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ABSTRACT

In this article, an array processing is described to improve the quality of sound field analysis, which aims to
extract spatial properties of a sound field. In this domain, the notion of spatial aliasing inevitably occurs due
to the finite number of microphones used in the array. It is linked to the Fourier transform of the discrete
analysis window, which is constituted of a mainlobe, fixing the resolution achievable by the spatial analysis,
and also from sidelobes which degrade the quality of spatial analysis by introducing artifacts not present in
the original sound field. A method to design an optimal analysis window with respect to a particular wave
vector is presented, aiming to realize the best localization possible in the wave vector domain. Then the
efficiency of the approach is demonstrated for several geometrical configurations of the microphone array, on
the whole bandwidth of sound fields.

1. INTRODUCTION

Sound field analysis is used in a variety of domains such

as the study of vibrating structures, generally to local-

ize the origin of unwanted noise sources, or in sound re-

production systems. It could be divided into two steps:

the first one consists to choice a model describing cor-

rectly a sound field inside a given analysis area with a

set of parameters, and the second one concerns the esti-

mation of the parameters associated to this model. Sev-

eral possibilities exist to represent a given sound field: in

Wave Field Synthesis (WFS), the representation is based

on Kirchhoff’s integral equation [1], whose parameters

are the acoustic pressure and the normal derivative with

respect to the surface delimiting the analysis area for all

points of the surface; in High Order Ambisonics (HOA),

the sound field is represented as an infinite sum of spher-

ical harmonics [2], whose parameters are the coefficients

weighting each spherical harmonic. Concerning the es-

timation of the parameters, there are also two strategies:

the first one is uses acoustic models for propagation and

acoustic sources, which enable to compute all the param-

eters of the model in simple cases; the second one con-

cerns the estimation of the parameters in real conditions,
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assuming that the knowledge of the sound field is lim-

ited to a finite number of measures obtained by a micro-

phone array, like in [3], [4], or [5]. It is this last category

of problem this article is concerned with. For this cat-

egory, while the number of measures available is finite,

the set of parameters to be estimated grows rapidly with

frequency, so that an exact solution exists only for the

lower part of the whole frequency bandwidth of sound

fields [5][6].

In this paper, an array processing is described to improve

the performance of sound field analysis. The processing

is based on the multidimensional Fourier transform. An

optimal analysis window, weighting the sampled sound

field, is designed with a criterion inspired by spectral

analysis based on prolate spheroidal wave sequences [7].

The first part of this article recalls some results concern-

ing the propagation of sound, and the multidimensional

Fourier transform. In the second part, spatial aliasing,

which inevitably occurs when using a microphone ar-

ray, is interpretated by the Fourier transform of the anal-

ysis window, which is composed from a mainlobe and

also from sidelobes. A method is proposed to design

an analysis window weighting the sampled sound field

in order to achieve the best localization possible in the

wave vector domain. The efficiency of the approach is

demonstrated in the next part using several geometrical

array configurations, and it is also shown that good per-

formance is achieved on the whole frequency bandwidth

of sound fields. Finally, some concluding remarks and

perspectives on this research are made.

2. SOUND FIELD ANALYSIS IN THE CONTINU-
OUS TIME-SPACE DOMAIN

Sound field analysis lies upon the study of the acoustic

pressure field p(r, t), granted that the acoustic pressure

is the relevant physical quantity our ear is sensitive to.

The purpose of this article is to perform an approximated

sound field analysis over an extended area, in order to re-

construct as accurately as possible the initial sound field

over the same relative domain, which does not need to

be located in the same place than the initial one, by a

subsidiary device, such as a loudspeaker array. An effi-

cient analysis tool is the multidimensional Fourier trans-

form, which expands the sound field as a superposition of

plane waves. The physical background is introduced in

a first part, then some points about the four-dimensional

Fourier transform are remembered.

2.1. Physical background

In a domain empty of sources, the sound field is assumed

to obey the following second order hyperbolic partial dif-

ferential equation [8]:

∇2 p(r, t)−
1

c2

∂ 2 p(r, t)

∂ t2
= 0 (1)

The Fourier transform of the above equation, as defined

by relation (7), yields:

(

|k|2 −
ω2

c2

)

P(k,ω) = 0 (2)

Thus, if there are no sources inside the domain of inter-

est, nontrivial solutions are obtained only if the disper-

sion relationship is verified:

|k|2 =
ω2

c2
(3)

Possible solutions to the wave equation (1) are the plane

waves exp [i(k · r+ωt)] verifying the dispersion rela-

tion (3).

2.2. Mathematical background

Consider the sound field p(r, t) as an element of the set

of the tempered distributions of R
4, noted S

(

R
4
)

there-

after. This is the most proper set to deal with the four-

dimensional Fourier transform that will be introduced

later. The set of the tempered distributions S
(

R
4
)

is

supplied with the following inner product:

< f |g >=
∫∫∫∫

(r,t)∈R4
f (r, t)g(r, t)d3

rdt (4)

where g has to be an element of the dual set of the

tempered distributions S ′
(

R
4
)

, that is g is an infinitely

smooth function of R
4, which is polynomially bounded

with all of its derivatives. The quadruple integral is a

mathematical abuse, when dealing with distributions, but

is physically convenient for the purpose of this article.

Consider now the family of plane waves:

ψk,ω (r, t) = exp [i(k · r+ωt)]
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with (k,ω) ∈ R
4. This is an orthogonal set from equa-

tion (5), which is moreover complete because of the com-

pleteness relationship (6):

< ψk1,ω1
|ψk2,ω2

> = (2π)4 δ (k1−k2)δ (ω1−ω2) (5)

δ (r− r0)δ (t − t0) =

1

(2π)4

∫∫∫∫

(k,ω)∈R4
ei[k·(r−r0)+ω(t−t0)]d3

kdω (6)

From the two above equations, we can say that any

sound field belonging to S ′
(

R
4
)

can be expanded onto

the plane waves basis. The associated analysis oper-

ator is nothing else than the four-dimensional Fourier

transform[9], or plane wave decomposition:

P(k,ω) =
∫∫∫∫

(r,t)∈R4
p(r, t)e−i(k·r+ωt)d3

rdt (7)

The sound field can be perfectly reconstructed in a least-

square sense from the knowledge of the Fourier trans-

form P(k,ω) for all (k,ω) ∈ R
4, by using the synthesis

operator, which is the inverse four-dimensional Fourier

transform:

p(r, t) =
1

(2π)4

∫∫∫∫

(k,ω)∈R4
P(k,ω)e+i(k·r+ωt)d3

kdω (8)

Another important result is the Parseval-Plancherel re-

lation, which only applies if f and g are elements of

L 2
(

R
4
)

:

< f |g > =
1

(2π)4

∫∫∫∫

(k,ω)∈R4
F (k,ω)G(k,ω)d3

kdω

= < F ( f )||F (g) >=< F ||G > (9)

where F and G are the Fourier transforms of f and g.

This states that the Fourier transform is an isometry.

The sound field model that will be used throughout this

article is the knowledge of the Fourier transform of the

sound field. At first sight, this requires the knowledge

of P(k,ω) for all (k,ω) ∈ R
4. But this initial set of pa-

rameters can be firstly reduced to the subset specified by

the dispersion relationship (3). And it can be further re-

duced assuming that the soundfield is bandlimited in the

frequency band |ω|< Ω, and thus also in the wave vector

domain inside the sphere of radius |k| < Ω/c = K.

3. PRACTICAL ESTIMATION OF THE PARAME-
TERS

The parameters of the sound field model are perfectly

known only in theoretical cases, such as sound fields ra-

diated by point sources, with monopole or more com-

plex directivity functions. The topic of this article is the

estimation of the parameters associated to the model un-

der practical conditions, where only a finite number of

measures is available, provided usually by a microphone

array of N elements. Unfortunately, even if the set of

parameters has been reduced by taking into account the

remarks made in the last paragraph, it is still an uncount-

able set of parameters of infinite dimension. Granted that

only N spatial measures are available, an exact estima-

tion of these parameters is impossible. The finiteness of

the microphone array inevitably introduces spatial alias-

ing, which is the topic of the next paragraph. Some pro-

cessing is introduced at section 3.2 to perform an approx-

imate estimation of the parameters.

3.1. Spatial aliasing

The only available sound field to be analyzed is the sam-

pled version of the original one. In this article, the

problem of spatial sampling is considered, and the time

sampling is supposed to be perfectly controlled. In-

deed, perfect reconstruction of time-sampled signals is

achievable in practical conditions, granted that the sam-

pling frequency is minimum twice of the maximal fre-

quency present in the signal of interest. If the same

conditions are imposed to spatial sampling, it would re-

quire a density of 2.2 106 sensors per m3 uniformly

distributed in the cartesian coordinate system, assuming

that the wavenumbers are limited to the domain |k| <
2π.22050/340: this is unrealistic in practical considera-

tions.

The spatially sampled sound field is given by the follow-

ing relation:

psam (r, t) =
N

∑
n=1

V wnδ (r− rn) p(r, t) = w(r, t) .p(r, t)

(10)
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where V is a volume of normalization, and wn is a

weight, so that w(r, t) is a finite discrete analysis win-

dow, without dimension.

The Fourier transform —which is used as the sound

field model— of the sampled sound field is linked to the

Fourier transform of the original sound field by the rela-

tion:

Psam (k,ω) = W (k,ω)?4 P(k,ω) (11)

where ?4 denotes the symbol of the convolution product

along the four dimensions. Indeed, the simple product

is transformed into a convolution product by the Fourier

transform.

The condition of non aliasing is that the restriction of

W (k,ω) to the domain defined by ω < 2Ω, |k| < 2K is

identical to δ (k)δ (ω). Otherwise, spatial aliasing oc-

curs. This is typically the case under real conditions, be-

cause of the finiteness of the array. Indeed, the Fourier

transform of the analysis window is then made up with

a main lobe whose spread indicates the resolution of the

measure and also with sidelobes.

3.2. Optimal estimation of the parameters

In this article, we want an estimator of the Fourier trans-

form evaluated at a given point P̂(k0,ω0), and we impose

it to be independent of the sound field being analyzed

p(r, t). Granted that the sound field satisfies the dis-

persion relationship, it is relevant to apply spatial analy-

sis in frequency subbands, and ideally in monochromatic

cases. In this case, the dispersion relationship gives an a

priori location on the region of the spatial spectrum being

excited, which is the sphere of radius k0 = |ω0|/c. This

enables to drop the frequency dependency of the four-

dimensional Fourier transform, and to only consider the

three-dimensional spatial Fourier transform, for a given

pulsation ω0. As mentionned before, the weights wn

are the only degrees of adjustment of the analysis sys-

tem when the geometry of the array has been fixed. The

first possibility is to design an analysis window which

realizes a tradeoff between resolution and apodization,

which has already been investigated in [10]. The corre-

sponding analysis window is designed independently of

the Fourier atom ψk0
being analyzed. The other possibil-

ity is to use different weights wn according to the wave

vector k0 of interest. Indeed:

P̂(k0) = < wk0
p|ψk0

>=< p|wk0
ψk0

>

= < P||F
(

wk0
ψk0

)

> (12)

The atom ψk0
is not localized in the space domain, but is

well localized in the wave vector domain. On the other

hand, the element wk0
ψk0

is localized in the space do-

main, so that it is no longer localized in the wave vector

domain. So, it seems relevant that the weights wn (k0)
have to be chosen in order to achieve the best localiza-

tion possible in the wave vector domain.

In the following F
(

wk0
ψk0

)

is noted Wk0
Ψk0

but is dif-

ferent from the product of the two Fourier transforms

taken separately. The statement of the last paragraph

stands as a basis idea to design the weights wn(k0), so

that it maximizes the following ratio:

λ =

∫∫∫

k∈S(k0,kres)
|Wk0

Ψk0
(k) |2d3

k
∫∫∫

k∈C(0,|k0|,kres)
|Wk0

Ψk0
(k) |2d3k

(13)

where S(k0,kres) is the sphere centered on k0 with ra-

dius kres, and where C(0, |k0|,kres) is either the volume

delimited by the two spheres with center O and of radii

|k0|−kres and |k0|+kres if |k0|> kres, or only the sphere

of radius |k0|+ kres otherwise. Thus, the numerator rep-

resents the energy of the spatially sampled Fourier atom

ψk0
contained in the sphere of radius kres surrounding

the wave vector of interest k0, whereas the denomina-

tor is the total power in a spherical crown of radius |k0|.
Granted that at pulsation ω0, the spectrum P(k,ω0) is

supposed to be excited inside this crown, the weights

wn(k0) which maximize λ minimize the interference be-

tween the truncated Fourier atom and the spectrum of

the sound field being analyzed. The criterion (13) is in-

spired by spectral analysis based on prolate spheroidal

wave functions [11].

The Fourier transform of the truncated Fourier atom

Wk0
Ψk0

is given by the following relation:

Wk0
Ψk0

(k) =
N

∑
n=1

V wnei(k0−k)·rn (14)

= wHs

with w = [w1, . . . ,wN ]T

and s = V

[

ei(k0−k)·r1 , . . . ,ei(k0−k)·rN

]T
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where subscript H denotes conjugate transposition.

From the above equation (14), we deduce the following

matrix formulation for equation (13):

λ =
wH

[

∫∫∫

k∈S(k0,kres)
s sHd3

k

]

w

wH
[

∫∫∫

k∈C(0,|k0|,kres)
s sHd3k

]

w
(15)

=
wHS resw

wHS totw

with S res(m,n) =
∫∫∫

k∈S(k0,kres)
V

2ei(k0−k)·(rm−rn)d3
k

with S tot(m,n) =
∫∫∫

k∈C(0,|k0|,kres)
V

2ei(k0−k)·(rm−rn)d3
k

The above problem is equivalent to resolve the general-

ized eigenvalue problem [11]:

S reswi = λiS totwi (16)

There are N eigenvalues of this problem, and the maxi-

mal one is the solution of the optimization criterion (13).

4. PERFORMANCE OF THE ESTIMATION

In this part, several configurations of microphone ar-

rays are investigated, such as bi-dimensional and tri-

dimensional microphone arrays. The efficiency of the

criterion introduced in part 3.2 is shown, and the per-

formance are compared to uniform analysis windows.

Moreover, the performance are compared on the global

bandwidth of sound signals, that is between the range

20Hz−20kHz.

4.1. Influence of the array geometry

Two kinds of array are compared in this paragraph: the

first one is a bi-dimensional array constituted of 5 cir-

cular arrays having 10 elements each for several radii

logarithmically-spaced between 0.01− 1m, plus an ad-

ditional sensor at the origin [10]; the second one is a tri-

dimensional array constituted of several Platonic solids

—in this order, an octahedron, a dodecahedron, an isoc-

ahedron, a cube and a tetrahedron, which are the only

regular meshes of the sphere— inscribed in a sphere of

a given radius, for several radii logarithmically-spaced

between 0.01− 1m, plus an additional sensor at the ori-

gin. Both arrays have 51 elements. The interest of using

several subarrays with different radii is that each one is

adapted for a given frequency band. Indeed, it seems rel-

evant that an array with radius R is a good choice to an-

alyze wavelengths of the same order of magnitude, and

implicitly, with the dispersion relationship, is dedicated

to a particular frequency band. So the use of multiple

radii is to improve the performance of the global array

along the whole frequency bandwidth of sound fields.

Figure 1 represents the performance —evaluated by

the criterion introduced at equation (13)— achieved

by the two array configurations for uniform and opti-

mal analysis windows, using the following parameters

k0 (ω0) = [ω0/c,27π/180,27π/180] in spherical coor-

dinates, for several values of f0 spanning the entire band-

width 20Hz − 20kHz. It is seen that optimal analysis

windows computed by (16) outperform uniform analy-

sis windows for the two arrays. Moreover, the use of

a tri-dimensional array gives better results than the bi-

dimensional array up to 10kHz: tri-dimensional arrays

have better discrimation capabilities than bi-dimensional

arrays. The crossing of the two curves around 10kHz

is linked to the fact that 10 microphones are used in the

subarray of radius 0.01m in the bi-dimensional case com-

pared to the 6 vertex of the corresponding octahedron in

the tri-dimensional array.

Fig. 1: Criterion (13) evaluated for two array configu-

rations, bi-dimensional and tri-dimensional, for optimal

and uniform analysis windows, versus frequency, with

k0 (ω0) = [ω0/c,27π/180,27π/180]
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4.2. Comparison between several estimation
methods

In this paragraph, we are interested by the rep-

resentation of the modulus of the Fourier trans-

form of a sampled plane wave, with the fol-

lowing parameters: f0 = 2039Hz and k0 =
[ω0/c,27π/180,27π/180] in spherical coordinates.

The first representation plots ψsam
k0,ω0

(k0,φk,θk,ω0), in a

similar manner than a directivity diagram extended to

three dimensions. The second representation plots the

modulus of the Fourier transform, mapping the sphere

on a rectangular grid, in decibels.

The Fourier transforms of the sampled plane wave using

uniform analysis windows are represented on figures 2

and 4 for the bi-dimensional and tri-dimensional array

respectively. And the Fourier transforms of the sampled

plane wave using optimal analysis windows are repre-

sented on figures 3 and 5.

Fig. 2: Fourier transform of the sampled plane wave with

uniform weighting for bi-dimensional array

It is seen that better resolution is obtained using

uniform analysis windows. On the other hand,

the sampled plane wave is very badly localized in

the wave vector domain using uniform analysis win-

dows compared to optimal analysis windows, because

there are many high-level sidelobes. Optimal analysis

windows achieve the best tradeoff between resolution

and rejection of the sidelobes.

An interesting observation is that the Fourier

transform of the sampled plane wave us-

Fig. 3: Fourier transform of the sampled plane wave with

optimal weighting for bi-dimensional array

ing the bi-dimensional array (figures 2

and 3) is symmetric with respect to the plane (Oxy),
confirming the fact that no distinction between up and

down is possible using this kind of array.

Fig. 4: Fourier transform of the sampled plane wave with

uniform weighting for tri-dimensional array

The best performance of focalization of the power

inside the main lobe, 33%, is obtained at this fre-

quency using the optimal analysis window with the tri-

dimensional array described at section 4.1. This con-

figuration minimizes the spatial aliasing between the

wave vector of interest k0 and the sound field being ana-

lyzed so that its integration as a part of a spatial analysis
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processing module is very well indicated.

Fig. 5: Fourier transform of the sampled plane wave with

optimal weighting for tri-dimensional array

5. CONCLUSION

In this paper, it has been shown that a microphone array

introduces inevitably spatial aliasing. It has been linked

to the Fourier transform of the analysis window, which is

composed of a mainlobe and also from sidelobes, which

are very undesirable for spatial analysis purpose. This

Fourier transform depends on the geometry of the array,

and also from the weights applied to each element of the

microphone array. Granted that the sampled sound field

is localized in the space domain due to the microphone

array, it is no longer localized in the wave vector domain.

So, the method of design of the optimal analysis window

has been made in order to achieve the best localization

possible in the wave vector domain, with respect to a par-

ticular wave vector. The efficiency of the approach has

been demonstrated compared to uniform analysis win-

dows. The sound field analysis presented in this paper

enables also the analysis of high frequencies, contrary to

traditional analysis methods.
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