 Hz, npw = [0 1 0]T )
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(b) spherical wave (fsw = 500 Hz, xS = [0 − 2 0]T m)

Fig. 2: Wave fields reproduced in the plane z = 0 by a planar secondary source distribution of 100 × 100
point sources with a distance of ∆x = ∆y = 0.15 m between them.

In two-dimensional wave propagation the wave field
of a line source is given by Eq. (22). The correspond-
ing virtual wave field will be termed as virtual cylin-
drical wave in the following. The driving function
for a virtual cylindrical wave placed at the position
xS can be derived as

Dcy,2D(x0, ω) = − 1

2c
acy(x0)

(x0 − xS)Tn(x0)

|x0 − xS |
×

× jω

c
Ŝcy(ω)H

(2)
1 (

ω

c
|x0 − xS |) , (23)

where acy = asw due to the radial symmetry of both
line sources and point sources.
Figure 3 illustrates the wave field reproduced by a
linear distribution of line sources. The loudspeaker
array consists of 100 line sources with a distance of
∆x = 0.15 m between them. Figure 3(a) shows the
reproduced wave field when using the plane wave
driving function (17), Fig. 3(b) shows the repro-
duced wave field when using the cylindrical wave
driving function (23). It can be seen clearly that
both wave fields are reproduced accurately by the
linear distribution of secondary line sources.
Please note, that using the driving function (19) of
a spherical wave for two-dimensional WFS will re-
sult in artifacts in the reproduced wave field, most
notably an incorrect amplitude decay.

4.2. Point Sources as Secondary Sources

It has been shown in the previous section that
line sources are the appropriate choice as secondary
sources for two-dimensional WFS. However, it is de-
sirable to use loudspeakers with closed cabinets as
secondary sources, due to the fact that such loud-
speakers are widely available. These approximately
have the characteristics of an acoustic point source.
In order to analyze and compensate the error in-
troduced by this secondary source type mismatch
a closer look is taken at the properties of point
and line sources. The asymptotic expansion of the
Hankel functions for large arguments [43] is used to
approximate the two-dimensional Green’s function
G2D(x|x0, ω) as follows

G2D(x|x0, ω) ≈
√

2π |x − x0|
j ω

c

1

4π

e−j ω

c
|x−x0|

|x − x0|
︸ ︷︷ ︸

G3D(x|x0,ω)

.

(24)
Comparing the right fraction of Eq. (24) with
Eq. (16) reveals that the given approximation of
G2D(x|x0, ω) is equivalent to G3D(x|x0, ω) when ap-
plying a spectral and amplitude correction. Note
that the corrections outlined above assume that
the large argument approximation (ω

c
|x − x0| ≫ 1)

holds. For low frequencies and positions close to the

AES 124th Convention, Amsterdam, The Netherlands, 2008 May 17–20

Page 9 of 19



S.Spors et al. The Theory of Wave Field Synthesis Revisited

x −> [m]

y 
−

>
 [m

]

−2 −1 0 1 2

0

0.5

1

1.5

2

2.5

3

(a) plane wave (fpw = 500 Hz, npw = [0 1]T )
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(b) cylindrical wave (fcy = 500 Hz, xS = [0 − 2]T m)

Fig. 3: Wave fields reproduced by a linear distribution of 100 secondary line sources with a distance of
∆x = 0.15 m between them.

secondary sources this approximation might be in-
accurate. The large argument approximation of the
Hankel function is also known as far-field or station-
ary phase approximation.
Introducing the approximation (24) of the two-
dimensional free-field Green’s function into Eq. (11)
yields

P (x, ω) =

−
∮

∂V

√

2π |x − x0|
j ω

c

D2D(x0, ω)G3D(x|x0, ω) dS0 .

(25)

The compensation of the secondary source type mis-
match can be included into the driving function used
for two-dimensional WFS with point sources as sec-
ondary sources. It can be seen from Eq. (25) that
the required spectral correction is independent from
the receiver position x. However, the amplitude cor-
rection depends on the receiver position. As a con-
sequence, the amplitude can only be corrected for
one receiver position in the listening area. For other
positions, amplitude errors will be present. The po-
sition that is used for the amplitude correction is
denoted by xref in the following.

The corrected driving function is then given as

D2.5D(x0, ω) =

√

1

j ω
c

√

2π |xref − x0| D2D(x0, ω) ,

(26)
where the notation 2.5D accounts for the mixture of
two dimensional reproduction using point sources as
secondary sources.
The driving function for a virtual plane wave can
be derived straightforwardly by introducing Eq. (17)
into Eq. (26) as

Dpw,2.5D(x0, ω) = −2apw(x0)
√

2π |xref − x0|×

×
√

j
ω

c
Ŝpw(ω)nT

pwn(x0)e
−j ω

c
n

T

pwx0 . (27)

Inverse Fourier transformation of Eq. (27) reveals
the time-domain driving function

dpw,2.5D(x0, t) =

wpw δ(t −
nT

pwx0

c
) ∗ (fpw(t) ∗ ŝpw(t)) , (28)

where all weighting terms have been combined
into wpw = −2apw(x0)

√

2π |xref − x0|nT
pwn(x0) and

fpw(t) is given by the inverse Fourier transformation
of
√

j ω
c
. Equation (28) states that the driving signal
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for a virtual plane wave can be computed efficiently
in the time-domain by weighting and delaying the
pre-filtered source signal ŝpw(t). Note, that the pre-
filtering is independent from the secondary source
position. Hence, it only has to be performed once
for all secondary sources in advance to the secondary
source dependent weighting and delaying. It is in-
teresting to note that the pre-filtering by fpw(t) can
also be understood as taking the half-derivative of
the source signal ŝpw(t).
The driving function for a cylindrical wave was de-
rived in Section 4.1. Since, we are aiming at two-
dimensional WFS this would be the appropriate
driving function at first sight. However, line sources
don’t exhibit a flat frequency response as can be seen
from (22). In oder to overcome this drawback, point
source models are typically used as virtual source
model in two-dimensional WFS with point sources
as secondary sources.
The driving function for a virtual spherical wave is
given by introducing the driving function for a spher-
ical wave (19) into Eq. (26)

Dsw,2.5D(x0, ω) =

− 2asw(x0)
(x0 − xS)T n(x0)

|x0 − xS |
√

2π |xref − x0|×

×
(

1
√

j ω
c
|x0 − xS |

+

√

jω

c

)

Ŝsw(ω)
e−j ω

c
|x0−xS |

|x0 − xS |
.

(29)

The time-domain driving function, derived by in-
verse Fourier transformation of Eq. (29), reads

dsw,2.5D(x0, t) =

wsw δ(t − |x0 − xS |
c

) ∗ (fsw(t) ∗ ŝsw(t)) , (30)

where all weighting factors have been collected in
wsw. The pre-filter fsw(t) is defined as follows

fsw(t) = F−1

{(

1
√

j ω
c
|x0 − xS |

+

√

jω

c

)}

,

(31)
where F−1 denotes the inverse Fourier transforma-
tion. As for the plane wave, the driving signal for a
spherical wave can be computed efficiently in the
time domain by weighting and delaying the pre-
filtered source signal.

Figure 4 illustrates the wave field reproduced by
a circular distribution of point sources. The loud-
speaker array consist of 56 equiangular positioned
point sources with a radius of R = 1.50 m. Fig-
ure 4(a) shows the reproduced wave field when using
the plane wave driving function (27), Fig. 4(b) shows
the reproduced wave field when using the spherical
wave driving function (29). The secondary source se-
lection criterion is indicated by the solid loudspeaker
symbols. The amplitude errors inherent to the use
of secondary point sources for two-dimensional re-
production can be seen clearly in Fig. 4(a). A plane
wave is supposed not to lose amplitude over distance.

4.3. Linear Distributions of Secondary Point

Sources

The wave field reproduced by a linear distribution
of secondary point sources is given by specializing
Eq. (25) to a linear geometry

P (x, ω) = −
∫ ∞

−∞

D2.5D(x0, ω)G3D(x|x0, ω) dx0 ,

(32)

where it is assumed that the secondary source dis-
tribution is located on the x-axis. The integral (32)
is also known as the 2.5-dimensional Rayleigh inte-
gral [6, 5].
It was shown in [29] that a linear distribution of sec-
ondary point sources is capable of reproducing the
amplitude correctly only on a line parallel to the sec-
ondary source distribution. This was also shown in
the traditional WFS literature within the limitations
of the stationary phase approximation. Hence, the
amplitude correction by

√

2π |xref − x0| in Eq. (26)
can be assumed to be constant for the linear case.
The driving functions for plane and spherical waves
that have been derived in the previous section can
be applied straightforwardly to the linear case. The
reproduced wave field will be symmetrical to the x-
axis. Hence, the incidence angle of the virtual plane
wave has to be restricted to ny,pw > 0 and the po-
sition of the virtual point source to yS < 0. As for
the planar secondary source distribution discussed
in Section 3.2 no explicit secondary source selection
is required in this case.
Figure 5 illustrates the wave field reproduced by
a linear distribution of secondary point sources for
a virtual plane wave and spherical wave. The
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(a) plane wave (fpw = 500 Hz, npw = [0 1]T )
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(b) spherical wave (fsw = 500 Hz, xS = [0 − 2]T m)

Fig. 4: Wave fields reproduced by a circular distribution of 56 point sources with a radius of R = 1.50 m.
The active secondary sources are indicated by the solid loudspeaker symbols.
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Fig. 5: Wave fields reproduced by a linear distribution of 100 secondary point sources with a distance of
∆x = 0.15 m between them.
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wave field for a virtual plane wave is shown in
Fig. 5(a), the wave field for a virtual spherical wave
in Fig. 5(b). The amplitude errors inherent to the
use of secondary point sources in this situation can
be seen clearly in Fig. 5(a).

4.4. Comparison to the Traditional Formulation

of WFS

In this section, we provide a link between the tra-
ditional WFS formulation [6] and the proposed one.
As denoted in Section 2.3, the traditional WFS liter-
ature has concentrated on linear distributions of sec-
ondary point sources reproducing a monopole point
source. We will therefore exemplarily consider this
special case.
The traditional WFS formulation of the driving
function Dtrad(x0, ω) for a linear distribution of sec-
ondary point sources parallel to the x-axis at y = y0

reproducing a monopole point source at position xS

reads [6]

Dtrad(x0, ω) = Ŝ(ω)

√

j ω
c

2π
×

×
√

|xref − x0|
|xS − x0| + |xref − x0|

cosφ
e−j ω

c
|xS−x0|

√

|xS − x0|
,

(33)

whereby φ denotes the angle between the y-axis and
the vector xS − x0. With

cosφ =
−yS

|xS − x0|
(34)

equation (33) becomes

Dtrad(x0, ω) = Ŝ(ω)

√

j ω
c

2π
×

×
√

|xS − x0| · |xref − x0|
|xS − x0| + |xref − x0|

−yS

|xS − x0|
e−j ω

c
|xS−x0|

|xS − x0|
.

(35)

For |xS − x0| ≫ 1, thus when the virtual source
is positioned far behind the secondary sources, (35)
simplifies to

Dtrad(x0, ω) ≈ Ŝ(ω)

√

j ω
c

2π
×

×
√

|xref − x0|
−yS

|xS − x0|
e−j ω

c
|xS−x0|

|xS − x0|
. (36)

The proposed driving function Dsw,2.5D(x0, ω) for a
linear secondary source distribution reproducing a
monopole point source at position xS including 2.5D
correction can be found in equation (29). In the fol-
lowing we assume that the secondary source distri-
bution is positioned parallel to the x-axis at y = y0.
For |xS−x0| ≫ 1 the addend 1/

√
ω
c
|xS−x0| in (29)

becomes insignificant compared to the added
√

jω/c
and (29) then reads

Dsw,2.5D(x0, ω) ≈ Ŝ(ω)

√

2πj
ω

c
×

×
√

|xref − x0|
−yS

|xS − x0|
e−j ω

c
|xS−x0|

|xS − x0|
. (37)

Equation (36) and (37) are similar except for a nor-
malization factor. Thus, when the virtual sound
source is sufficiently far behind the secondary source
distribution (|xS − x0| ≫ 1), the two driving func-
tions are equal.

5. ARTIFACTS OF WFS

The following section will briefly discuss various ar-
tifacts that emerge from practical aspects and the
assumptions made to derive the driving functions.
Note that most of these artifacts may also be present
in other sound field reproduction techniques, like for
instance higher-order Ambisonics.

5.1. Spatial Sampling of Secondary Source Dis-

tribution

The theory presented so far assumes a spatially con-
tinuous distribution of secondary sources. Practical
implementations of WFS will consist of secondary
sources that are placed at spatially discrete posi-
tions. This spatial sampling of the continuous dis-
tribution may lead to spatial aliasing artifacts in the
reproduced wave field. Spatial aliasing constitutes
a disturbance of the spatial structure of the repro-
duced wave field. Therefore, it potentially may re-
sult in localization inaccuracies and coloration arti-
facts.
The effects of spatial sampling on the reproduced
wave field have been evaluated in the literature on
WFS [42, 44, 12, 45]. An analysis of aliasing arti-
facts is only possible when considering a particular
geometry of the secondary source distribution con-
tour. However, two main conclusions can be drawn:
(1) spatial aliasing increases with the bandwidth
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of the virtual source signal and (2) spatial aliasing
artifacts depend on the listener position. Typical
WFS systems employ loudspeakers with a spacing
of ∆x = 10...30 cm. The resulting spatial aliasing
artifacts become prominent for frequencies of the vir-
tual source of roughly above 1 kHz (spatial aliasing
frequency). This would indicate that WFS cannot
be used for the auralization of typical audio sources.
However, the human auditory system seems to be
not too sensible to spatial aliasing if the loudspeaker
spacing is chosen in the range ∆x = 10...30 cm. A
detailed analysis of the perceptual impact of spa-
tial aliasing is an current research topic. The results
in [11] indicate that spatial aliasing may lead to col-
oration.
The various WFS driving functions derived in this
paper contain a pre-filtering of the virtual source sig-
nal with j ω

c
or
√

j ω
c

characteristic, respectively. The
pre-filtering of the virtual source signal should only
be performed below the spatial aliasing frequency,
since the theoretical foundation for the pre-filtering
holds only there. A flat response above the spatial
aliasing frequency has proven to be suitable in prac-
tice. Since the spatial aliasing frequency is different
for different listener positions this may lead to ad-
ditional coloration artifacts for listener positions the
filter hasn’t been optimized for.

5.2. Truncation of Secondary Source Distribu-

tion

Practical implementations of secondary source dis-
tributions with non-closed contours will always be
of finite size. The theory of WFS assumes closed
contours, infinitely long linear or infinitely sized pla-
nar distributions. The truncation of the secondary
source distribution leads to artifacts. These artifacts
in the reproduced wave field are referred to as trun-
cation artifacts in the context of WFS.
The effects emerging from the truncation of linear
secondary source contours used for WFS have been
investigated in detail by [7, 6, 46]. The effect of trun-
cating the length of a linear secondary source distri-
bution can be qualitatively understood as the effect
a gap has on a propagating wave field. Two effects
can be observed [46]: (1) the area of the correctly
reproduced wave field is limited by the finite aper-
ture and (2) circular waves propagate from the outer
secondary sources. The first effect can be described
by ray theory, the latter by diffraction theory. Note,

that due to the separability of the Cartesian coordi-
nate systems these considerations also hold for pla-
nar secondary source distributions.
It has been shown that truncation artifacts can be
reduced by applying a weight (tapering window) to
the secondary source driving signals. Typically a
one-sided squared cosine window is applied to the
loudspeaker driving signals in order to reduce the
artifacts. As a side effect, tapering will reduce the
effective listening area.
Depending on the desired virtual source field, the
secondary source selection criterion (8) may limit
the number of active loudspeakers. This constitutes
essentially a truncation of the secondary source con-
tour and may lead to truncation artifacts. It was
proposed in [31] to apply a tapering window to the
driving signals which depends on the active sec-
ondary sources and the actual virtual source to be
reproduced.

5.3. Amplitude Errors

Two-dimensional WFS systems typically use point
sources (or their approximations by loudspeakers)
as secondary sources. As already outlined in Sec-
tion 4.2, this secondary source type mismatch leads
to amplitude errors in the reproduced wave field.
An detailed analysis of these amplitude errors can
be found in [47, 16]. For the reproduction of virtual
plane waves, these amplitude errors have the conse-
quence that the reproduced wave field will exhibit
an amplitude decay within the listening area. The
resulting amplitude decay is approximately 3 dB per
doubling of distance. The reproduced wave field for
a virtual spherical wave will exhibit an amplitude
decay which is inbetween the amplitude decay of a
cylindrical wave and a spherical wave.

5.4. Other Artifacts

Two other artifacts of WFS are discussed briefly in
the following. The first artifact is related to the re-
production of moving virtual sources, the other to
the reproduction in a plane only.
Moving virtual point sources are typically repro-
duced by using the model of a stationary spheri-
cal wave and changing its position over time. This
leads to various artifacts as reported in [37, 38]. It
was proposed in this context to use the model of a
moving point source to derive the secondary source
driving function. This way some of these artifacts
are resolved. However, the results presented in [38],
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using such a model, indicate that spatial aliasing
and truncation artifacts play a more prominent role
in the auralization of moving virtual sources than
for stationary sources.
The reproduction in a plane only (two-dimensional
WFS) using point sources as secondary sources will
lead to artifacts for listeners which are not located in
the plane where the loudspeakers are. Its not always
possible to level the loudspeakers with the listeners
ears due to technical restrictions. As a consequence
out of plane listeners will have the impression that
the virtual sources are elevated or lowered.

6. EXTENSIONS TO WFS

So far, the basic theory of WFS and some of its arti-
facts have been discussed. However, WFS has been
improved in various directions to cope with the prob-
lem of spatial aliasing, the listening room acoustics,
the properties of real loudspeakers and noise sources.
These extensions are briefly reviewed.

6.1. Enhancement of Spatial Aliasing

The relatively low spatial aliasing frequency of typi-
cal WFS systems implies potential problems in terms
of coloration and localization of virtual sources. Var-
ious techniques have been proposed to enhance the
situation.
It is proposed in [48, 11] to combine WFS with
stereophonic techniques in order to improve col-
oration artifacts that arise from spatial aliasing.
This technique has been termed as optimized phan-
tom source imaging (OPSI). The WFS driving func-
tions are used below the spatial aliasing frequency,
while above the spatial aliasing frequency amplitude
panning with selected loudspeakers is used. The re-
sults reported so far show that OPSI provides the
potential to reduce coloration artifacts while pre-
serving most of the good localization properties of
WFS.
Another technique proposed to improve the percep-
tion of spatial aliasing artifacts is to randomize the
phase above the spatial aliasing frequency in the
driving function [5]. The basic idea of this approach
is to smear out the spatial structure of spatial alias-
ing. The results reported in [49] using diffuse filters
show some potential.

6.2. Active Listening Room and Loudspeaker

Compensation

The basic theory of WFS, as presented in Section 2,

relies on free-field wave propagation and does not
consider the influence of reflections within the lis-
tening environment. Since these reflections may im-
pair the carefully designed spatial sound field, their
influence should be minimized by taking appropri-
ate countermeasures. Besides passively damping of
the listening room various active techniques have
been proposed e. g. [50, 51, 52, 53, 54, 55, 47, 10,
56, 57, 58, 59, 60, 61]. Common to all of these ap-
proaches is that they perform a pre-filtering of the
loudspeaker driving signals in order to cancel the lis-
tening room reflections by destructive interference.
However, suitable control is only achievable when
no spatial aliasing is present in the reproduced wave
field. Due to the varying characteristics of the prop-
agation medium and the acoustic environment an
adaptive computation of these pre-filters on basis of
the reproduced wave field is desirable. Simulation
results indicate that active listening room compen-
sation provides the potential to reduce the effects of
the listening room.
Besides the influence of the listening room, also non-
ideal characteristics of the secondary sources may
degrade the reproduced wave field. The compensa-
tion of non-ideal secondary source characteristics is
known as loudspeaker compensation in the context
of WFS. Loudspeaker compensation can be seen as
subset of listening room compensation. However, no
adaptive filters are required in this case since the
characteristics of the loudspeakers can be assumed
to be constant over time. Multichannel techniques
have been proposed to perform loudspeaker compen-
sation [62, 12].

6.3. Active Noise Control

Another kind of impairments are noise sources
within the listening room. If these sources are lo-
cated outside the listening area, active noise con-
trol (ANC) techniques can be applied. The signal
processing techniques used for ANC are similar to
those used for active listening room compensation.
Hence, the same algorithms can be applied in prin-
ciple to ANC for WFS. First results can be found
in [63, 64, 65, 66]

7. CONCLUSION

This paper presents a generalized theory for WFS.
Three-dimensional reproduction in a listening vol-
ume, as well as two-dimensional reproduction in a
listening area is covered. In the latter case, both the
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reproduction using secondary line and point sources
has been considered. It has been shown that an ex-
act reproduction of a desired virtual wave field is
only possible with a planar continuous distribution
of secondary point sources or a linear continuous dis-
tribution of secondary line sources. All other cases
are approximations that may lead to artifacts in the
reproduced wave field. The paper also discusses var-
ious artifacts of WFS. The most prominent ones are
spatial aliasing and amplitude artifacts. Both de-
grade the perceived quality.
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Paris 6, 2000.

[27] M.A. Gerzon. With-heigth sound reproduc-
tion. Journal of the Audio Engineering Society
(JAES), 21:2–10, 1973.

[28] J. Ahrens and S. Spors. Analytical driving
functions for higher-order ambisonics. In IEEE
International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), 2008.

[29] J. Ahrens and S. Spors. Reproduction of a
plane-wave sound field using planar and lin-
ear arrays of loudspeakers. In Third IEEE-
EURASIP International Symposium on Con-
trol, Communications, and Signal Processing,
2008.

[30] M.A. Poletti. Three-dimensional surround
sound systems based on spherical harmonics.
Journal of the AES, 53(11):1004–1025, Novem-
ber 2005.

[31] S. Spors. Extension of an analytic secondary
source selection criterion for wave field syn-
thesis. In 123th AES Convention, New York,
USA, October 2007. Audio Engineering Society
(AES).

[32] S. Spors. An analytic secondary source selection
criteria for wave field synthesis. In 33rd Ger-
man Annual Conference on Acoustics (DAGA),
Stuttgart, Germany, March 2007.

[33] J. Ahrens and S. Spors. Implementation of
directional sources in wave field synthesis. In
IEEE Workshop on Applications of Signal Pro-
cessing to Audio and Acoustics, New Paltz,
USA, October 2007.

[34] E. Corteel. Synthesis of directional sources us-
ing wave field synthesis, possibilities, and limi-
tations. EURASIP Journal on Advances in Sig-
nal Processing, 2007, 2007. Article ID 90509.

[35] Marije A.J. Baalman. Discretization of com-
plex sound sources for reproduction with wave
field synthesis. In 31. Deutsche Jahrestagung
für Akustik, Munic, Germany, 2005.

[36] S. Moreau, J. Daniel, and Bertet S. Reproduc-
tion of arbitrarily shaped sound sources with
wave field synthesis - physical and perceptual
effects. In 122th AES Convention, Vienna,
Austria, May 2007. Audio Engineering Society
(AES).
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