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Exterior expansions of complex sound sources are presented as flexible objects for pro-
ducing Ambisonic sound-field encodings. The sources can be synthesized or recorded di-
rectly, rotated, and positioned in space. Related techniques can also be used to efficiently add
high-quality reverberation, depending on the orientation and location of the source and
listener.

0 INTRODUCTION

Real sound fields are frequently the result of sound from
numerous sound sources, each localized to a well-defined
region. Synthesizing these using loudspeaker-based and
headphone-based approaches is a natural goal. Good re-
sults have been achieved for distant sources, which reach
the listener as plane waves. Distance perception can be
simulated using distance filtering and reverberation bal-
ance. It is also possible in low-order Ambisonic systems
[1], [2] to synthesize a diffuse source approximately, at
varying distance [3], [4], which can be useful in a creative
setting. Sound-field synthesis of an object with nonuni-
form directivity has been considered in the far field using
spherical harmonic representation [3], [4]. With the devel-
opment of high-order acoustic field construction, the simu-
lation of near-field sources becomes feasible. This has
been developed for a monopole source in the context of
high-order Ambisonics by reconstructing a monopole field
about the listener [5]. Using the wavefield approach [6],
[7], the directional properties of objects have been encoded
with filters that feed the loudspeaker array directly [8], [9].

A localized source typically differs in two respects from
a simple monopole source. The sound radiates from a
region of nonzero width, and the directivity of radiation is
not uniform. Near the object the sound field will be reac-
tive, like a monopole’s, but possibly will have a much
more complex geometry. We should fully expect this
added richness to be exploited by the auditory system for
its information content, and so to have perceptual signifi-
cance. Although this does not appear to have been studied
in detail, informal listening provides strong evidence of

spatial perceptual variety among complex objects. The
study of directional objects using the wavefield approach
also supports the hypothesis. For both practical and cre-
ative applications it would be desirable to find a way to
represent a complex source accurately and encode it into
Ambisonic B format. The conversion from source encod-
ing to Ambisonic encoding depends on the location and
orientation desired of the source. From a single source
encoding, that source can be rendered anywhere and in any
orientation around the listener. Fig. 1 illustrates this
scheme. The advantage of Ambisonic modularity is appar-
ent here, in that we seek a process that encodes into a
format that is independent of the details of the rendering
mechanism, whether it be a particular loudspeaker array or
headphones. The wavefield approach lacks this interme-
diate stage, as well as suffering worse spatial aliasing
artifacts [7]. Binaural rendering of high-order Ambison-
ics, over headphones, including the near field, has been
considered [10].

This paper is organized as follows. First the source rep-
resentation is discussed, followed by the main part, the
development of a method to transform a source encoding,
with knowledge of its position and orientation, into an
Ambisonic encoding. Some simulations are provided for
verification and illustration. Finally, as a development of
the first part, we consider the encoding of the reverberant
field from a complex source, and how this can be modified
for other listening and source positions, using variants of
the transformation introduced in the first part.

*Manuscript received 2006 February 22; revised 2006 Decem-
ber 28 and 2007 May 17 and July 26. Fig. 1. Overall scheme. O—extended source object; B—listener.
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1 SOURCE REPRESENTATION

We wish to use a representation that can encode any
source to any desired accuracy, relates well to direct mea-
surements of the field, and can be manipulated efficiently.
The following possibilities suggest themselves. A source
can be modeled with several monopoles. This would be
appropriate if it actually had this structure, or because a
rough and fast model was required. The source can be
positioned and orientated using standard Cartesian trans-
formations. For more accuracy we can attempt to use
many monopoles distributed over the source volume or
surfaces. It is far from obvious how this would be done for
a general source. Such a representation contains consider-
able redundancy since it describes the structure of the
object as well as the sound produced.

1.1 Exterior Harmonic Expansion
Multipoles in their original form consist of infinitesimal

arrangements of monopole sources. A multipole of suffi-
cient order can represent the field around a given extended
object arbitrarily well. Although they are operated on by
simple Cartesian operations, their infinitesimal nature does
not lend itself to direct numerical manipulation. Also the
relationship of multipole parameters to the directionality
of the field increases rapidly in complexity with the order.
Closely related is the exterior expansion for the wave
equation. This has basis functions in the frequency domain
using the spherical coordinates hm(kr)Ymn(�, �), where
hm(kr) are the spherical Hankel functions of the second
kind [11], m is the multipole order of each function, and
k � 2�/� is the wave number. The type of Hankel func-
tion chosen gives an outward moving wave when associ-
ated with a positive frequency time piece ei�t, the same
convention used in [5].

An infinitesimally defined multipole of order m can
always be expressed exactly using an exterior expansion
with terms up to order m. For this reason an exterior ex-
pansion is alternatively called an exterior multipole expan-
sion or just a multipole [12]. Another term used is singular
expansion, since the center of the expansion has a singu-
larity. The exterior expansion relates closely to the non-
uniform directivity of a source, as will be discussed, and
our principal goal shall be to manipulate it to provide an
Ambisonic source encoding. By multipole we shall mean
an exterior expansion, unless otherwise stated.

The remainder of this section reviews the exterior ex-
pansion and introduces the conventions that will be used.
In keeping with the high-order Ambisonic literature the
real-valued N3D spherical harmonic set will be used
throughout [13], [5]. The components are defined for m �
0 and m � n � 0 by

Ymn
� �N3D���, �� = �2m + 1 P̃mn�sin ��

× �cos n�, if � = +1

sin n�, if � = −1
(1)

P̃mn�sin �� =��2 − �0,n�
�m − n�!

�m + n�!
Pmn�sin ��. (2)

For n � 0, � only takes the value +1. � here measures the
angle around the coordinate symmetry axis, and �/2 − � is
the angle between the axis and the coordinate direction, so
that � would normally be called the elevation, as shown in
Fig. 2. The symmetry axis is normally called the z axis,
which is not neccessary, but aids the labeling in diagrams.

We shall use a slightly simplified notation, which re-
moves � by extending n to negative values, as used in
more conventional harmonic sets,

Ymn = �Ymn
+1 , if n � 0

Ym|n|
−1 , if n � 0.

(3)

For convenience we define coefficients Omn(k) by a
general exterior expansion,

p�r, k� = k �
m

i−m−1hm�kr� �
n

Ymn��, ��Omn�k� (4)

so that in the far field, where hm(kr) tends to im+1e−ikr/kr,
the field becomes

pfar =
e−ikr

r �
m,n

Ymn��, ��Omn�k�. (5)

The Omn(k) coefficients then express the nonuniform di-
rectivity in this regime directly, where locally the field
tends to an outward moving plane wave. The signals
Omn(k) coincide with the O-format encoding used previ-
ously for Ambisonic synthesis [3], [4]. The same name
will be used here for the more general case described by
Eq. (4). We emphasize that this is just a convention, for
convenience and appropriate to its context, in the same
sense as B format is defined. Nothing essentially new is
added.

Omn(k) can be calculated readily from measurements of
the field on a sphere at any radius r outside the source
region. Applying an integral over the sphere ∫ Ymn(�, �) d	
to Eq. (4) gives

Omn�k� =
im+1 � Ymn��, ��p�r, k� d	

4�khm�kr�
. (6)

Fig. 2. Spherical coordinates used.
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Note that hm(kr) does not have zeros for r > 0, so this is
well defined at all r. For a real object the field could be
measured approximately with pressure microphones lo-
cated on a sphere a fixed distance from the source. In the
far field, where the field becomes planar, inwardly point-
ing directional microphones are equally effective, given
the appropriate equalization including phase. For devices
such as loudspeakers that convert electricity to sound, the
process can be simplified by repeated response measure-
ments with a single microphone that is moved. Loud-
speaker simulations might for instance be useful in high-
end architectural simulations. When the Omn(k) responses
are convolved with input signals for the loudspeakers, the
expansion signals are generated. Spatial impulse responses
may also be useful for simulating some resonant objects
such as a violin body.

1.2 Source Approximation Order and Error
We consider now the order to which a source is ap-

proximated mmax. We wish to minimize this subject to
reconstruction error constraints. A source can be arbi-
trarily small and still have power up to any multipole
order, for example, using the explicit definition of infini-
tesimal multipoles. However, this is unusual in a real
acoustic source because opposed component sources
are not usually found very close together. To gain insight
into the more usual case, we examine multipole fields for

a source consisting of a monopole offset from the expan-
sion center. A monopole source at position r� has the
following multipole expansion in r about the origin, valid
for r > r� [11],

e−ik|r−r�|

|r − r�| = ik �
m=0




jm�kr��hm�kr� �
n=−m

m

Ymn���, ���Ymn��, ��

(7)

where jm(kr�) is the spherical Bessel function of the first
kind. The arrangement is illustrated in Fig. 3.

Note that in this special case, fixing r and varying r�
gives a valid field expansion for the spherical region cen-
tered on the origin, which just excludes the monopole.
However, the field inside an extended source is not fully
determined by its exterior field.

Figs. 4 and 5 show some cross-sectional plots of Re(p)/
|p| for different orders and offset r� � 2�, where � � 2�/k
is the wavelength. Only one-half the plane is shown be-
cause the field is symmetric about the line from multipole
to monopole. The near field resolves sharply as the order
is increased. For order mmax ≈ 2�r�/� � kr�, the relative
error compared with a real monopole is <1% for r > r� +
�. Detailed error analysis of the multipole approximation
[12] agrees with these observations, and fast convergence
is cited as one of the key attributes of the spherical
multipoles.

Rewriting for mmax that will ensure good reconstruction
of a field from a region of diameter d, up to frequency fmax,
we find mmax � �dfmax/c. For example, frequencies up to
1500 Hz from an object of 1 m width can be approximated
well with mmax � 14. If we do not require good construc-
tion close to the limit r � r�, then the order can be reduced
further. The far-field accuracy is not of so much interest,
since at all orders the far field tends locally to a plane
wave. This can be conventionally encoded in Ambisonics
using Bmn � Ymn(�s, �s)p(k), where the direction is to the
source and p(k) is the pressure from the source measured
at the listener. Increasing the multipole order in this ap-
proximation can improve reconstruction in the far field,
but not the near field.Fig. 3. Multiple representation of a monopole.

Fig. 4. Multipole approximation (center O) of displaced monopole (center m). r� � 2�; mmax � 12; cross section � � 0;
x, z—Cartesian coordinates in units of length.
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For a general source with diameter d we cannot expect
to use a lower order than the displaced monopole example
for similar accuracy, because it would be unusual that
different parts of the object would cancel out at higher
orders. Conversely we would not expect higher orders to
be required, because that would require even more can-
cellation in order to make higher orders relatively signifi-
cant. In summary, the formula for mmax provides a first
estimate for the order required to represent the near field
of a general object, although this is not true across all
possible sources.

1.3 Multiresolution Sources
So far single multipole expansions have been consid-

ered for each object. In some cases a hybrid approach may
be more appropriate, in which a source is represented us-
ing several multipoles. This is neccessary whenever we
wish to find the field at a free space inside the bounding
sphere of an object, for example, nearer to a table surface
than its length. Fig. 6 illustrates this.

Outside a bounding sphere a single multipole is suffi-
cient, by expanding around the center of the sphere. As we
move closer to some part of the source, more multipoles
are neccessary. Far from the object compared to its size
the field can be approximated as a plane wave, using the
O-format coefficients to determine the direction depen-
dence. This scheme of successive simplification resembles
the multiresolution techniques common in computer
graphics [14].

2 AMBISONIC ENCODING OF MULTIPOLES

2.1 Free-Field Expansion
High-order Ambisonics is founded on the interior ex-

pansion, which here we shall also call free-field expan-
sion, to emphasize that it is used to describe a sourceless
region around the listener, or more precisely the region at
the listener if the listener were removed. Eq. (8) is the
version of the expansion using N3D harmonics Ymn(�, �),
and defines the B-format coefficients Bmn(k) [5]. The ex-
pansion converges quickly on any source-free field, up
to a given radius r. The typical order required to achieve

≈1% error for a regular free field, such as a plane wave, is
mmax ≈ kr [12], [15],

p�r, k� = �
m

imjm�kr� �
n

Ymn��, ��Bmn�k�. (8)

2.2 Monopole Encoding
For fields containing sources it is still possible to create

a free-field expansion. However, it is only valid within a
region that does not contain any source. Consider first a
field containing a single monopole set away from the free-
field expansion center. Eq. (7) can be recast as the free-
field expansion for a monopole by fixing r and, instead,
varying r�. The form of this expansion is then consistent
with Eq. (8), from which the values of Bmn(k) can be read,
as shown in [5]. The condition of convergence r� < r now
implies that the expansion converges within a circle that
just touches the monopole source. Fig. 7 shows a field plot
for such a monopole reconstructed to the 13th order, and
set at a distance 2� from the expansion center. Outside this
area the expansion is a valid free field, although it no
longer matches the source field. Overall convergence be-
havior within the valid region is like any other free field,
although close to the monopole, � < �, the order required
to achieve a given error is increased compared to a smooth
free field, as we would expect [12]. The limit set to the
region of free-field convergence by the source cannot be
exceeded by increasing the free-field order.

Higher multipole sources have similar free-field expan-
sions since they can be generated as composites of infini-

Fig. 5. Multipole approximation (center O) of displaced monopole (center m). r� � 2�; mmax � 16; cross section � � 0;
x, z—Cartesian coordinates in units of length.

Fig. 6. When table sound comes from two sources (right), listener
B can be closer to table while still outside any invalid region.
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tesimal monopoles. The convergence condition is then that
the free-field expansion be valid within a radius that does
not include any of the sources.

2.3 Multipole to Free Field
Coefficient Transformation

The main task in this section is to find Bmn(k) in the
presence of a multiple described by Omn(k) at a given
position. It would be desirable to find a generalized
closed-form expression, as for the monopole case in [5].
However, it is not very apparent how this could be done,
or even if it would be the most practical method of cal-
culation, so instead a more pragmatic approach is adopted,
yielding eventually a manageable integral expression. To
begin, Eqs. (8) and (4) are equated. The notation is modi-
fied according to Fig. 8,

�
m

imjm�krB� �
n

Ymn��B , �B�Bmn�k�

= k �
m

i−m−1hm�krO� �
n

Ymn��O, �O�Omn�k�. (9)

To isolate Bmn(k), the operator ∫ Ym�n�(�B, �B) d	B is
applied, with rB a freely chosen constant, and �O, �O, and
rO are functions of the vector rB, yielding

4�im�jm��krB�Bm�n��k� = k �
m

i−m−1 �
n

Omn�k�

× � Ym�n���B , �B�Ymn��O, �O�hm�krO� d	B. (10)

Relabeling indices, Bmn(k) can be written as

Bmn�k� = �
m�,n�

Mmnm�n��k, r�Om�n��k� (11)

where the filter matrix Mmnm�n�(k, r) is

Mmnm�n��k, r� =
ki−m−m�−1

4�jm�krB�

× � Ymn��B , �B�Ym�n���O, �O�hm��krO� d	B.

(12)

The term jm(krB) in the denominator has zeros for krB at
approximately regular intervals with period �. However,
Eq. (12) is well defined, because the zeros can be shifted
by changing the free parameter �� � rB/r. We return to
this later. The r direction dependence in the matrix can be
factored out by transforming the components Bmn(k) and
Omn(k) so that the symmetry axis is in the direction of r.
This defines a new matrix that only depends on r, and, as
we shall see shortly, the symmetry gained reduces the
complexity of the matrix. Fig. 9 shows the relationship
between the initial coordinate axis ẑ and the vector r con-
necting the centres B and O. � � �/2 − � together with �
specify a rotation mapping ẑ onto r, written in components
as Rm�n�n(�, �). The third degree of freedom is unspecified,
although it must be consistent. Therefore Rm�n�n(�, −�)
transforms Bmn(k) and Omn(k) to find their coordinates
relative to r,

B�m�n��k� = �
n

Rm�n�n��, −��Bm�n�k� (13)

O�m�n��k� = �
n

Rm�n�n��, −��Om�n�k�. (14)

Fig. 7. Cross section of field plot for 13th-order free-field expansion (center at B) of monopole (center O). Error contours are shown
at 1% and 10% levels. Cross section � � 0; x, z—Cartesian coordinates in units of length.

Fig. 8. Vector notation.

Fig. 9. Finding components relative to r.
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Now Eq. (11) can be written with an r-direction-
independent matrix Mmnm�n�(k, r),

B�mn�k� = �
m�,n�

Mmnm�n��k, r�O�m�n��k� (15)

where

Mmnm�n��k, r� =
ki−m−m�−1

4�jm�krB�

× � Ymn��B, �B�Ym�n���O, �O�hm��krO� d	B.

(16)

The coordinates in the integral are now relative to r, al-
though they have not been relabeled. The symmetry this
brings, with rO independent of �B � �O, can be used to
factor the integral into a product of � and � integrals. To
make this clear, Ymn(�, �) is factored into

Ymn��, �� = P̂mn�sin �� × �
�2 cos n�, if n 
 0

1, if n = 0

�2 sin n�, if n � 0
(17)

where for later convenience, P̂mn is defined,

P̂mn�sin �� =��2m + 1�
�m − |n|�!
�m + |n|�! Pm|n|�sin �� (18)

and Pmn(x) is the associated Legendre polynomial. Eq.
(16) becomes

Mmnm�n��k, r� =
ki−m−m�−1

4�jm�krB�

× � cos �BP̂mn�sin �B�P̂m�n��sin �O�hm��krO� d�B

× 2��nn�

=
�nn�ki−m−m�−1

2jm�krB� �−1

+1
P̂mn�sB�P̂m�n��sO�hm��krO� dsB

(19)

where sB � sin �B and sO � sin �O. sO and rO can be
found from r, rB, and sB using rBsB − rOsO � r. rO �
r√1 + �2 − 2�sB and sO � r(�sB − 1)/rO, where � � rB/r.
The term �nn� in Eq. (19) allows a simplified three-index
coefficient matrix to be defined, which can be further sim-
plified by factoring out a term 1/r and reexpressing the
remainder in terms of the product kr. The implication is
that each digital filter derived can be varied according to
distance r by frequency scaling by r.

Eq. (15) can now be rewritten,

B�mn�k� = �
m,n

1

r
Mmnm��kr�O�m�n�k� (20)

where the new three-index matrix coefficient is

Mmnm��k� =
ki−m−m�−1

2jm�kB� �−1

+1
P̂mn�sB�P̂m�n�sO�hm��kO� dsB

(21)

and kB � �k and kO � k√1 + �2 − 2�sB. Clearly this is
defined only for n < m and n < m�, so for a given source
the number of filters increases only linearly with the B-
format order required. The new filter coefficients are given
in terms of one parameter, k. The actual filter acting in Eq.
(20) is scaled in frequency by the radius r, and there is a
distance factor 1/r.

Choosing � � m/k keeps jm(kB) close to its first maxi-
mum, avoiding the zeros. For small k, � is limited <1,
otherwise the integral fails. This does not reintroduce a
zero. For m � 0, � � 1/k is used. With the Matlab
integrator the coefficients can be evaluated to four signifi-
cant figures for coefficient magnitudes between 10 000
and 0.0001 over indices up to m, m� � 30 and up to k �
10 000. The accuracy of each coefficient can be checked
by using multiple values of �, and using the symmetry
described later. Small k coefficients will also be discussed.
At this stage the accuracy is sufficient to prove the scheme
and create prototype filters. Alternative methods of calcu-
lation might prove to be valuable, especially for large k in
some cases, although the asymptotic behavior in this re-
gion is quite predictable.

Combining Eqs. (20) and (21) with Eq. (13) gives a new
expression of Bmn(k) in terms of Omn(k),

Bmn�k� = �
n�

Rmnn���, �� �
m�

1

r
Mmn�m��kr�

× �
n�

Rm�n�n���, −��Om�n��k�. (22)

An orientation rotation could be included into the first
rotation acting on Omn. With rotations included, the num-
ber of filters required for reconstructing the field from a
given source is still linear in the maximum B-format order
mmax for mmax > m�, owing to zeros in Mmn�m�(kr).

2.4 Validation and Properties
To provide an immediate confidence test that the de-

rived formulas are correct, a random test fifth-order mul-
tipole was constructed, shown in Fig. 10, and compared
with the 13th-order free-field expansion calculated using
the matrix Eq. (22), shown in Fig. 11. The error contours
in Fig. 11 at 10% and 1% levels are for deviations from the
original multipole shown in Fig. 10. The region of agree-
ment extends as far as the center of the original multipole,
as expected, and indicates that the calculations described
in this section are correct.

Next we examine Mmnm�(kr) by checking that it is
consistent with previous results for the monopole case [5],
in which the encoded signal is given by Bmn �
S(k)Fm(kr)Ymn(�, �), where Fm(kr) � i−mhm(kr)/h0(kr). To
match the alignment used to define Mmnm�(kr), � � � �
�/2. We first note that the source term S(k) includes the
delay and distance attenuation so that S(k) � (eikr/r)O00(k).
In order to isolate the part matching Fm(kr), we look at the
adjusted value, (1/r)Mm00(kr)/(e−ikr/r)/Ym0(0, �/2). With
r � 1, this produces the plots shown in Fig. 12, matching
previous results [5]. Further plots reveal how M extends to
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Fig. 10. Cross section of field plot for 5th-order multipole (center at O). Cross section � � 0; x, z—Cartesian coordinates in units of
length.

Fig. 11. Cross section of field plot for 13th-order free-field expansion (center at B) of multipole (center O). Error contours are shown
at 1% and 10% levels. Cross section � � 0; x, z—Cartesian coordinates in units of length.

Fig. 12. Amplitude response for Mm00(k)/e−ik/Ym0(0, �/2); m � 1, 2, 3, 4.
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encode higher multipoles. Fig. 13 is an example showing
the amplitude response for M211(k)/e−ik along with
kM211(k)/e−ik to make the large k behavior clear. Fig. 14
shows the corresponding phase response. Another ex-
ample, with n � 2, is shown in Figs. 15 and 16. The
general picture is that with the e−ikr/r piece factored out,
the response is always minimum phase. For small k the
order of the filter becomes m + m�, while for large k it is
n. The location of the transitional region increases linearly

with m + m� from k ≈ 2 for m + m� � 1. For higher orders
the transitional region can be more complex.

2.4.1 Symmetries
Mmnm�(k) has symmetries that reduce the number of fil-

ters needed. Mmnm�(k) � Mm−nm�(k) � Mm�nm (k)(−1)m+m�.
The last is useful for cross checking the numerical accu-
racy of a value, since the two symmetric integrals involve
distinct calculations.

Fig. 13. Amplitude response for M211(k)/e−ik and kM211(k)/e−ik.

Fig. 14. Phase response for M211(k)/e−ik.

Fig. 15. Amplitude response for M223(k)/e−ik and k2M223(k)/e−ik.
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2.4.2 Small k and Convergence
In [5] filters were commuted from loudspeaker-array

decoding to control the large amplitudes generated in
monopole encoding at low values of k. The situation at
first appears worse here because filters encoding high mul-
tipoles can have much higher order at low k, for the same
order m of the B-format encoding. It has already been
noted in Section 2.1 that the free-field expansion typically
converges rapidly at m ≈ rk. Convergence to a multipole
field is not as good, close to the multipole, as we would
expect, and depends on the complexity of the multipole.
This is evident in Figs. 7 and 11, where rk � 22� ≈ 13 and
mmax � 13. For m + m� < rk we find that the size of
transfer coefficients is �10 for all m, m� up to the maxi-
mum of 30 tested. From Section 1.2 an object that requires
up to order mO has typical radius rO, where rOk ≈ mO. This
suggests that the free field can be converged well up to the
surface of the object using coefficients that have not be-
come large, since mr � rk − mO � (r − rO)k; see Fig. 17.
For rk < m + m� the corresponding transfer coefficient is
then no longer significant in the reconstructed field. The
implication for digital filter design is that the responses for
k < m + m� can be limited above to make the filters stable,
without affecting reconstruction accuracy significantly. In
[16] a similar conclusion was reached for the monopole
case. For rk < 1 the proximity effect becomes significant.
This is the low-frequency boost found with directional
microphones and hearing. The dominant contribution
comes from the m � 1, m� � 0 component, so this filter
should be extended sufficiently to cover the range of boost
required. Small sources that can be approached closely are
typically much weaker sources of low frequencies. Also,
the listener’s ears will not normally be less than a few
centimeters from the source, and then this is only practical
using a binaural rendering system. More investigation is
needed on the convergence properties of free-field multi-
pole reconstruction, although current results indicate that
the scheme presented here is workable.

2.4.3 Digital Filters
The implementation of the digital filters is not investi-

gated here in detail, but note that in general it will take a

form similar to that described for the monopole case [5].
Because the filters are evaluated numerically, they must be
converted to IIR form by pole–zero fitting. Variation ac-
cording to object distance can then achieved by frequency
scaling the poles and zeros. From the previous section it is
not required to evaluate Eq. (21) for small k, where the
numerical behavior eventually breaks down. The filters for
higher values of m, n, m� in Mm,n,m� will be more costly.
This will increase the linear rise in overall cost with Mmax

mentioned earlier.

3 REVERBERATION ENCODING, FREE FIELD
AND MULTIPOLE TRANSFORMATION

This paper has so far focused on the synthesis of the
direct signal from complex objects in the near field. In this
section we consider the encoding of reverberant sound
from complex sources, and a modification of the work in
the previous section, so that a free-field expansion can be
transformed to a free-field expansion about another point.
This is then extended further to include source translation.
Although preliminary, these findings are included to show
how the approach taken in the previous extension can be
applied in other ways.

3.1 Encoding Source Directivity
in Reverberation

Conventional room responses are mono to mono, mono
to multichannel, or sometimes stereo to multichannel,
where multichannel could include B format. This means
that little consideration is given to how the reverberant

Fig. 16. Phase response for M223(k)/e−ik.

Fig. 17. Listener convergence region B limited by source object
region O.
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sound received from a source changes according to how
the source is oriented, whereas real reverberation can vary
considerably with source orientation. Fig. 18 illustrates the
problem schematically.

In general the reverberant field has a linear relation to a
directional source, which depends on the source position.
So mathematically the general form is similar to that for
the direct sound discussed already. For a source described
by Omn(k) and a field expansion by Bmn(k),

Bmn�k� = �
m�,n�

Mmnm�n�
rev �k, xB, xO�Om�n��k� (23)

where xB and xO are the position vectors of the field ex-
pansion and source. This could be viewed as a set of
transfer functions, one for each pair of source harmonic
and field expansion harmonic. Mmnm�n�

rev could be measured
in a real space using directional sources and microphones,
measuring the response on each microphone component
for each source component. In practice the harmonics
would be measured indirectly using loudspeaker arrays
with directivities that collectively span the order required,
for example, using a dodecahedral array such as that de-
scribed in [17].

The order of the source components is not so important
compared to the order of the microphones, since the latter
must support the spatial resolution in the listener’s hear-
ing. A small source order increase delivers a considerable
advantage over the conventional zero-order source. The
encoding of source directivity could be particularly valu-
able in an interactive application where the listener con-
trols the orientation of a sound source, and so can probe
the surrounding acoustic.

Mmnm�n�
rev could also be calculated from an image-source,

ray-tracing, or other numerical simulation to much higher
order than from measurement. The details of these proce-
dures are beyond the scope of this paper.

3.2 Free-Field Transformation with
Listening Position

Given an expansion about a point inside a sourceless
region, such as Bmn from Eq. (23), we can ask what the
expansion B�mn(k) would be about another point in the

region. This would allow the listener to move around a
reconstructed complex sound field, within a valid region
that may include reverberant sound, and possibly direct
sound from sources as well. In [18] the free-field expan-
sion of a reverberant field from a monopole source is
calculated by an image-source method to enable fast cal-
culation of the pressure field. However, for three-
dimensional listening we also need to transform the whole
expansion to the current listening point.

Reworking the previous calculations leading to Eq. (21)
produces the following result in terms of a new matrix
Mmnm�

BB ,

B�mn�k� = �
n�

Rmnn���, �� �
m�

1

r
Mmn�m�

BB �kr�

× �
n�

Rm�n�n���, −��Bm�n��k� (24)

where

Mmnm�
BB �k� =

im�−m

2jm�kB��
�−1

+1
P̂mn�sB��P̂m�n�sB�jm��kB� dsB

(25)

with kB�, sB� kB, and sB replacing kB, sB, kO, and sO, re-
spectively.

The main difference between Eqs. (25) and (21) is that
hm�(kB) is replaced by jm�(kB). For verification, a random
12th-order field Bmn has been synthesized, shown in Fig.
19, and transformed using Eq. (24) to an 18th-order field
B�mn centered at a distance 2� from Bmn, as shown in Fig.
20. The error contours show clear agreement that extends
beyond the center of Bmn to a radius r where kr ≈ mmax �
18, as expected. As noted previously, when transforming a
multipole source it is not possible to extend beyond the
original center in this way.

This technique reproduces high-definition spatialized
reverberation, at different listening positions, more effi-
ciently than by direct simulation, as the computational
complexity is limited by the order of Mmnm�n�

rev , mmax � rk,
determined by the spatial and frequency extent required,
and not the complexity of the simulated environment, as
noted in [18] for the monopole−source case. However, as
already noted, higher orders can only be practically deter-
mined for a numerical room simulation.

3.3 Source Transformation with Source Position
The previous section showed how the expansion of a

reverberant field can be transformed to a new listening
position. Can a similar effect be applied to a source? Then
in principle only a single reverberation matrix Mmnm�n�

rev is
required to encode between a wide range of source and
listening positions. Fig. 21 shows the sequence of trans-
formations to go from a generally placed source O� to a
generally placed listener at B�.

This is conceptually striking, but again only of possible
use for encoding high-quality simulated reverberation. The

Fig. 18. Listening to reverberation at B from complex source
at O.
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required transformation from O� to O exists, and an ex-
ample has already been described by Eq. (7), where a
monopole is transformed to a multipole at another point.
The general transformation follows using the same rea-
soning as before, except that the integration sphere radius
must be larger than the separating distance to place it in
the valid region of O. In other words � > 1,

Qmn�k� = �
n�

Rmnn���, �� �
m�

1

r
Mmn�m�

OO �kr�

× �
n�

Rm�n�n���, −��O�m�n��k� (26)

where

Mmnm�
OO �k� =

im−m�

2hm�kO� �−1

+1
P̂mn�sO�P̂m�n�sO��hm��kO�� dsO�

(27)

with kO, sO, kO�, and sO� replacing kB, sB, kO, and sO, respec-
tively, in Eq. (21). hm(kO) is complex and has no zeros, so the
value of � affecting kO is not restricted further.

Fig. 19. Cross section of field plot for 12th-order free-field harmonic expansion (center at B). Cross section � � 0; x, z—Cartesian
coordinates in units of length.

Fig. 20. Cross section of field plot for 18th-order free-field expansion (center at B�) of free-field (center B) in Fig. 19. Error contours
are shown at 1% and 10% levels. Cross section � � 0; x, z—Cartesian coordinates in units of length.

Fig. 21. Fully generalized reverberation from O� to B� using
transfer between fixed source O and listener B.
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The invalid region centered around O that extends to O�
implies the restriction that B cannot lie inside an image of
this region, according to an image-source representation of
the space. This will not be a problem unless O and B lie
close to a wall, which can be arranged not to occur. There
is no reason why O and B cannot be at the same point
when encoding simulated reverberation.

In view of the listener and source transformations just
described, the determination of Mmnm�n�

rev for two fixed
points O, B can be seen as a postprocessing step for en-
coding a simulated acoustic in a more efficient form. To
find the transfer between two new points the original
simulation does not need to be run again.

4 CONCLUSION

A method has been presented for encoding a general
acoustic source and transcoding it to a high-order Am-
bisonic signal, depending on source orientation and posi-
tion relative to the listener. The method also lends itself to
the direct measurement of real sources using an array of
surrounding microphones. The approach is considerably
more elaborate and costly than plane-wave or monopole
synthesis. However, it is expected that in the context of
complex sources displayed with a high-quality rendering
system, the efforts are worthwhile. Binaural headphone
reproduction [10] is particularly attractive, because the
encoding only needs to be of sufficient order for a single
listener rather than a listening area, so reducing computa-
tional costs. For instance for a radius of 0.2 m, up to 1500
Hz, the required order m � rk ≈ 6. In a loudspeaker-
rendering environment the valid listening region is neces-
sarily fixed to accommodate multiple listeners. This places
constraints on how near-field sources can be arranged rela-
tive to the listener. So, for example, it is impossible for a
listener to experience near sources directly on the left and
the right sides while also having a large listening area that
can hold multiple listeners. Binaural reproduction does not
suffer this constraint, and so is the more natural method for
near-field rendering. A possible exception would be a
small loudspeaker array designed for one person. Closely
related results have also been presented for the encoding
and transformation of reverberation, with the surprising
conclusion that a single reverberation transfer between
two points is sufficient to find the reverberation transfer
between ranges of source and listener locations. In the future
we hope to investigate realizations of these methods.
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