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ABSTRACT 

Ambisonics is a surround-system for encoding and rendering a 3D sound field. Sound is encoded and stored in 
multi-channel sound files and is decoded for playback. In this paper a panning function equivalent to the result of 
ambisonic encoding and so-called in-phase decoding is presented. In this function the order of ambisonic resolution 
is just a variable that can be an arbitrary positive number not restricted to integers and that can be changed during 
playback. The equivalence is shown, limitations and advantages of the technique are mentioned and real time 
applications are described.   

 

1.  AMBISONICS 

Ambisonics is a surround-system for encoding and 
rendering a 3D sound field. In Ambisonics the room 
information of the recorded or synthesized sound is 
encoded together with the sound itself in a certain 
number of channels independent of the speaker set-up. 
The encoding can be carried out in an arbitrary degree 
of accuracy. The accuracy is given by the so-called 
order of Ambisonics. The zeroth order corresponds to 
the mono signal and needs one channel. In first order 
Ambisonics the portions of the sound field in the 
directions x, y and z are encoded in three more 
channels. The interpretation of higher orders is not as 
simple as that of zeroth and first order. If one calculates 
the sum of sound waves of several speakers at an 
arbitrary point of an auditorium, complicated formulas 

arise. In Ambisonics the situation is simplified by the 
assumption that the sound waves are plane and that the 
listener is located at the origin of the coordinate system. 
Sound waves in the horizontal plane, represented in 
polar coordinates, and sound waves in the room, 
represented in spherical coordinates, can be calculated 
as sums of cylindrical or spherical harmonics 
respectively. This decomposition can be interpreted as 
the multiplication of the wave function and the 
directivity of the sound source [1][2]. 

1.1. Encoding 

The formulas for ambisonic encoding are derived from 
the solution of the three-dimensional wave equation    

( + k 2)p = 0  (1.) 
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in the spherical coordinate system (see figure 1) where a 
point P is described by radius r, azimuth  and elevation 
. 

  

Figure 1: Spherical coordinate system 

In these coordinates the pressure field can be written as 
the Fourier-Bessel series (2). Its terms are the weighted 
products of directional functions Y( , ) called spherical 
harmonics and radial functions [3]. 

p(r) = jm jm
m= 0

(kr) Bmn

0 n m, = ±1

Ymn ( , )  (2.) 

(with vector r of length r, wave vector k, wave number 
k = 2 f/c, frequency f and speed of sound c).  

Assuming that the sound waves are plane and that the 
listener is located at the origin of the coordinate system 
the formulas can be simplified dramatically. In practice 
the infinite series is truncated and only a finite number 
of components are calculated and saved in the so-called 
ambisonic B-format. After all these simplifications a 
signal S is encoded by multiplying the signal with the 
first spherical harmonics in 3D and with the first 
harmonics in 2D. The first few components in 3D are 
labelled and defined as follows (semi-normalized version 
[1]): 

      

Table 1: Ambisonic B-format 

In 2D the components are simply 

                             

Table 2: B-format 2D 

The order of resolution m defines the accuracy of the 
encoding and the number of channels in the B-format, 
namely 2m+1 in 2D and (m+1)2 in 3D. 

1.2. Decoding 

In order to render a 3D sound field the speaker signals 
for a given speaker setup must be calculated. The 
signals of the single speakers can be treated in the same 
way as the encoded sound. If we denote the B-format of 
the encoded sound by B, the B-format of the sound from 
speaker i by ci and the signal from speaker i by Si 

ci =

Y00
1 ( i, i)

...

Ymn ( i, i)

 

 

 
 
 

 

 

 
 
 

B =

B00
1

...

Bmn

 

 

 
 
 

 

 

 
 
 

S =

S1
...

Sn

 

 

 
 
 

 

 

 
 
 

              (3.) 

and the matrix of all ci as  

C = [c1,...,cn ]                  (4.) 

the reproduction of the encoded sound with the n 
speakers can be written as  

B = C.S                  (5.) 
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This equation can theoretically be solved in respect to S 
for nearly any speaker setup and any number of 
speakers greater than the number of channels of B, but it 
turns out that solutions for asymmetrical setups often 
are unusable (for 5.1 surround see [4]) and that the 
solution of symmetric setups does not change if more 
speakers than necessary are used. The speaker signals 
for symmetrical setups of n speakers (n = 2m+1 in 2D 
and (m+1)2 in 3D) can be calculated from the B-format 
and the matrix C as [3]  

S = C 1.B =
1

n
CT .B                 (6.) 

In 2D the signal for speaker i is given by 

Si =
1
n
(W + 2X cos i + 2Y sin i

+ 2U cos2 i + 2V sin2 i + ...)
              (7.) 

1.3. Corrections 

Ambisonics is based on harmonic decomposition. The 
truncation of the infinite series causes side effects such as 
signals on speakers far away from the original sound 
position and inverted phases (see figure 2). By 
windowing the decomposition i.e. weighting the 
ambisonic channels according to their order these side 
effects can be reduced at the cost of the precision of the 
directivity. Figure 2 shows two level functions for a 
speaker at position  (sound at  = 0, order m = 3) the 
first without correction (basic decoding) fbas( ), the 
second for so-called in-phase decoding finph( ). The bars 
indicate the levels of 13 symmetrically positioned 
speakers. 

              

Figure 2: Level functions for basic and in-phase 
decoding 

Putting the correcting gains into equation (6.) yields 

S =
1

n
CTDiag[...gm ...].B              (8.) 

2.  PANNING 

Panning is the technique of the positioning of a single 
(monophonic) source within a stereophonic image. The 
technique has been enhanced from two to more than two 
speakers and from two to three dimensions. Vector Base 
Panning (VBP) was introduced by Ville Pulkki [5] for 
two dimensions. In VBP loudspeaker arrays are treated 
as arrangements of subsequent stereo pairs or, extended 
to three dimensions, as triples of loudspeakers. Panning 
normally uses only level differences and feeds only the 
loudspeakers nearest to the virtual sound source.  

Amplitude panning is the most frequently used 
technique to position virtual sources. The sound signal 
x(t) is fed to speaker i with the gain factor fi  

xi(t) = f ix(t) ,   i = 1, …, N              (9.) 

which is a function of the difference  =  - i of the 
angles between the sound source at position  and 
speaker i at position i. 

A typical panning function is the cosine function (see 
figure 3). 

               

Figure 3: stereo panning with the cosine function 

Panning functions fulfil the condition [2]: 

gl
p

+ gr
pp

=1              (10.) 

In contrast to other panning techniques ambisonic 
panning functions normally produce signals for all 
speakers at the same time. The functions are defined on 
the whole horizontal circle or the whole sphere. The 
sum of all speaker gains equals 1 (i.e. p = 1 in equation 
(10.)). For valid gains g equation (8.) yields the 
ambisonic panning functions 
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f ( ,m) =
1

n
(g0 + 2 gk cosk

k=1

m

)            (11.) 

for 2D and 

f ( ,m) =
1

n
(2m +1)gkPk (cos

k=1

m

)            (12.) 

for 3D [3]. 

3. SIMPLIFIED AMBISONIC PANNING 
FUNCTIONS 

For basic and in-phase decoding the formulas (11.) and 
(12.) can be simplified. Basic decoding 

For basic decoding (i.e. without correcting gains) the 
panning function (11.) is 

f ( ,m) =
1

n
(1+ 2 cosk

k=1

m

)              (13.) 

Since the sum can be written in a simplified form we get 

f ( ,m) =
sin( 2m+1

2 )

n sin( 12 )
                           (14.) 

This function is exactly equivalent to ambisonic en- and 
decoding in 2D. For higher orders of m the number of 
calculations is reduced dramatically and its 
implementation is straightforward. Because the function 
depends only on the angle between speaker and sound 
source it can also be used in 3D as a panning function. 
For tests it can be used as an approximation for basic 
decoding in 3D (in 3D  denotes the angle between 
sound source and speaker). In figure 4 the panning 
functions 3D and 2D (dashed line) are compared. 

      

Figure 4: Basic decoding panning function 3D and 2D  

3.1. In-phase decoding 

With the so-called in-phase decoding negative 
amplitudes and side lobes in the panning functions are 
avoided with the following correcting gains [1]. 

gk = g0
m!2

(m + k)!(m k)!
         for 2D            (15.) 

gk = g0
m!(m 1)!

(m + k +1)!(m k)!
 for 3D               (16.) 

with normalizing factors g0 [1]. 

The panning functions (11.) and (12.) with the gains 
(15.) and (16.) are equivalent to the simple function  

    finph ( , p) = ( 12 + 1
2 cos )

p
= (cos

2
)2p                (17.) 

where  is the angle between the speaker and the 
position of the sound source and p corresponds to the 
ambisonic order. The following diagrams show the 
function finph( ,p) for p = 2 and 6 and seven 
symmetrically positioned loudspeakers.  

          

Figure 5: in-phase panning function 

In order to show the equivalence of this function and the 
function we get by ambisonic encoding, decoding and 
multiplying with the standard gains for in-phase 
decoding, the function finph( ,p) is first expanded 

 finph ( , p) =
1

2p
(i
p )

i= 0

p

cosp                       (18.) 
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Reducing the powers of the cosine functions we get  

finph ( , p) =
1

22p 1

1

2

2n

n

 

 
 

 

 
 + (p+ i

2p )
i=1

p

cosi
 

 
 

 

 
             (19.) 

The coefficients of the cosines of multiples of the angle 
 correspond to the gains for in-phase decoding (15.) 

and (16.).  

Since the panning function is equivalent to ambisonic 
en- and decoding, for integer exponents the results of 
ambisonic theory hold. In ambisonic theory there must 
be at least as many speakers as ambisonic channels (n = 
2m+1 in 2D and n = (m+1)2 in 3D for order m) to 
calculate the decoding formulas. Nevertheless n = m-1 
speakers suffice to produce speaker signals that sum up 
to 1. For small orders (ca. up to 5th order) this is shown 
by simplifying the sum of the panning functions finph for 
n symmetrically positioned speakers. For large orders 
numerical calculations give the same result. In figure 6 
the sum of 9 speaker signals as a function of the angle 
of the sound source are compared for orders p = 8 and p 
= 9. 

             

Figure 6: Sum of 9 speaker signals as a function of the 
position of a sound source for orders p = 8 and p = 9 

3.2.1 Fractional orders 

While ambisonic encoding is only possible with integer 
orders the exponent in the panning function finph( ,p) 
(17.) can be an arbitrary positive number. For fractional 
order the sum of the speaker signals does not exactly 
equal one but the deviation is very small, so that it is 
possible to change the exponent continuously without 
perceivable inaccuracies. Figure 7 shows the function 
finph( ,p) for n = 8 speakers. It is nearly constant 
between p = 2 and p = n-1.     

       

Figure 7: finph( ,p) for 8 speakers  

Since with increasing order p the function finph( ,p) 
narrows more and more slowly, fewer speakers per 
order are necessary. Figure 8 shows that with as few as 
n = 20 speakers it is possible to use orders up to p = 60. 

         

Figure 8: finph( ,p) for 20 speakers 

3.2.2 3D-panning  

The same panning function can be used in 3D. The only 
five symmetrical speaker setups correspond to the five 
platonic solids. For these setups it can be shown that the 
sum of the speaker signals is independent of the position 
of the sound source for small integer orders (see table 
4). The sum can be normalized by the factor (p+1)/n. 

p +1

n
finph ( i, p)

i=1

n

=1                       (20.) 

where i is the angle between the sound source and 
speaker i, p the order and n the number of speakers.  
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Figure 9 shows the sum of the speaker signals as a 
function of the order p and the horizontal angle  (  = 0) 
for a setup with 8 speakers in a cube.  

             

Figur 9: Sum of the speaker signals as a function of 
order p and angle  

For fractional orders p < 3 small deviations occur (see 
figure 10). 

               

Figure 10: Sum of the speaker signals as a function of 
order p and angle  

The 3D B-format contains n = (m+1)2 channels for 
order m. Thus at least n equations (and therefore n 
speakers) are required to calculate the decoding 
formulas for orders up to m = n -1. Table 3 shows that 
the order chosen can be nearly twice that number. 

           

Table 3: relation between ambisonic order and number 
of speakers in 3D 

4. APPLICATIONS AND PERSPECTIVES 

4.1. Implementations 

The implementation of the panning functions finph is 
straightforward. In order to produce the signal for a 
certain speaker at position Ps = (xs, ys, zs) a sound at 
position P = (x, y, z) is multiplied by f( ,p) where  
denotes the angle between the sound source and the 
speaker. The cosine of this angle is calculated as the 
scalar product (x, y, z).(xs, ys, zs). For a speaker setup on 
a sphere or a circle with radius 1 and a sound sources at 
distance r we get 

finph (P,Ps, p) = (
xxs + yys + zzs + r

2r
)p

where r = x 2 + y 2 + z2
            (21.) 

If the sounds are positioned on the unit sphere we get  

finph (P,Ps, p) = (
xxs + yys + zzs +1

2
)p             (22.) 

in Cartesian coordinates and 

finph (P,Ps, p) =

(
1+ cos( s)cos( )cos( s) + sin( )sin( s)

2
)p

     (23.) 

in spherical coordinates. 

Various Max/MSP tools for sound spatialization, 
ambisonic encoding and decoding and ambisonic 
panning can be downloaded from the website of 
Institute for Computer Music and Sound Technology 
ICST [8]. 

4.2. Computational costs 

The complexity of the encoding formulas increases 
rapidly with the order. (Table 4 shows the encoding 
formula for Y1

4,3 in spherical and Cartesian 
coordinates.) 

 

Table 4: Encoding formula for Y1
4,3 
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It is quite difficult to estimate the computational costs 
for the various techniques. They not only depend on the 
hardware used but also on the implementation of the 
formulas. The following is an assessment in 3D using 
Cartesian coordinates. Given that the coefficients are 
calculated already and the powers of x, y and z are 
stored during the calculations, there are about 0, 3, 16, 
45, 96, 177, 300, …(ca. (m+.5)3) multiplications for the 
orders 0, 1, 2, … for the encoding of each signal. 

In the decoding process the matrix C
T (which is 

calculated just once) is multiplied with the B-format. 
This needs n*(m+1)2 multiplications. 

The panning function (22.) needs 4 multiplications and 
1 function call for every sound and speaker. 

4.3. Conclusions  

There are different ways to use ambisonics for rendering 
surround sound: 1) Calculate and save sounds in the B-
format and decode the B-format signal for the required 
speaker setup, 2) store sounds and information about the 
sounds’ positions separately and calculate the speaker 
signals with a panning function, 3) en- and decode the 
B-format signal in real-time, 4) produce the sounds and 
pan them in real time. The great advantage of the B-
format is the possibility of adding up an arbitrary 
number of independent sounds, each with its own 
position or movement in a number of channels 
depending only on the chosen order. The disadvantages 
are the large number of channels for good spatial 
resolution and the considerable computational costs for 
high orders. Thus using the B-format (first and third 
approach) is reasonable only if many independent sound 
sources are treated. In most cases the second and forth 
approach perform better. With the second approach the 
information for the sounds and their position are stored 
without loss and further sound processing is still 
possible, with the fourth approach high orders can be 
used and the order can be changed continuously during 
performance. 

The mathematics used in ambisonics theory is beyond 
the skills of non-scientists or non-engineers. Since 
panning functions are familiar and easy to visualize they 
provide a good didactical means for explaining 
ambisonics to laymen and for deriving encoding 
formulas and gains for in-phase decoding.   
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