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ABSTRACT

In this paper, we present the derivation and investigation of analyti-
cal expressions for the loudspeaker driving signals for higher order
Ambisonics. The approach relies on the assumption of a continuous
distribution of secondary sources on which sampling is performed to
yield the actual loudspeaker signals for real-world implementations.
For source-free volumes enclosed by the secondary source distri-
bution, this formulation of Ambisonics leads to what is known as
simple source approach. Since the simple source approach is theo-
retically well documented, we will depart from it and concentrate on
the special case of a circular distribution of secondary point sources
and derive analytical expressions for the driving signals. We fur-
thermore derive a closed-form expression for the actual reproduced
wave eld for the circular secondary source distribution.

Index Terms— Spatial audio, Ambisonics, simple source ap-
proach, spherical harmonics, audio reproduction in a plane

1. INTRODUCTION

Higher order Ambisonics (HOA) is a sound reproduction technique
that utilizes a large number of loudspeakers to physically recreate a
wave eld in a speci c listening area. Since the so-called near- eld
correction has been introduced in [1] accurate versatile reproduc-
tion is possible. The desired wave eld is typically described via its
spatial harmonics expansion coef cients [2]. These can be yielded
either from appropriate microphone recording techniques which uti-
lize a Fourier series representation of the recorded signals [3] (data-
based rendering) or virtual sound scenes may be composed of vir-
tual sound sources whose spatial harmonics expansion coef cients
are derived from analytical source models (model-based rendering).
In this paper we will concentrate on the latter case.
The typical Ambisonics approach is based on the assumption of a

nite number of discrete loudspeakers whose emitted wave elds
superpose to an approximation of the desired one. The concept of
modeling a continuous loudspeaker distribution has been brie y pre-
sented by the authors in [4] for the investigation of spatial aliasing
in two-dimensional higher order Ambisonics and will be further ex-
tended in this paper. The theoretical basis is the so-called simple
source approach [5] which has gained only little attention in conjunc-
tion with spatial audio reproduction. We will limit our derivations to
the rendering of virtual plane waves since a suitable superposition of
plane waves can be used to represent arbitrary wave elds.

1.1. Nomenclature

Our Ambisonics approach implicitly includes the near- eld correc-
tion [1]. When we speak of Ambisonics in the remainder of this
paper, we thus implicitly mean what is typically referred to as near-

eld corrected higher order Ambisonics (NFC-HOA). In the contin-
uous case we will not refer to loudspeakers but rather to secondary

sources, and also to secondary source driving functions rather than
to loudspeaker signals.
The following notational conventions are used: For scalar variables
lower case denotes the time domain, upper case the temporal fre-
quency domain. Vectors are denoted by lower case boldface. The
three-dimensional position vector in Cartesian coordinates is given
as x = [x y z]T . The Cartesian coordinates are linked to the
spherical coordinates via x = r cos α sin β, y = r sin α sin β,
and z = r cos β. α denotes the azimuthal angle, β the elevation.
Confer also to gure 1. The acoustic wavenumber is denoted by k.
It is related to the temporal frequency by k =

∣∣ ω
c

∣∣ with ω being the
radial frequency and c the speed of sound.
Outgoing monochromatic plane and spherical waves are denoted

by e−ikT
pwx and e−ikr respectively, with kT

pw = [cos θpw sin φpw

sin θpw sin φpw cos φpw] and (θpw, φpw) being the propagation di-
rection of the plane wave. i is the imaginary unit (i =

√−1).
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Fig. 1. The (spatial) coordinate system used in this paper. In the
wave number domain k corresponds to r, the angle θ corresponds to
α, and φ corresponds to β.

1.2. Mathematical preliminaries

This section provides a summary and reference of the mathematical
tools employed in the remainder of this paper. We refer the reader to
[5, 6] for a more thorough treatment.
One of the basic tools we employ is the spherical harmonics expan-
sion

A(α, β, ω) =
∞∑

n=0

n∑
m=−n

Åm
n (ω)Y m

n (α, β) , (1)

whereby Åm
n (ω) denote the spherical harmonics expansion coef -

cients of the function A(α, β, ω). The spherical harmonics Y m
n (α, β)

are de ned as

Y m
n (α, β) =

√
(2n + 1)

4π

(n−m)!

(n + m)!
· P m

n (cos β) · eimα , (2)

with P m
n (·) denoting the m-th order associated Legendre polyno-

mial of n-th degree. Convolution on the surface of a sphere is de-
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ned as

A(α) = B(α) ∗sph C(α) =

∫ 2π

0

∫ π

0

B(α0)C(α−α0) sin β0dβ0dα0 .

(3)
For a spherical convolution like equation (3) applies

Åm
n = 2π

√
4π

2n + 1
B̊m

n · C̊0
n . (4)

In two dimensions, the analog to (1) is the Fourier series expansion

A(α, ω) =
∞∑

m=−∞
Åm(ω)eimα . (5)

Circular convolution is de ned as [7]

A(α) = B(α) ∗circ C(α) =

∫ 2π

0

B(α0)C(α− α0) dα0 . (6)

In that case applies

Åm = 2πB̊m · C̊m . (7)

2. THE AMBISONICS APPROACH

In the basic three-dimensional Ambisonics approach, the loudspeak-
ers of the respective reproduction system are located on a sphere
around the listening area. Both the desired wave eld as well as the
sound elds emitted by the loudspeakers are expanded into series of
orthogonal basis functions [8, 2]. This results in an equation sys-
tem that is solved for the optimal loudspeaker driving signals. These
drive the loudspeakers such that their superposed wave elds best
approximate the desired one in a given sense:

P (x, ω) =

N−1∑
n=0

D(xn, r0, ω) ·G(x,xn, ω) , (8)

where P (x, ω) denotes the desired wave eld, D(xn, r0, ω) the
driving signal of the loudspeaker located at the position xn = r0 ·
[cos αn sin βn sin αn sin βn cos βn]T , and G(x,xn, ω) its spatio-
temporal transfer function. Typically, numerical algorithms are em-
ployed to nd the appropriate loudspeaker driving signals. These
algorithms tend to be computationally costly and only little insight
into the properties of the actual reproduced wave- eld is gained.
The Ambisonics approach is usually divided into an encoding and
a decoding stage to allow for storing and transmission of content
independently from the loudspeaker setup. For ease of illustration
we will skip the encoding/decoding procedure and directly derive
the loudspeaker driving signals from the initial virtual wave eld de-
scription. Note that the extension of our approach for the encoding
and decoding of wave elds is straightforward. However, if only the
encoding procedure is considered, the same stability issues as in [1]
arise for which workarounds are given ibidem.

3. FROM AMBISONICS TO THE SIMPLE SOURCE
APPROACH

3.1. General outline

The formulation of the basic Ambisonics equation (8) for a contin-
uous secondary source distribution on a sphere whose center resides
in the coordinate origin reads

P (x, ω) =

∫
Ω0∈S2

R

D(Ω0, ω) ·G(x, Ω0, ω)dΩ0 , (9)

whereby Ω0 denotes the surface of the sphere with radius r0 on
which the secondary sources are located. The explicit integration
operation is

∫
Ω0

dΩ0 =
∫ 2π

0

∫ π

0
r0 sin β0dβ0dα0. When the spatial

transfer function of the loudspeakers is modeled as a spherical wave
with at temporal frequency response (thus making G(x, Ω0, ω) the
free- eld Green’s function) equation (9) essentially constitutes the
simple source approach for an interior problem in a spherical vol-
ume. The simple source approach for interior problems states that
the acoustic eld generated by events outside a volume can also be
uniquely generated by a continuous distribution of monopole sources
replacing these events and enclosing the respective volume [5]. The
proof that an arbitrary source-free wave eld can be recreated inside
the sphere (|x| < r0) according to (9) is given in [3]. Note that the
simple source approach does not pose any restrictions on the wave

eld in locations outside the sphere (|x| > r0).

3.2. Derivation of the driving function for a virtual plane wave

In this section we illustrate how wave eld reproduction according to
(9) and thus according to the simple source approach can be accom-
plished. We outline the procedure that yields the secondary source
driving function for rendering a virtual plane wave. Note that the
driving functions for any other kind of virtual source (point sources,
complex sources, etc.) can be derived accordingly.
Equation (9) can be interpreted as a convolution along the surface of
a sphere. From equation (4) we can thus deduct that

D̊m
n (ω) =

1

2π

√
2n + 1

4π

P̊ m
n (r, ω)

r0 · G̊0
n(r, ω)

. (10)

The wave eld of a plane wave with propagating direction (θpw, φpw)
can be expanded into its radial and angular dependencies around the
origin of the coordinate system as [9]

P (x, ω) = Ŝ(ω) · e−ikT
pwx =

=

∞∑
n=0

n∑
m=−n

Ŝ(ω) · 4π(−i)njn(kr)Y m
n (θpw, φpw)∗︸ ︷︷ ︸

P̊ m
n (r,ω)

Y m
n (α, β) ,

(11)

whereby Ŝ(ω) denotes the temporal spectrum of the plane wave and
jn(·) the n-th order spherical bessel function. Modeling the spatial
transfer function of a loudspeaker at position x0 ∈ Ω0 as the free-

eld Green’s function and expanding it into its radial and angular
dependencies leads to [9]

G(x,x0, ω) =
1

4π

e−ik|x−x0|

|x− x0| =

=

∞∑
n=0

n∑
m=−n

(−ik)jn(kr)h(2)
n (kr0)Y

m
n (α0, β0)

∗︸ ︷︷ ︸
G̊m

n (r,ω)

Y m
n (α, β) ,

(12)

with h
(2)
n (·) being the n-the order spherical hankel function of sec-

ond kind. Note that (12) is only valid for r ≤ r0.
Combining (1), (10), (11), and (12) yields

Dpw(α0, β0, r0, ω) = Ŝ(ω)×

× 4π
i

kr0

∞∑
n=0

n∑
m=−n

(−i)n

h
(2)
n (kr0)

Y m
n (θpw, φpw)∗Y m

n (α0, β0) .

(13)
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Equation (13) can be veri ed by inserting it into (9). After inter-
changing the order of summation and integration and exploiting the
orthogonality of the spherical harmonics one arrives at (11) which
completes the proof.

4. REPRODUCTION IN A PLANE

Ambisonics systems are frequently restricted to reproduction in the
horizontal plane. The secondary sources are arranged on a circle.
In this case, the propagation directions of the virtual plane waves as
well as the listening positions are bounded to the horizontal plane.
For this two-dimensional setup the free- eld Green’s function re-
quired by the simple source approach can be interpreted as the spa-
tial transfer function of a line source [5]. Implementations of Am-
bisonics systems usually employ loudspeakers with closed cabinets
whose spatial transfer function can be approximated by that of a
point source. This secondary source mismatch prevents us from
perfectly recreating any source-free wave eld inside the secondary
source array. We have to expect artefacts. This circumstance is also
a well treated problem in wave eld synthesis [10].

4.1. Derivation of the driving function for a virtual plane wave

For a planar circular distribution of secondary point sources equation
(9) degenerates to

P (x, ω) =

∫ 2π

0

D(α0, ω) ·G(x,x0, ω) r0dα0 . (14)

To bound our area of interest to the horizontal plane we set the ele-
vation angle β in all position vectors to π

2
. For circular geometries

the Fourier series expansion (cf. to (5)) constitutes a useful mathe-
matical tool. We therefore adopt the expansion of the loudspeaker
wave elds in (12) by exchanging the order of summations to arrive
at such a Fourier series expansion:

G(x,x0, ω) = −ik

∞∑
m=−∞

∞∑
n=|m|

jn(kr)h(2)
n (kr0)×

× Y m
n (α,

π

2
)Y m

n (α0,
π

2
)∗ =

∞∑
m=−∞

eim(α−α0)×

×
∞∑

n=|m|
(−ik)jn(kr)h(2)

n (kr0)
2n + 1

4π

(n−m)!

(n + m)!
P m

n
2(0)

︸ ︷︷ ︸
Λm(r,r0,ω)

. (15)

The according Fourier expansion of the plane wave eld yields

P (x, ω) = Ŝ(ω) ·
∞∑

m=−∞

∞∑
n=|m|

4π(−i)njn(kr)×

× Y m
n (α,

π

2
)Y m

n (θpw,
π

2
)∗ = Ŝ(ω) ·

∞∑
m=−∞

eim(α−θpw)×

×
∞∑

n=|m|
4π(−i)njn(kr)

2n + 1

4π

(n−m)!

(n + m)!
(P m

n (0))2

︸ ︷︷ ︸
Ψm(r,ω)

. (16)

Interpreting (14) as circular convolution and following the procedure
outlined in section 3.2 leads to

D2D
pw (α, r0, ω) = Ŝ(ω) ·

∞∑
m=−∞

Ψm(r, ω)

2πr0Λm(r, r0, ω)
eim(α0−θpw)

(17)
for the driving function for a plane wave with propagation direction
θpw. The radius r appears in the expression for the driving function
suggesting that (14) can only be satis ed for a single listening posi-
tion. This nding has already been derived in [11]. We thus have to
reference the reproduced wave eld to a point which is then the only
location where the reproduction is correct. Referencing the repro-
duction to the center of the circular secondary source array is most
favorable since this assures equal properties for all propagation di-
rections of the virtual plane wave.
Setting r = 0 in (17) leads to an unde ned expression of the form
0
0

for n �= 0 since spherical Bessel functions of argument 0 equal 0
∀n �= 0. We therefore apply de l’Hospital’s rule to yield a de ned
expression for r = 0 reading

D2D
pw (α0, r0, ω) = Ŝ(ω) ·

∞∑
m=−∞

2i

kr0

(−i)|m|

h
(2)

|m|(kr0)
eim(α0−θpw) .

(18)

4.2. Reproduced wave eld

We yield the actual reproduced wave eld by inserting (18) in (14)
as

Ppw(x, ω) = 2 · Ŝ(ω)

∞∑
n=0

jn(kr)h(2)
n (kr0)×

×
n∑

m=−n

(−i)|m|

h
(2)

|m|(kr0)
Y m

n (α,
π

2
)Y m

n (θpw,
π

2
)∗ . (19)

The real part and the absolute value of Ppw(x, ω) are depicted in
gures 2(a) and 2(b) for a virtual plane wave of f = 1000 Hz and

unit amplitude (Ŝ(ω) = 1) with propagation direction θpw = 3π
2

rendered by a continuous circular secondary source distribution with
r0 = 1.5 m. The angular bandwidth was limited to nmax = 40 for
the simulation. Both gures only display the wave eld inside the
secondary source distribution since (19) holds there only.
From gure 2(a) it can be seen that the wave fronts of Ppw(x, ω)
are indeed perfectly plane. Though, an amplitude decay of approxi-
mately 3dB per doubling of the distance is apparent when following
the propagation path of the plane wave. Figure 2(b) further illus-
trates this amplitude decay by depicting the absolute value of the
sound pressure in logarithmic scale.

4.3. Implementation

Real-world implementations of audio reproduction systems will al-
ways employ a limited number of discrete secondary sources. This
discretization constitutes spatial sampling and thus potentially pro-
duces spatial aliasing. The treatment of these artefacts is beyond
the scope of this paper. We refer the reader to [10] and [4]. In this
section, we comment on proper handling of the expressions for the
driving signals for a nite number of discrete loudspeakers.
Analysis of the dimensionality of the reproduced eld reveals that
the spatial bandwidth of the loudspeaker driving function can be spa-
tially truncated [12]. The most suitable choice is to use as many
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(a) �{Ppw(x, ω)} (b) 20 · log10 |Ppw(x, ω)|
Fig. 2. Sound pressure Ppw(x, ω) of a continuous circular distribution with radius r0 = 1.5 m of secondary monopole sources rendering a
virtual plane wave of f = 1000 Hz and unit amplitude with propagation direction θpw = 3π

2
referenced to the coordinate origin.

orders as secondary sources, thus

D2D
pw (α0, r0, ω) = Ŝ(ω) ·

L−1
2∑

m=−L−1
2

2i

kr0

(−i)|m|

h
(2)

|m|(kr0)
eim(α0−θpw) ,

(20)
with L being an odd number of loudspeakers. For even L the limits
of the summation in (20) have to be set accordingly.
The reproduced wave eld of such a circular equiangular distribution
of 56 secondary monopole source rendering the same virtual plane
wave as in gure 2 is depicted in gure 3. The driving function is
spatially limited according to (20).
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Fig. 3. �{Ppw,s(x, ω)} of a circular distribution with radius r0 = 1.5
m of 56 monopole point sources rendering the virtual plane wave
from gure 2. The marks indicate the secondary source positions.

5. CONCLUSIONS

In this paper, a formulation of the Ambisonics approach assuming
a continuous distribution of secondary monopole sources was pre-
sented. In the case of a volume enclosed by the secondary source
distribution, this formulation lead directly to the simple source ap-
proach, thus providing the physical justi cation for Ambisonics to
recreate arbitrary source-free wave elds. We furthermore presented
analytical expressions for the secondary source driving signals of a
spherical distribution when rendering a virtual plane wave.
We then concentrated on the special case of a circular distribution
of secondary point sources and investigated its properties when ren-
dering a virtual plane wave. It turned out that the departure from

the physical fundament of the simple source approach indeed intro-
duces artefacts, i.e. an amplitude decay of approximately 3dB per
doubling of the distance in direction of the propagation of the virtual
plane wave. Finally, we commented on proper handling of the ex-
pressions for the driving functions in real-world implementations.
Contrary to the traditional Ambisonics approach, our approach pro-
vides the capability to analytically derive the actual reproduced wave

eld. This facilitates the investigation of the consequences of an
insuf cient loudspeaker layout which occurs in real world imple-
mentations (spatial sampling, incomplete spherical arrangements).
Furthermore, no inverse matrix computations or solving of equation
systems (as e.g. in [3, 11]) are necessary. The advantages in terms
of computational complexity still have to be investigated. Finally,
there are no stability issues for incomplete loudspeaker setups as in
the traditional approach.
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