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General Metatheory of Auditory Locallsatlon

Michael A. Gerzon

Technical Consultant, 57 Juxon St., Oxford OX2 6DJ, U.K.

Abstract

This paper presents a general metatheory (theory of theories)
of directional sound localisation suited to the design of

directional sound reproduction systems using loudspeakers.

It is shown that any theory of localisation can be

expressed as a composite of "primitive" component theories
based on three hierarchies: degree of nonlinearity, order

of spherical-harmonic directionality, and degree of use of

head movement. These component primitive theories are
mathematically tractable for design purposes. An appendix

illustrates applications of the metatheory to previous
models for stereo localisation.

O. Author's Note

This paper on the basic theory of auditory localisation aimed at

designing directional loudspeaker reproduction systems was originally
written in 1976/7, under the cumbersome title "The Rational Systematic

Design of Surround Sound Recording and Reproduction Systems. Part I.
General Theory of Directional Psychoacoustics and Applications".

This paper was circulated (with slight editing of the
diametric decoder theorem, which was the subject of U.K. Patent
2,073,556 filed in ]980) at that time to the FCC and EBU as part

of technlcal submissions by the British N.R.D.C. on technical

standardisation proceedings on "quadraphonic" systems. Although

copies have also been circulated to individuals, the paper has never
been available in the open literature.

The original paper was the first part of a massive three-part paper
which described the detailed design procedure of Ambisonic encoding

and decoding systems, and many of the results of this paper have
been applied to conmlercial ambisonic decoders. Although some of the
detailed technical references in the paper may be somewhat "dated", the

contents of the paper remain relevant to the design of directional

sound reproduction systems, and not merely to those that are "ambisonic".
References [4l] to [4?] are recent examples of technical papers that
have made use of the results of this paper, and it is its continuing

relevance to contemporary work that has prompted the formal

publication of this work.

Apart from changing the ending of the "Conclusions" section to make it
relevant to current work, the paper is exactly as written in the 1970's,

since I feel that attempts to "update" the paper would not significantly

improve on the original presentation.
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1. INTRODUCTION

Hitherto, the design of surround sound systems has been a

"black art" rather than a systematic procedure. Generally (and the

author does not exclude his own early work), the procedure has been

to juggle with the mathematical patterns of speaker feeds until they

satisfy some pattern considered nice or plausible by the designer,

and possibly to back up this by poorly-defined "psychoacoustic" rules-

of-thumb that had little general predictive value, and often based on

either little hard experimental evidence, or on an extreme extrapo'lation

of results obtained under a limited set of test conditions. Of these

heuristic system designs, possibly the most successful '[1] (at least

in surround reproduction performance) was the UMX system of Cooper and

Shiga [2], which was based on requiring a rotational invarience of

mathematical properties, and backed up by Makita's localization criterion

which sometimes (but not always) gives moderately good predictions.

A number of papers have appeared, of various degrees of

sophistication [3],[4],[5],[6],[33] attempting to explain various

aspects of directional psyehoaeousties as it pertains to surround sound

reproduction. The present paper lays the foundations required for a

systematic design of complete surround sound systems. Since the aim

of such systems is (or should be) to produce a reliable and convincing

illusion to domestic listeners of the intended encoded directional

effect [7], it is essential to begin such designs with a reliable and

mathematically tractable theory of human directional psyehoacoustics.

It is evident that until one knows what information needs to he presented

at the listener's ears, no rational system design can proceed.

(Historically, it is interesting that modern 2-speaker stereo was

designed backwards from the ears of the listener by Blumlein in 1931 [8]).
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This paper presents for this purpose a novel approach to

directional psychoacoustics. Much of the philosophy and theory was

described in nonmathematical form in a previous paper [6] of the author,

and the mathematically less sophisticated reader will find this an ideal

preparation for this paper. Essentially, the novelty of this work lies

in three important features:

(i) It is assumed that the ears have no single method of localizing

sounds, but that many different methods are used. In the case that not

all methods give the same results, it is supposed that the ear takes

some sort of "majority decision", except when a complete conflict of

cues is heard when the localization will also be confused.

(ii) A "metatheory" (i.e. theory of theories) of directional psychoaeoustics

is developed that in principle allows arbitrary complex methods of sound

localization to be expressed in terms of a heirarchy of relatively simple

"primitive" theories, rather as in applied mathematics one might approximate

a complicated function by a sum of much simpler polynomial terms. It is

not suggested that the "primitive" theories themselves necessarily describe

the way or ways the ears localize sound, but that if the various

requirements for accurate localization demanded by "primitive" theories

are satisfied, then the likelihood of correct localization by the ears'

actual localization mechanisms is greatly increased. In general, the more

"primitive" requirements are satisfied, the more reliable will be the

localization heard, and the degree to which various "primitive" theories

fail to be satisfied may be used to describe various qualities of faulty

localization.

(iii) A great simplification in the theory is obtained by treating the

ears as a "black box" responding to an incident sound field, and by not

attempting to describe the internal mechanisms in the ears and brain
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responsible for the black box behaving in the way it does. For engineering

purposes, it is clearly sufficient to know how the ears respond, and net

necessary to know why. In fact, a number of the "low degree low order"

primitive models described in this paper may be filled out with great

detail involving computing acoustic waveform arrivals at the ears, as is

done by Clark Dutton and Vanderlyn [9], Makita [10] and Tager [11],

among others [5],[12],[13]. However, a comparison of the computations

in [5_,[9]-_11_ with the corresponding black box theory of this paper

shows that the same results can be deduced with very much simpler

mathematics by the process of ignoring the inner workings of the ears.

While the resultant theory looks much more "abstract", it is much more

amenable to complicated design calculations and more accessible to

intuition because of its fundamental simplicity. Some physical idea of

how this black box approach works is described in [6] with especial

reference to its figure 1.

We lay emphasis on theory being "simple" and "tractable"

(which is not the same as "elementary" or even "easy")_ since our aim

is more ambitious than merely to be able to analyse an already-designed

encode/decode system. The design of encoders and decoders involves

tens or hundreds of parameters, all of which can be varied. There is

clearly little chance of ending up with a near-optimal design (especially

if the number of criteria of goodness used is also large) if one relied

on guesswork in choosing designs. Even with large-scale computing

facilities, it is virtually impossible to evaluate and optimise systems

with more than about 7 or 8 free parameters. Therefore, to do better

than this, the mathematics of the psyehoacoustic theory must be of such

a form that there are general mathematical results (Theorems) that

permit a drastic reduction in the number of parameters that need to be
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considered. The "diametric decoder theorem" later in this paper is an

example of a result that reduces the number of parameters to be considered.

(That theorem describes mathematical relationships between speaker feed

signals that ensure automatically that more than one localization criterion

is satisfied). A more extreme example of reduction of parameters is

discussed in part III of this series of papers, whereby we shall show

how to optimise the whole encode/decode system by reducing the problem

to a 4-parameter problem.

Thus, precisely because the design of decoders would otherwise

be too hard a problem to solve, the style of these papers is mathematical.

Readers who only wish to understand the physical ideas behind this

mathematical approach are referred to [6]. However, we do make some attempt

at not burdening the reader with more formalism than he needs for

engineering design tasks. An exception is the section below dealing with

the heirarchical metatheory of directional psychoacoustics. This is

because we owe the reader some general background to explain what would

otherwise seem an arbitrary choice of models of directional hearing.

No claim is made that theory d_scribed in this paper is good

for all possible applications. Without considerable extension or modification,

the theory is unsuitable for dealing with ambient sounds and with the

effects of inter-speaker time delays. Such aspects will be considered

in part in subsequent papers.

It is an essential feature of the psychoacoustic metatheory of

this paper that it includes as special cases the theories of auditory

localization pursued by a large number of previous authors, such as

[3]-[5],[8]-[16]. In Appendix I, we describe briefly how previous theories

may be incorporated into the present one, and discuss applications to

2-speaker stereo localization.



The theory in this paper is presented in a form that may be

applied either to horizontal-only or with-height reproduction. Although

the presentation would have been somewhat simplified by not including

the with-height case, we believe that the methods described in this

paper and in subsequent parts makes with-height (periphonic [17])

reproduction of sound an entirely practical proposition, and there

seemed to be a strong case for advancing the sound reproduction art

further by making this information available.

Some difficulties of reading this paper arise because its

conceptual framework is not entirely conventional (so that explanations

of concepts require careful thought of the reader), and yet has to be

expressed in somewhat complex mathematical form in order to do computations.

The notations used have not been made so abstract that the statement and

proof of results becomes very short but difficult to 'see through'

physically, but involve sufficient abstraction not to make all the

results totally unwieldy. Some use (explained in the text) has been

made of simpletensor notations where this is of some assistance, notably

in the so-called "cross-bispectral" models.

The first-time reader is advised to skim through to get the

'gist' rather than to get bogged down in details that he might not need

for his purposes. In particular, of all the classes of models considered,

the velocity and energy models are the most important, and others may

be omitted on first reading. The writing-out of the various equations

for familiar decoders (e.g. BMX and TMX decoders [2]) is auseful aid

to understanding the significance of the mathematics given, and is

recommended.



/

2. CONVENTIONS

It is convenient to describe some general aspects of notation

and some general assumptions adopted in this paper, for ease of

reference.

We set up (x,y,z) axes in space that are rectangular cartesian

coordinates centred upon the listener, with the x-axis pointing forward,

the y-axis leftward and the z-axis upward. Thus, for example, the

horizontal plane is the x-y plane, and a loudspeaker placed at azimuth

measured anticlockwise from due front (the x-axis) at a distance d from

the listener has coordinates (x,y) = (dcos_,dsin_). All azimuth angles

are measured anticlockwise from due front, and symbols involving _ will

represent the azimuths of reproducing speakers, whereas those involving

e will represent the apparent azimuths of recorded sounds.

It is assumed in this paper (Part ! only) that all loudspeakers

are placed at an identical distance d from the listener, so that identical

sounds emitted from all speakers reach the listener at the same time and

with %he same amplitude. Unless otherwise specifically stated, it is

assumed that the distance d is large, so that the wavefronts from the

loudspeakers arrive at the listener in the form of a plane wave. Although

such a restriction is not fundamental, it simplifies the theory to

consider a sound field as resulting solely from a finite number of

infinitely distant point sources. As we shall see, it is possible to

remove this restriction by subsequent simple modifications, and this

order of doing things is much easier than the opposite one of starting

with the greatest generality and then restricting to special cases.

Speaker feed signals, and signals from which they are matrixed,

are indicated by sans-serif letters, which are usually capitals, and

the corresponding signal gains for individual encoded sounds are
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indicated by the same letters in ordinary type-face. Thus LB,LF,RF,RB

represent signals fed to left-back, left-front, right-front and right-

back speakers, and LB,LF,RF,RB represent the corresponding (generally

complex) signal gains. The symbol j=/-1 is used to indicate a +90 o

relative phase shift (Hilbert transform) when applied to signals and

to indicate /-1 when applied to signal gains, as usual. The letters

×,Y,Z or x,y,z are used to indicate signals associated with the components

o_ sound field velocity in the respective directions of the x,y and

z-axes, and in particular we let x ,y,z indicate signals with

sounds encoded with respective gains x,y,z where x2+y 2 2=1+z and (x,y,z)

is a vector pointing towards the intended direction of the encoded sound.

Thus a sound from azimuth G in the horizontal plane has x=cosG, y=sin8,

z=0, and a sound from azimuth G and elevation n above horizontal has

x=cosecosn, y=ain6cosn, z=sinn. (x,y,z) is termed the direction cosines

of the direction of the vector. The symbol 1 is used to indicate a

signal with all sounds encoded with the uniform gain 1, and the letter

W is used in connection with signals representing reproduced sound field

pressure. The letter P is used to indicate general speaker feed signals.

The letter t is used to indicate time, c the speed of sound,

F frequency and t0=2%F angular frequency. For complex numbers u+jv, we

$
use the symbols Re, Im and as follows:

$
Re(u+Jv) = u , Im(u+jv) = v , (u+Jv) = u-jr

In some of the paper, we find it convenient to write vectors

in the form x p = (xl,x2,x3) rather than in the form (x,y,z). The

superscript here (which is written as p or q when any coordinate is

considered, where p,q=1,2,3) should not be confused with a power or

exponent, but is Just a coordinate index. Capital letter subscripts

are invariably not intended to stand for numbers, and we occasionally



(and with warning) use the Einstein summation convention whereby

repeated superscripts or subscript in a product are intended to be

added over all possible values of the repeated superscript or

subscript.
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3. HEIRARCHIES OF MODELS

The models of directional localization that we shall consider

are graded in order of complexity in 3 different ways. The first parameter

describing the heirarchy of models describes the degree to which the

model is nonlinear. Thus a linear model is "first degree", a quadratic

or correlat.ion model is "second degree", a cubic cr bispectral model

is "third degree", etc. The second parameter describing the place of a

model in the heirarchy is the order of directionality, i.e. the order

of the spherical harmonics in direction to which the model reponds.

Thus a zeroth order model is non-directional, a first order model responds

to vector aspects of directionality, etc. The third parameter describes

the degree to which head-movement is taken into account by the model,

i.e. whether the model supposes the head to be stationary, in an

arbitrary orientation, or some intermediate situation. We now describe

each of these heirarchies in more detail, and then put them together.

(i) Nonlinear Heirarchy.

Under certain conditions, a nonlinear operator N acting on n

input signals fi(t) (i=l,2,...,n) will produce an output signal that may

be expressed in the general form of a Volterra Series [18],[19] via

N{_(t)} = _ f... f kil ' iD(t-t 1 ..... t-tD)fil(tl)...fiD(tD) dtl...dt DD=0 D-fold ''

where we use the Einstein summation convention of summing over all

possible values of the indices il,...,iD, , and where for each set il...i D

of indices, k. is a function of D time variables known as the

ll...i D

Volterra kernel. In the special case D=i, ki(t) is the ordinary convolution

kernel of a linear system, and in general, the D'th term of the Volterra

series describes a nonlinearity of D-th degree in the input signals.
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By taking each term separately_ we may consider a model of D-th degree

nonlinearity. For example, if the ears respond via

N{_(t)) = f{fl(t)2+...f (t)2}dtn

which is the total energy of the signal, the model would be quadratic,

i.e. of degree D=2. Similarly, a model with D=3 is termed cubic. Most

models considered in the literature are either essentially linear

([4]-[6],[8]-[13],[15],[16]) or essentially quadratic ([3],[6],[14],[20]).

(ii) Directional Heirarch¥

The ears as a system may be considered as responding to a function

of direction. (This function may be sound waveform amplitude in a linear

theory, sound energy in a quadratic theory, and more complicated quantities

in a D-th degree theory). The degree to which the polar diagrams describing

the reception of the sound information are directional determines the order

of the theory.

A function of the direction may [17] be described as a function

on the surface of a sphere, and expressed uniquely as a sum of spherical

harmonics. The order of the theory is the order of spherical harmonics

used by the model. Thus expressing the incoming sound information as a

function f(x,y,z) of the direction cosines (x,y,z), the order of a theory

is the order of the spherical harmonic components [17] of f to which

it responds. Thus a first order theory responds to functions only of

the form l+ax+_y+¥z (_,_,¥ constants), whereas a 2nd order theory responds

also to functions involving terms quadratic in the direction cosines.

(iii) Moving Head Heirarch¥

Given a modelof known degree and order, the extent to which

use is made of information obtained by moving the head is still not

determined. The moving head heirarchy of models is obtained by choosing
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which of the parameters in a given model are physically significant.

For example, with the head absolutely fixed, vector components of sound

arriving in a direction 90 o from the axis of the ears are not used.

In a second class of models (e.g. see [12],[20]), only information

that varies to first order in head movement is used, whereas at the

other extreme, a model may use information in a totally direction-

independent fashion, i.e. without the model having any preferred

spatial orientation.
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4. SOME "PRIMITIVE" MODELS

Based on the heirarchies described above, it is possible to

describe what the lowest models in these heirarchies look like. Here we

list some basic "primitive" models, describing them in terms of the

information received by the ear/brain system when responding to' a number

n of equally distant sound signals Pi placed in the direction with

direction cosines (xi,Yi,Zi). We also discuss briefly the approximate

physical significance of the various parameters occuring in these models.

(1) First Degree First Order Models (Velocity Models)

Consider the signals (representing pressure and velocity)

n

W'V = i_l Pi

n

×'V = i_l xiPi

n

Y'V = i_l YiPi

n

z' v = i_ 1 zip i

! Xe I fand for a single encoded sound with associated complex gains WV, V Yv'Zv

and write

x V = X'v/W' V

YV = Y'v/W'v

z v = Z'v/W' v

so as to eliminate the effect of the overall signal level w' V from the

direction-determining aspects of our models.
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Then write

rv_V = Re xv

rv_v = Re YV

rv_V = Re zv

Xv)2+(Re yv)2 Zv)2}½ ^ 2 ^ 2 ^ 2where r V = {(Re + (Re and x v +Yv +Zv = 1, and Re

stands for "real part of". Thus (_V,_V,_V) are direction cosines.

The direction (_V,_V,£V) is the apparent direction of the sound

according to Makita's theory of sound localization (used in [2],[5],[10])

and is thus called the Makita localization. The quantity r V equals 1 for

a single sound source (as a calculation quickly shows) and ideally

should be as close to 1 as possible for a reproduced sound, r V is called

the velocity magnitude of the sound. Ail low frequency interaural phase

theories of sound localization (which ignore any effect of amplitude

differences between the ears) assume that the only quantities relevant

to localization are the Makita localization (_V,_V,_V) and the velocity

magnitude r V. Such theories apply at audio frequencies somewhat below

700 Hz.

For horizontal sound sources, we may rewrite the above by putting

(for speakers with azimuths _i )

n

×'V = i_l Pic°s$i

n

¥'V = i_l Pisin_i

and computing Xv,Y V as above, and finally putting

rvCOS8 V = Re xV

rvSinO V = Re YV

where 8V is the Makita azimuthal localization and rv>O is again the velocity
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magnitude.

The remaining three real parameters

Im Xv ' Im YV ' Im £V

describing localization in this class of models are termed the phasiness

in (respectively) the directions of the x,y and z-axes. As discussed

in Appendix II of [21], the phasiness describes departures from the ideal

iow frequency theories, as well as unpleasant qualities of localization

discussed experimentally in [22]. Phasiness describes quite well the

overall degree of blurring and unpleasantness caused by the use of phase-

shifting circuitry in decoding equipment, and is probably apt at frequencies

above about 300 Hz but below about 1500 Hz. These figures are guesstimates

based on a mixture of theory and experience. Experimental evidence [22]

suggests that the magnitude of the vector component of phasiness in the

direction of the ear-axis should not exceed about 0.21 in order to be

practically inaudible, although experience suggests that sensitivity

to phasiness grows with experience.

For a forward-facing listener (with horizontal head), the

component (Im _V) of phasiness parallel to his ear-axis is thought to

be subjectively the most important. Ideally, the phasiness should be zero,

and certainly should be less than 1.

For sound sources (i.e. loudspeakers) at a finite distance d,

the above model must be slightly changed. The quantity w' V describing

sound field pressure is given as above, but the formulae for the velocity

components X'v ' Y'V , z' V at the listener should be changed to:

n

v i_l xiPi(1-ic_)_d

n

Y'v = i_lYiPi(1--_)
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n

z, v = i_ 1 ziPi(1 - JC_d)

where the distance d is in metres, c is the speed of sound in metres/sec

-1
(334 m/s), and where _ is the angular frequency of the sound in sec

The rest of the calculation of the localization parameters is as before.

Essentially, the factor (1-jc/_d) is the familiar 'bass boost' of velocity

for a source at a finite distance, and is caused by the curvature of

the sound field for such a source. Alternatively, it is possible to deduce

this modification of the sound localization by complicated calculations

on the waves arriving at the two ears in models in which such aspects

are calculated . It will be seen that the bass boost affects mainly

low frequencies, and that its main effect will be to convert phasiness

into an alteration of the Makita azimuth.

We comment that the localization parameters described here may

properly be regarded as a function of sound frequency, and it is possible

for some designs of equipment that the various parameters might actually

be designed to vary with frequency.

(2) Second Desree First Order Models (Ener$¥ Models)

The model considered here is similar to the first degree model,

except that the sound amplitude gain Pi from each speaker is replaced

by its energy gain IPi 12

n

W'E = i_l JPi j2

n

X' E = i_ 1XiJPiJ2

n

Y'E = YiIPil2
n

Z'E = i_l ziJPiJ2
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As before, we write

x E = X'E/W' E

YE = Y'E/W'E

z E = Z'E/W' E

and further write

rE_E = xE

rEYE YE

rE_ E = zE

where rE = {(XE)2+(yE)2+(ZE)2} _, and where (_E)2+(_E)2+(_E)2 = 1.

Then the direction having direction cosines (_E,_E,_E) is called the

energy vector localization and the quantity r E is termed the energy vector

magnitude. These are the two quantities describing localization in the

model now considered, which is thought to apply to some degree in the

frequency region 500 - 5000 Hz. For a single sound source, an easy

calculation shows that rE=l, so that ideally this value should be attained

for all reproduced sounds. However, we can prove the following theorem:

Theorem 1 If two or more distinct sound sources at a large and equal

distance from the listener are fed with a sound with non-zero gains,

then the associated energy vector magnitude rE is strictly less than 1.

Proof This is shown by observing that rE is the length of an average
n

ofunitlengthvectors(xi,Yi,Zi)withpositiveweightsJPi12/j_llPjl2

for rE to equal 1 it would be necessary for the length of this sum

of vectors to equal the sum of the lengths of the vectors, which in turn

would require all vectors (and hence speakers) to lie in the same direction,

contrary to the assumption of the theorem. This completes the proof.

As in the case of the previous models, the energy vector magnitude

and energy vector localization may be computed separately either for each
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frequency, or for each of a band of frequencies, in the case that the

signal gains P. vary with frequency.1

(3) Third Degree First Order Models (Bispectral Models)

The theory of third degree models is somewhat more complex, and

relies on somewhat deeper theory than it is practical to give in the present

paper, so that the form given below has, to some extent, to be taken on

trust. Although the detailed theory will be published elsewhere, we assume

that third degree aspects of the ears act as a bispectral analyser,

where for a signal f(t), the bispectrum is defined as that function of

pairs of frequencies F1,F 2 (with 0<F2<F 1) that is the _Ourier transform

of the triple correlation

lim 1 _ T f(t)f(t+tl)f(t+t_)dtT_ 2-__-T
$

The theory of the hispectrum is given (very mathematically) in [23],[24],

[25], and we comment that the bispectrum measures the degree of mutual

correlation between three frequencies Fl, F2 and Fl+F2, and is also a

measure of waveform asymmetry. Some elementary discussion of the bispeotral

theory of hearing is given in [26].

Writing the gains of the sound emerging from the i'th loudspeaker

at frequency F as P.(F), the bispectral theory computes for each pair1

Fl, F2 of frequencies (with O<F2<F1) the quantities

n

w' B = i_ 1 Pi(F1)Pi(F2){Pi(FI+F2)}*

n

x' B = i_ 1 xiPi(F1)Pi(F2){Pi(Fi+F2)}*

n

Y'B = i_l YiPi(F1)Pi(F2){Pi(Fl+F2 )}*

n

z' B = i_ 1 ziPi(F1)Pi(F2){Pi(Fl+F2)}*
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$
where indicates complex conjugation. Note the curious asymmetric way

complex conjugation occurs, whereas in the 2nd degree case we had

[Pi(F) l 2 Pi(F){Pi(F)}*= in our expressions. Then as in the first

degree case, we compute the complex quantities

x B = X'B/W' B

YB = Y'B/W'B

zB = Z'B/W' B

and from these in turn compute r B and (_B,_B,_B) via the equations

rB_ B = Re x B

rB_ B = Re YB

rB_ B = Re z B

where r B = {(Re XB)2+(Re yB)2+(Re ZB)2} _ and where it follows that

^2^2^2 ^
XB +YB +ZB = 1 . The direction (xB,_B, B) is the bispectral vector

localization, and r B is termed the bispectral vector magnitude. For a

single sound source, rB=l and its localization is the bispectral vector

localization. Additional quantities produced by this localization theory

are the bispectral hasp iness components

Im x B , Im YB ' Im z B

in the directions respectively of the x, y and z axes. Ideally these

should be zero.

We reiterate that if a frequency-dependent decoder is used, so

that Pi(F) varies with frequency F, the bispectral localization is a

function of pairs of frequencies F 1 and F 2 (with O<F2<F1). This can

make computations tedious unless the decoder is frequency-independent.

The bispectrum of a signal describes its timbre or sound-

colour, and the frequencies F 1 and F 2 are the frequencies of the formants
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of the sound, i.e. frequencies at which the sound has been subject to

broad resonances [27]. Although sufficient data is not yet available,

the bispectral theories are thought to apply for frequencies Fl, F 2

and FI+F 2 in the range 300 Hz - 5 kHz approximately.

(4) First De_ree Second Order Models

In order to illustrate the way higher orders of directionality

can enter into a theory, we consider the case of a 2nd order 1st degree

theory; such a theory is probably apt in the frequency region 400 - 1000 Hz

in which the 1st order theory starts failing. In the 2nd order theory, the

available information includes 9 signals with complex gains oo.r_esponding

to 9 independent zero first and 2nd spherical harmonics. If f(x,y,z) is

a spherical harmonic (i.e. a polynomial function on the sphere of direction

cosines orthogonal to all polynomials of lower degree [17]) of O, 1st or

' with gain
2nd order, then the signal if

n

S; = i_1 f(xi'Yl'Zi) Pi

conveys information about sound directionality. Denoting by 1 the special

function on the sphere that equals 1 everywhere,
n

si = Pi

and we may thus consider localization as depending on the 8 complex parameters

sf = s;/s I
for 8 independent 1st and 2nd order spherical harmonics [17]; if we only

consider horizontal directions, then we need only consider the 4 complex

parameters given by putting

f(cos6,sine,O) = e-JO,eJO,e-2JO,e2JO

such as considered in [2].

Determining how apparent direction depends on the 16 real parameters

Re Sf and Im Sf is clearly a much more complicated task than when we
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considered only 6 real patameters as in the first order first degree models.

It really requires more experimental data than is presently available to

refine the interpretation of the 16 parameters at each frequency, and the

present status of 2nd order models is largely to give a general idea of

how 1st order models start to go wrong as the frequency is raised, rather

than to give detailed predictions.

(5) A 3rd Degree 3rd Order Model (Cross-Bispectral Models)

We here describe an example of a high degree high order model

in order to show that although the general class of such models is too

complex to handle in any detail, particular models may well be simple

enough to give useful detailed predictions. The model we shall use will

be called the 'cross-bispectral" model, and iS a 3rd degree 3rd order

model; like the "bispectral" 3rd degree first .order model considered

earlier it envisages an impression of directionality due'to correlations

between the frequency components of signals at frequencies Fl, F2 and

F 3 = FI+F 2 . The theory given here differs from the bispectral model

considered earlier in that it envisages that correlations between output

signals from sources in different directions may influence apparent sound

direction; for example, a sound emerging at frequencies F 1 and F2 'from

one speaker and at frequency F 3 = Fi+F 2 from a second speaker may produce

an image situated at neither speaker. The present model describes localization

in terms of cubic functions of the direction cosines of loudspeakers, and

SO is a 3rd order model.'

Using the notations de_cribed earlier, consider the complex

quantities at frequencies Fl, F2:

W'CB = _iEJ_kPi(F1)Pj(F2){Pk(Fi+F2))* = (_iPi(F1))(EJPj(F2))(_kPk(F3))*
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x.x.x. )P.(F1)Pj(F2)(Pk(F3)]*x'(_B = _r q q p xqxPx q p q q3txixjxk + i j k + z 3 K t

where the indices i,j,k run from 1 to n, _i _j _k mean summation ever

all values of these indices, where p,q=l,2,3 represent the coordinates of

vectors in respectively the x,y and z directions (so that x__ = xi, x_ Yi

and x_ = zi) , and where we use the Einstein summation convention that

repetition of an index in any product of terms means that we must sum over

qq 11 22 33
the repeated indices (so that x.x. = xix +x x +x x and xiP i = XlPl+...+XnPn).1 j j i j i j

We use F 3 to denote Fi+F 2. We remark that the vector quantity x_may be

'_u p (ul)2+(U2)2+(U3) 2regarded as a function x c on the Sphere = 1, and

5
that this function is _ times the 1st spherical harmonic component of

the 3rd degree function aPqruPuqU r on the Sphere, where

apqr = xixjxkpq r Pi(F1)Pj(F2){Pk(F3))*

Given the scalar W_B and complex vectors x_, as is now familiar, we form

a cross-bispectral vector

^P of unit length such that
for p=1,2,3 , and form the vector XOB

=
3

whererOB> 0 equals {p[l{Rex[_)'21t. . _[_ is the .cross-hiSpectral

vector localization and rCB the cross-bispectral vector magnitude. The

x_ is the cross-bispectral phasiness vector.vector _m

Unlike the earlier bispectral model, the eross-bispectral model

applies only tO very accurately,positioned listeners who are precisely

equidistant from the sources i=l,...,n. We shall see later that the

cross-bispectral model gives the same predicted localization as velocity

models under a wide range of special conditions, although in general

(e.g. when the different frequency componentsemerge from different speakers)

it gives very different predictions
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5. iNTERPRETATION OF MODELS

The effect of head movement has not been discussed explicitly

in the above models, but it is useful to give some genera ! indication of

how head movement may he described explicitly. In the velocity, energy,

bispectral and c ross-bispectral models, we have a direction cosine vector

(_,_,_) and a Vector length r given by the models. (_,_,_) may be considered

as the direction of the sound as determined by someone orienting their head

until the sound seems straight in front of them. In the velocity model,

(_V,_V,_V) is called the Makita localization [2],[10],[5]. Alternatively,

taking the realistic view that real-world sound fields will be degraded

by the presence of random room reflections and the like, it is not to be

expected that the effective vector length r "heard" by the ear will be as

great as 1 even for single sound sources, so that one presumes that the

ears are equipped with means of allowing for this; such means must involve

movements of the head, but not necessarily movements so drastic as to

make the listener face the source. Leakey [12] was led to the same

localization as Makita just by Considering information deduced by looking

at the change of interaural localization for small head movements.

However, there will be cases When head movements do not occur,

or when sounds change too rapidly for the effect heard at different head

orientations to be compared, or where changes are small in relation to

the complexity of total sound information reaching the ears. In these

cases, a fixed head model iS apt. While room acoustics may degrade the

effective value of r, there will be a short period of time between the

arrival of a direct sound and _te reflections during which the room has

no effect on the value of r. Thus we may expect that in some circumstances

fixed-head theories may also have some predictive value. (It has been

found by experience that reflections from room walls of loudspeaker
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signals may be treated as part of the direct sound provided that the

delay of the reflections are less than 10ms, i.e. provided that the speakers

are closer than l_m to the nearest walls. With larger distances from room

walls, the ears appear to treat early reflections not as a part of the

initial transient, but erroneously as a part of the subsequent period

during which room acoustics do not yet affect r. The results are that

surround localization is poor for such away-from-wall layouts).

The fixed-head localization is obtained by taking the vector

(rx,ry,rz), taking its component in the direction of the unit vector

(ul,u2,u 3) along the ear axis (pointing towards, say, the left ear),

and the resultant quantity (if less than l) i s the cosine of the apparent

sound direction's angle from the ear-axis, Thus put

u 1 ^ 2 r_u 3)0 = arc cos(r_ + ryu +

and the Sound appears to arrive at an angle e from the leftward axis of

the ears (see figure 1). It will be seen that:

(1) if r = 1, the fixed-head localization iS the same as the vector

_^_,localization ( ,y, ) although it suffers from an ambiguity due to the

fact (shown in figure 2) that there is a cone of directions at an angle

e to the ear-axis. The we!l-known front-back ambiguity [16][30] is a

well-known example of this ambiguity.

(2) if r < 1, then the apparent fixed-head direction of the sound is

further from the ear-axis (and closer to plane Of symmetry of the head)

than the vector localization. This causes a 'narrowing of images'

(3) if r _ 1 and Ir_u 1 · r_u 2 + r_u31 < l, then the apparent fixed-

head direction is closer to the ear-axis (and further from the symmetry

plane) than the vector localization, giving a 'wider image'.

(4) if the projection onto the ear-axis has length _ l, i.e.

lr_u 1 + r_u 2 + r_u31? 1, the quality of localization is unlike any
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encountered for real sounds. In such a case, the localization quality

may be to the side of the head but disturbing, or may have no clear

localization.

We mention the _heories of Strutt [16], Clark Dutton Vanderlyn

[9], Bauer [15], de Boer [14] and Damaske and Ando [3] as examples of

fixed-head theories.

Some of the theories considered (velocity, bispectral and cross-

bispectral models) also have a 'phasiness vector' affecting localization,

which is zero for real-world direct sounds. The effect of such phasiness

quantities on localization is not easy to predict in detail. Not only

does phasiness affect the quality of the localized sound (producing

listener fatigue and poor localization quality, as well as affecting

tone color), but it may also alter the actual localization perceived

from that given above to some degree, which may vary with frequency (or

Kith pairs of frequencies in bispectral and cross-bispectral models).

The precise way in which this happens varies from theory to theory, but

in some theories, the localization may be approximately predicted by

taking the vector

(rE+ap l, r_+ap 2, r_+ap 3)

where (pl p2 p3) is the phasiness vector, and where a is a numerical

constant (often equal to about 0.3), and treating this as th ® vector

from which fixed and moving-head localizations may be deduced.

Implicit in the description of the models was two assumptions:

(i) that sounds only occur one at a time, i.e. that only one monophonic

sound is fed to the n loudspeakers at any time. In practice many

different monophonic sounds with different complex gains for each

speaker will occur in actual program material.

(ii) that the listener is precisely equidistant from all loudspeakers.
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These two assumptions have some inter-relation and may often

be weakened substantially. First we note that in the velocity and energy

models, it does not matter that different sounds occur at different

frequencies, since the models assume that each frequency or frequency

band may be handled independently. Similarly in the bispeetral and cross-

bispectral models, sounds with different 'bispectral frequency pairs

t

F1,F 2 (i.e. different formant frequencies) may be handled as if occuring

separately even if they actually occur together; the mathematical proof

of this lies in the 'stOchastic independence' of signals bispectra [23].

However, even for sounds with the same frequencies Or 'bifr6quencies

F1,F 2', there is a possibility that the ears can simultaneously distinguish

among more than one sound independently sounding from different apparent

directions, we cannot here gO into the mathematical theory of why this

should be, except to point out to the interested reader that the spectrum

of a multichannel signal is a 'covarience matrix' or complex 'tensOr of

2nd rank' and that the bispectrum is a complex 3rd rank tensor [23].

As a result, the number of independent spectral and bispectral variables

available tothe ear is larger than the number of vector variables used

for localization. Indeed, in principle, the bispectral models are Capable

of localizing up to 4 sounds sharing the same bispectrum and sounding at

the same time from different direCtionS [25].

The velocity and cross-bispectral modeis demand that the listener

be precisely the Same distance from all speakers for them to give valid

predictions, but the energy and bispectral models do not demand this.

This is because the latter models assume each speaker is an independent

source, and Only time-averaged quantities from them (e.g. the energy or

bispectrum) add up at the listeners ears. As a result, it is expected

that the energy and bispectral models will give useful predictions also
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for non-central listeners, provided that the change in _ntensity of

sound due to speaker distance and speaker direction changes are taken

into account. We hope to describe in another publication applications

of a random version Of the velocity models to non-central listeners.

However, all these models ultimately give predictions based on the

time-averaged properties Of signals reaching the ears, and it is possible

and likely that the different localizations occuring immediately after

transients when the sound of only some speakers has arrived at the

listener's ears will modify the overall directional impression (e.g.

the Haas precedence effect [28] [29]).
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6. THEOREMS ABOUT MAKITA LOCALIZATION

We have seen that the Makita localization is only one of many

localizations predicted by the various primitive models of sound

localization. If the various methods of sound localization do not agree,

then the Makita localization is not a reliable Way of predicting where

sounds come from. However, as We shall see, there is a range of conditions

that automatically ensure that various methods of localization d_o agree

with the Makita prediction. Indeed, given that We can design decoding

apparatus to give correct Makita localization, we may use the following

theorems to design decoders to give correct localization according to

other Criteria as well.

Thus, in the subsequent work in this and following papers, we

shall lay great emphasis on getting correct Makita localization. This

is not because we consider Makita'S theory to be "correct" or "reliable"

(we do not), but because the art of designing good decoders may be reduced

to getting correct Makita localization as a first step, and then to using

results in this and later papers to get other localization criteria

right as well.

The fundamental design theory of decoders is based largely on

velocity and energy models. Other models enter largely as an aid to

refining designs. Our basic approach will be tO demand that decoders

should, as a very minimum requirement, give localization that is identical

according to both the Makita and energy Vector localization criteria.

The reason for this is as follows:

We know that the Makita localization is one of the things we

wish to get right at low frequencies well below 700 Hz. We can also get

the velocity vector magnitude r V right if in an initial design it does

not equal the desired value of one by changing the gain of the sum of
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the speaker signals until r V does equal 1. It is likely, however

that such a change of design will give a less-than-optimal value of the

energy vector magnitude r E . There is a rather indeterminate band of

frequencies (say 250 Hz ~ 1500 Hz) where it is not clear which of velocity

and energy models applies.

The designer of a decoder will wish to optimise localization

both at low and high frequencies. The best way of doing this is to design

a decoder which takes the form of one matrix at low frequencies and another

at high frequencies. It is necessary that the transition between these

two matrices also satisfies relevant localization criteria. Given that

it is probably not possible to design a decoder to be simultaneously

optimal according to both velocity and energy models, we seek to satisfy

both Makita and energy vector localization in the intermediate band of

frequencies, and to get some compromise among the other criteria of

localization. The following theorems ensure that it is possible to make

Makita and energy vector localizations the same_ and also tell us how

to do this.

Consider four loudspeakers placed in a rectangle (see fig. 3)

with speakers handling respective signals LB, LF, RF,RB placed at azimuths

180°-_,$,-_ and -180°+_ respectively, i.e. with respective direction

cosines (-x,y,O), (x,y,0), (x,-y,0) and (-x,-y,0) where x=cos$, y=sin$.

(It is convenient from now on to suppress the third 0 z-coordinate as

irrelevant). Then we shall prove:

Theorem 2 (Rectangle Decoder Theorem

The Makita and energy vector localization of a rectangle speaker

layout coincide if the signal

Q = _(-LB+LF-RF+RB)

is either zero or bears for all sounds a 900 phase relation to X,Y,
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where the 3 signals W,×,Y are defined by:

W = _(LB+L F+RF+RB)

X : ½ (-LB+LF+RF-RB)

Y = _(LB+LF-RF-RB) ·

In the case O bears a 900 phase relation to W,X,Ythe latter 2 signals

must bear a real phase relation to one another, and the Makita and

energy vector localizations and velocity vector magnitude r V are not

changed by replacing 0 by a zero signal, but the energy vector magnitude

r E is increased when Q is replaced by zero. In all these cases, for

speaker azimuths 1800-_,$,-_ and -180°+$ respectively for LB,LF,RF,RB

we have that the apparent Makita azimuth (and hence energy vector

azimuth) 0 V is given by the proportional equation

cosO V : sinO V = (cos_)Re(X/W) : (sin_)Re(Y/W)

or by the equivalent equation

$ $

cosO v : sinO v = cos_ Re(XW ) : sin_ Re(YW ) .

Proof Note that in terms of the signals W,X,Y, _defined in the theorem

that

LB = _(-X+W+Y-Q)

LF = _(X+W+Y+Q)

RF : _(X+W-Y-Q)

RB : _(-X+W-Y+Q)

as an easy algebraic manipulation will verify. It may also be checked

that the total energy gain

ILBI2+ILFILIRFI2+IRBI2

equals

Ixl2+lwl2+lyI2+lql2,
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usingthefactthat la+S{2 = {al2+lSl2+2Re(aS *) for any complex

numbers a,S in the calculation.

Using the notations of the velocity and energy models described

earlier, we have that

W' v = LB+LF+RF+RB = 2W

x' = cos_ (-LB+LF+RF-RB) = 2Xcos_V

Y'V = sin, (LB+LF-RF-RB) = 2Ysin,

so that the Makita azimuth 0V is given by

rvCOSO V = Re(X'v/W'v) = cos_ Re(X/W)

rvSin0 V = Re(Y'v/W' V) = sin_ Re(Y/W)

as required in the statement of the theorem. Clearly, no prediction of

the velocity models of localization is changed by any choice of the signal

Q, since it does not enter the formulae for W'v,X' V or Y'V' so that r V

and 0V are not affected by replacing Q by zero.
. $

Note for any complex numbers a,S that a/S = (aS)/(SS ) =

-2 *
= '{Si-2(aS*), so that Re(s/S) = IS{ Re(aS ), which proves the last

equation of theorem 2.

Calculating the energy model parameters shows

W'E = [LB{2+ILFI2+[RFI2+IRBI2= ixl2+lwl2+ly{2+l {2
X'E = COS*(-ILBI2+ILFI2+IRF[ 2-[RB{ 2) = cos*(2ReXW*+2ReYQ*)

Y'E = sin*({LBI2+ILFI2-IRFI2-IRBI2) = sin,(2ReYW*+2ReXQ*) .

$ $

Clearly we have XE : YE = X'E : Y'E = cos_ ReXW : sin_ ReYW

provided only that ReXQ = ReYQ = 0, so that Q being in 90 o phase

relation to X and Y is sufficient to ensure that the Makita and energy

vector localizations coincide. Finally, we note that replacing a Q
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having a 90 o phase relation to both X and Y by zero leaves ev,r V

and e E = e V unaltered, but that r E is then multiplied by

{{xl2+lw{2+ly{2+IQ{2}/ {{xl2+{wl%lY{2} > i . Thus removal

of the Q signal increases the energy vector magnitude r E when Q has

900 phase relation to X and Y. This completes the proof of theorem 2.

Theorem 2 tends to show that the following remarkable fact holds:

better results for non-speaker directions of sound will be obtained for

a central listener to a rectangle of loudspeakers if only 3 independent

channels of information (W,×,¥) are used to feed them; the presence of

a fourth channel _ can only degrade the results. This is especially true

for signals all having a real phase relation to one another, where it

will be seen from the above method of proof that the following corollary

holds.

Corollary 2A

If the signals W,X,Y,Q have a real phase relation to one

another, then the Makita and energy vector localization for sounds

not precisely in one of the four loudspeaker directions will not

coincide unless Q = O.

Proof X'E : Y'E = cos_(XW+YQ) : sin_(YW+XQ) for real W,X,Y,Q ,

and if this coincides with the Makita localization, it equals

cos_(XW) : sin_(YW), so that if Q = 0 (cos_)Y : (sin_)X = (cos_)X : (sin_)Y

i.e. y2 : X2 = 1 : 1, i.e. cos$ v : sins V = ±cos$ : ±sin_.

Thus OE TM 0v and Q = 0 implies that e v = 180°-_,_,-$ or -180°+_

as required to prove corollary 2A.

Using the velocity models, an easy calculation of the vector

(Im X'v/W' V , Im y'V/w'v) shows that the first sentence of the next

corrolary holds.



33

Corollary 2B

For a rectangle speaker layout, phasiness according to the

velocity model of hearing is avoided if and only if the signals

W,×,Y (defined in theorem 2) have a real phase relationship. For

non-speaker directions, the Makita and energ_ vector localizations

for such signal coincide only if Q has 90 o phase relation to all of

W,X,¥ , and the energy vector magnitude is maximised by putting Q = O.

Proof It remains only to show that Q must bear a 90 o phase relation to

the signals W,X,Y whose gains may be presumed real. 8E = SV only if

cos_ Y (ReQ) : sin_ X (ReQ) = cos_ X : sin_ Y .

As in the proof of corollary 2A, this implies ReQ = 0 except for sounds

from the 4 speaker directions. This proves the corollary 2B.

The above results show that, for the most common loudspeaker

layouts, there is a definite disadvantage in having a 4th channel Q to

feed the 4 loudspeakers, i.e. 3 channels is best for rectangle speaker

layouts. We now consider some results concerning decoding 3 channels

through regular polygon loudspeaker layouts.

Given 3 signals W,×,Y with an intended sound localization 8 I

given by

cos81 : sin81 = (Re X/W) :(Re Y/W) ,

the problem arises of how to decode such signals through an arbitrary

speaker layout. We have already solved part of this problem for a rectangle

speaker layout.

Consider a naive decoder for a regular polygon loudspeaker

layout with n speakers at azimuths _ differing by 360°/n. The naive decoder

feeds the speaker at azimuth _ with the signal

W + Xcos_ + Ysin_,
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as one might expect then we have:

Theorem 3 (Regular Polygon Decoder Theorem)

Let a regular polygon of n > 4 loudspeakers be fed with

3 signals W,×pY presented to the loudspeaker at azimuth _ in the form

W + Xcos_ + Ysin_ .

Then the Makita and Energy vector localizations coincide, and the

energy vector magnitude r E cannot exceed 1/_. r E = 1/_ if and only

if there is a 8 such that W,X,Y have real phase relation and

X = 2_WcosS, Y = 2_WsinS. In general, the Makita and energy vector

Azimuths are given by

$ $

cos81 : sin81 = Re(X/W) : Re(Y/W) = Re(XW ) : Re(YW ) .

All velocity and energy vector model localization criteria for given

signals W,X, ¥ are identical for all numbers n > 4 of speakers in ally

regular polygon array, including a continuous circle of loudspeakers.

Proof We prove the last statement first, since the rest of theorem 3

need then he proved in the special case of a circle of loudspeakers only.

-1_

For a function f(_) of angle _, The integral (2w) _w f(_)d_ (which we
n

' ! i_lf($i) for _i = $0 +2_i/n'hereafter write ff(_)d_) is equal to n =

i.e. the integral may be replaced by the average over a regular polygon

of n points, provided only that f(_) may be written as a sum of terms of

the form a sin m_ or b cos m_ with m < n. (This is based on the easilym m

proved fact that

n

! i_lCOS(2_m! ) = 0 = /cos m_ d_n_

for 0 < m < n with n an integer, and a similar relation with "sin"

replacing "cos"). Now for the polygon decoder described above in the

theorem (with n > 4)
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n

n W'v n i_l(W+Xc°s_i+Ysin_i ) = _ (W+Xcos_+Ysin_)d$ = W

n
1 1

-n X'v = --n i[l(W+Xc°s{i+Ysin{i)c°s{i

1 1 1 1

= _(Wcos_+ _ X+ _ Xcos2_+ _ Ysin2_)d_ = _ X

1 1

and --n Y'V = --2 Y similarly.

also

!nwE /IW*Xcos,+Ysin,% =IW12+ IXIL lYI2

x' = £[W+Xcos%+Ysin_J2cos_d$ = 12Re(XW*)cos2$d$n E

*

= Re(XW )

and _ *
n Y'E = Re(YW ) similarly,

n
1

by replacing n i_l by f...d_, which is permissible for n > 4, as no

trigonometric function of m_ for m > 3 occurs here. It is now easy to

see that the Makita and energy vector localizations 0 V and 0E are given

by

: 1 1 * *

cos0 V : sin0V = _ Re(X/W) : _ Re(Y/W) = Re XW : Re YW

and coseE : sin6 E = Re XW : Re YW also, so that 0E = eV.

Moreover, we easily compute that

2 {ae(XW*) 2+ Re(YW*)}2 (Re _)2+(Re 6) 2
rE = =

where a = (X/W), 6 = (Y/W).

Thus rE2 is maximized for a given value of [a[ 2 and of [6j2 by requiring

a,_ to be real, and in that case, putting u 2= a2+_ 2
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2
2 u

rE
i u2)2(1+

which is easily shown (by differential calculus or otherwise) to be

maximized when u = /2. Thus we may put _ = /2 cosO _ = /2 sine for

some _; the maximum occurs only when this is possible, i.e. when

X= /2 cosO W, Y = /2 sin8 W. In this case rE /2 1=--2= V2 ' which proves

the theorem 3.

This limitation that rE _ _2 described in theorem 3 does not

apply for all sounds to non-regular-polygon-decoders, but the average

rE over all azimuths obtained from 3 signals W,×,Y still has to meet this

limitation. By way of comparison we mention (without the routine

computational detail) that the standard BMX decoder [2] has rE TM 0.500,

the standard TMX decoder [2] has rE = 0.667, the standard QMX decoder

[2] via 5 or more speakers has rE TM 0.750, as compared with the maximum

rE consistently obtainable from 3 channels for a regular polygon decoder

of rE TM 0.707. It seems that the relatively small improvement from

rE = 0.707 to rE = 0.750 is not justification enough for adding a fourth

channel to a regular polygon decoding system.

The results above for rectangular and polygonal decoders can be

extended to rectangular euboid and regular polyhedron decoders in 3 spatial

dimensions. We omit proofs, which are broadly similar but more complex,

but state the results here.

Theorem 4 (Cuboid Decoder Theorem)

Let LBD_ LBu, LFD, LFU, RFD, RFU, RBD, RBU (L = lef_,

R = right, B = back, F = front, D = down, U = up) be the eigh_ speaker

signal gains of eight speakers placed in a cuboid (see fig. 4) at

direction cosines respectively equal to
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(-x,+y,-z), (_x,+y,_z), (+x,+y,-z), (*x,+y,+z), (+x,_y,-z),(_x,-y,+Z),

(-x,-y,-z), (~x,_y,.z).

Define eight signalsW, X, ¥, Z, QX_ 0¥, QZ' QQ via

W = 272 (LBD+LBU+LFD+LFU+RFD_RFU+RBD+RBU)

X = 2% (_LBD_LBU_LFD+LFU_RFD+RFU-RBD-RBU)

1

Y = 2_ (LBD_LBU+LFD+LFU-RFD-RFU-RBD-RBU)

Z = _ (_LBD+LBU-LFD+LFU-RFD+RFUyRBD_RBU)

QX = 2_2 (-LBD_LBU'LFD_LFU_RFD'RFU+RBD'RBU)

1

Qy = _-_('LBD+LBU_LFD'LFU+RFD-RFU-RBD_RBU)

0 Z = _ ('LBD'LBu+LFD+LFU'RFD'RFU+RBD+RBU)

1

QQ = _ (LBD-LBU~LFD+LFU+RFD-RFU-RBD+RBU) .

Then for the Makita and energy vector localizations to coincide , it is

sufficient either that OX = Q¥ = OZ = QQ _ 0 or that qO _ O end

QX * QY' QZ are in 900 phase relation with X, Y, Z or that QX = QY =

= QZ = O. The Makita localization (_V,_V,_V) is given by

% : YV : 2V = xRe(X/W) : yRe(Y/W) : zRe(Z/W)

= XRe XW : yRe YW : zRe ZW* .

in the case OX = Oy = O2 = QQ = O, we have

l
LBD = 2--_ (W - X + Y - Z)

1

LBU = 2_ (W - X + Y + Z)

LFD = i
(W + X + ¥ - z)

LFU = _ (W + X + Y + Z)

1

RFD = _ (W + X - Y - Z)
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!

1

RBD = 272 (W - X - Y -Z),

1

RBU = _ (W'- X - W +Z)

Theorem 5 ,,,*(Resular ' Polyhedron Theorem)

Let four signals W, X, Y, Z be fed to a layout of more than 4

loudspeakers placed on a sphere at all the points of (i) the face-Centers,

(ii) the edge-centers, or (iii) the vertices of a regular polyhedl_on

_see 5troud [40_ for the use of such point-setsin spherical integration)

such that the speaker at direction cosines (x,y,z) is fed with

W + xX + yY + zZ .

Then all velocity and energy model localization parameters are the same

as for a continuous sphere of loudspeakers fed as indicated, and the

energy vector and Makita localization are the same (iV,gV,iV), where

Xv: 9V : _V = Re XW : Re YW : Re ZW .

The maximum possible energy vector magnitude with such a decoding

arrangement ts r E = 1//3, and this value is attained if and only if

where (x,y_z) are real direction cosines of some direction, i.e.

2 2+z2x +y _ 1.

A result of considerable general use applies to arbitrary decoders

having loudspeakers arranged In diametrically opposed pairs, i.e, if

one speaker is tn the direction (x,y,Z), another one is in the direction

(-x,-y,-z). Such decoders need not b ® regular.

Theorem 6' _ametrlc Decoder Theorem)

Let 2n loudspeakers be arranged equidistant from a listener

such that the loudspeakers are placed tn n diametrically opposed pairs
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of speakers. Suppose further that the sum of the signals emitted by

the two speakers in an opposite pair is the same for all pairs, then

the Makita and energy vector localizations of the resultant sound

are the same.

Proof Let the loudspeakers at direction cosines (xi,Yi,Zi) and

(-xi,-yi,-z i) be fed with signals W+P i and W-Pi respectively, as

required by the theorem. Then a computation of velocity and energy

localization parameters gives, for p=1,2,3

w' V = 2nW

n n

and

n n

"-E = i_l(Iw+Pil2+ I-w-Pi12) : 2nlw12,+2i_llPil2

n . n ,

'P = i_l{x_lw.Pil2 x_lw-Pil2} = 4i_lX _ Re Pi wx E

thus Re(x'_/w' V) = <x':/w.E>r"lwl2+_ilPi.l.2'}2nlwl2

for p=1,2,3 , which proves that the Makita and energy vector localizations

coincide. This proves theorem 6.

The final general result of this paper relates the results given

by the velocity and cross-bispectral models.

Theorem7 L

For an arbitrary loudspeaker layout lying equidistant from

the listener, and for any signal fed to those speakers with complex

gains that are independent of frequency, the cross-bispectral localization
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parameters are determined by the velocity model localization parameters.

For a decoder for which in addition the velocity phasiness vector is

zero, the cross-bispectral vector localization is identical to the

Makita localization, and the Cross-bispectral vector magnitude r_

3

equals the cube r V of the velocity vector magnitude.

Proof Since we have assumed frequency-independent gains, Pi(F) = Pi

for all frequencies F. Then using the abbreviated notation that we introduced

in connection with cross-bispectral models,

w'V = ziPi

x'_ = x_ Pi

(_iPi)2(_Jpj *W,_B = )

x_B' = 31 {2(x_ Pi)(x_ Pj)(x_ Pk )* + (x_ Pi )*(xj q Pi)2)

so that putting

'P P = x /
x = x CB/ w GB and x v w' v

we have

2 q* 1 p* q

This proves that the eross-bispectral localization parameters X_B are

dependent only on the velocity localization parameters.

In the special case that there is no phasiness in the velocity

model (i.e. that (x) = x ), we have

that the two real vectors x_B and x_ are proportional and hence the
so

Makita and cross-bispectral vector localizations coincide. Moreover,
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2

rCB = x_Bxa_

2

and rv=X_X _

2 _ rv 2) _ rv2) , i.e. rOB= rv 3so that rGB = ( (x = rv6 P

as required to prove theorem 7.

Coro!Iary 7A If all components of the complex velocity model vector

x_ are either purely real or purely imaginary (in any orthogonal

coordinate system), then the Makita and crOss_bispectral vector

localizations Coincide,

Pr oo_ff Under these assumptions x_ x_ _s real, and so x_B is a real

linear combination of x_ and (x_)*, with coefficients whose sum is greater

than zero (or equal to O). Thus the cross-bispectral vector localiztion

in the direction of _e x _ ,S also in the d_rect,on of Re X_ ' Re,X_)'.

This proves the corollary.
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7, CONCLUSIONS

Although a metatheory (theory of theories) of sound localization

leads to a large number of possible "primitive" models of sound localization,

many of these primitive theories can be rendered useful for designing

decoders because their mathematical structure permits the proof of theorems

that show that a variety of different localization criteria are satisfied

simultaneously provided that various easily-arranged relationships between

the signals fed to loudspeakers are designed into the decoder. A particular

case of one of thses theorems has shown that an optimal decoder feeding

four loudspeakers LB, LF, RF, RB in a rectangle array should have

-LB+LF-RF+RB _ 0 for best results Over the whole frequency range, and, as

a result, 3-Channel systems for horizontal-onlyreproductio_ will actually

give better localization than 4-channel systems, except for sounds precisely

in the direction of the 4 loudspeakers.

Of the various models of localization considered in this paper,

the most important are the velocity models (apt at frequencies below

700 Hz, but possibly having some application up to 1500 Hz) and energy

models (apt at frequencies above 1000 Hz, but possibly having some application

down to say 400 Hz). Most models of localization considered in the previous

literature (other than high frequency interaural delay models and pinna-

coloration models [31]) are subsmaed in the velocity and energy models

as special cases. While most of the design theory concentrated on the

velocity and energy models, other highorder and degree models have been

described for finer investigation of the properties of decoders; such

models have proved valuable in practice.

?his paper, despite its length, has had to be rather sketchy

about some of the foundations Of the theory_ and also on the detailed

proofs of the more complex theorem s . It is intended to publish many of
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these details elsewhere, notably in a yet unpublis_ed paper [25]

originally prepared in 1974/5_ That paper has been quite widely

circulated to individuals since the 1970's, and it is hoped to

formally publish aversion ofit in the near future.

AS illustrated by both the appendix of this paper and by the

recent references [41]-[43] on mUltispeaker stereo and ambisonic

systems_ the theory of this paper is a very practical tool for

designing concrete directional encoding and decoding systems, having

a wide range of applications varying from the design of panpots to

the design of decodingand transmission systems [44, 45], and we shall

publish other applications in the future.

No claim is mede that the theory of this paper is complete and

exhaustive. In partiCular, this paper says little about frequencies

above around 4 or 5 kHZ where pinna colouration cues become dominant,

as noted in [6], although ref. [41] described some methods Of

adapting the theory to this high frequency region to a limited degree.

The paper also hasnot dealt with noncentral listening, although the

methods actually extend to that case, as mentioned in [6] and

discussed briefly in [41].

However, the generalityof the methods of this paper, and the.

fact that it takes account of many auditory localisationmechanisms,c

means that designs based:on satisfying several "primitive" component

theories of hearing tend to have much lower listening fatigue, and

tend to be much more robust under conditions of technical or user

abuse, than directional sound reproduction systems based on satisfying

only one or two sound localtsation mechanisms. This ability to design

"rObust, directional reproduction systems is the main use and strength

of the_orkof this paper.
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APPENDIX I. EXISTING LOCALIZATION THEORIES AND STEREO REPRODUCTION

The energy vector and velocity models of this paper reduce in

special cases to a number of localization theories in the existing literature.

We detail some of these connections, and consider their applications to

the perception of 2-speaker stereo sound. This is not only of interest in

existing stereo applications, but 2-speaker presentation provides a means

of experimentally determining how much of various types of localization

fault is subjectively acceptable [22], and it is useful for surround

reproduction applications to determine the tolerable associated localization

parameters such as phasiness, rE and rV.

The Makita azimuth eV is the localization considered by Makita

[10], Leakey [12], Bernfeld [4], Nishimaki and Hirano[5] and Cooper and

Shiga [2]. All except Leakey derive it as the azimuth Which the head must

face to give zero interaurai phase difference at low frequencies. As we

showed in the description of velocity models, at very low frequencies in

the presence of phasiness, the Makita azimuth computed assuming very large

speaker distance is not the same as for when the speaker distance is finite,

although this 'infinite distance' assumption is common in the literature,

Another class of low frequency interaural theories considers fixed

heads, usually facing Straight forward. The component of the velocity vector

(rvCOSev,rvaine V) along the ear axis is rvSinev, and the apparent fixed-

head localization 9F is given by

sin e F = rvsine V (1)

since a fixed head generally has no way of knowing that rV _ 1. This fixed

head theory has been used by Bernfeld [4], Strutt [16], Blumlein [8], Clark

Dutton and Vanderlyn [9] and Bauer [15], among others and is conveniently

termed the CDV localization theory. (Although we have named theories after
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Makita and Clark-Dutton-Vanderlyn, we do not necessarily imply that these

were the first to give explicit expression to these theories, only that

they were the first to popularize these theories among audio engineers).

Theories based on the energy models have long been popular and

include de Boer [14], Damaske and Ando [3] and Gerzon [20][6]. Such theories,

however, have hitherto had a mathematically intractible form, and the

equivalence of an 'interaural correlation' model (such as [3] and Sayers

and Cherry [34]) and energy models of first or higher order is not

immediately obvious, since correlations occur in the time domain whereas

spectra occur in the Fourier transform of the time domain. Our theory

formulated in terms of what happens at each frequency may be shown to be

a reformulation of cross-correlation models via the Fourier transformation.

The energy vector azimuth OE appears to be new (except for a

previous discussion in [6] by the author), since direction-finding by

making both ear signals identical does not appear to have been considered

in the energy or correlation theory literature. However, the localization

given by the energy analog of CDV localization, with azimuth OFE given by

sin0FE = resin0 E (2)

has in effect been considered by de Boer [14] and Damaske and Ando [3],

but not in that language. Also the models of [3] and [14] to some extent

(especially at higher frequencies) include 2nd and higher order directional

sensitivities of the ears.

The higher degree theories involving triple correlations and (in

their Fourier formulation) bispectra appear to be new with the author [25],

[26], but there is strong evidence from phonetics [27] and the cocktail

party effect that the ears must make use of such triple correlations in

perceiving sounds; in particular, bispeotral theories include the formant
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theories of tone-color perception [27] as a special case. We remark that

predictions from the bispectral model of this paper have been confirmed

experimentally, and we shall give full details elsewhere.

Consider now applications to conventional 2-speaker stereo

localization. Consider two loudspeakers situated (initially at a large

distance) at azimuths ±_ relative to due front, and put x = cos_,

y = sin_ so that the speaker direction cosines are (x,±y). (see figure 5).

Initially we consider the simplest case where the signal gains

L and R fed to the left and right speaker are real (as in ordinary stereo

pan-potting). Then supposing that L+R > O, the localization parameters of

the velocity model are real and easily Computed to be given by

x V = X'v/W' V = (L+R) cos_/(L+R) = cos_

L-R
YV = Y'v/W'v = (L-R)sin_/(L+R) = L_R sin_

Thus the Makita azimuth 0V is given by

tan6v = Yv/Xv = L+RL-Rtan_ (3)

which is the stereophonic law of tangents of Leakey [12] and Makita [10].

Using (1), the CDV localization is given by

L-R sin_ (4)singF = YV = L_R

which is the stereophonic law of sines of Bauer [15] and Clark, Dutton,

Vanderlyn [9].

The velocity vector magnitude r V is given by

r v = (Xv2+yv2)t = (L2+R2+2LRcos2_)t/(L+R) · (5)

This equals 1 for L = 0 or R = 0, and equals cos_ for L = R.

The energy vector localization 0E is similarly given by
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L2_R 2

tan_E - tan_ . (6)
L2+R2

the fixed-head localization eFE as in (2) is given by

L2_R 2

sinOFE sin_ (7)
L2+R 2

and the energy vector magnitude rE is given by

rE = (L4+R4+2L2RMcos2_)_/(L2+R 2) (8)

(6),(7) and (8) are the same as (3),(4),(5) except that L2 and R 2 replace

L and R. Except for the cases L = 0, R = 0 or L = R, the energy localization

0E does not equal the Makita localization 0V, and similarly OF _ _FE

except for L = 0, R = 0 or L = R. For bispectral localizations, we

replace L and R in (3),(4),(5) by L3 and R3.

Using theorem 7 of this paper in the real gain case also gives

a cross-bispectral localization

0 CB 8V tan-1 L-R= = (_-_ tan_) (9)

and a cress-bispectral vector magnitude:

= 3 (L2+R2+2LRcos2_)3/2/(L+R)3 (10)rCB rv =

In order to illustrate the theories further, consider the fixed-

head localization heard not by a listener facing forward, but by one facing

an azimuth _. When L and R are both positive (in-phase sounds), then the

sound image will tend to be displaced towards the head azimuth since rV < 1,

rE < i and rCB < 1.

More precisely, the leftward ear-axis has direction cosines

(-sin_,cos_), so that for the velocity model, the projection of (Xv,YV)

onto this axis is (-XvSin_, +YvCOS_) and this equals sin(O_-_) where O_
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is the apparent sound azimuth in the fixed-head case. Thus

L-R

sin(0_-_) = sin 4 cos_ L-_ - sin_ cos 4 (11)

gives the apparent localization for the listener with head at angle _.

For example, when he faces the left speaker (so that _ = 4), we have

manipulating (11):

R

'sin(CF -4) = L+R sin24 ' (12)

For example, for L = R,

!

0 F = 4 - sin-l(_sin24) > 0 (13)

so that central sounds shift towards the left speaker. For a typical

interspeaker angle 24 = 600 , the shift is given by e_ = 4.340 , whereas

for 24 = 900, the shift is e_ = 150, which shows that wide interspeaker

angle 24 in stereo leads to images which are unstable under head movement.

The most extreme case of (11) when _ = 900 (i.e. speaker pair at side of

listener) gives 0_ = ±4, i.e. the supposed central sound is drawn unstably

to one speaker or the other (ambiguously), which certainly agrees with

experimental results on side-image localization via 2 speakers [1],[3],

[35],[36]. We observe that a similar theory replacing L and R by L 2 and R 2

predicts a similar ambiguity in the energy models, so that one presumes,

using the philosophy of the introduction to this paper, that the similar

ambiguous positioning according to two different models will make such

ambiguities likely in practice for pairs of loudspeakers at the side of

the listener.

Stereophonic localization for forward-facing listeners when the

gains L and R are complex (i.e. with interchannel phase differences) is

of particular interest. For this case we find that
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xv = cos{

L-R sin{
YV = L+R

as before, except that now YV is complex. Thus

L-R [L]2-IR[ 2
Re YV = Re(_-_ain{) = sin{ '

ILI2+IRI2+2Re(Ln*)

This gives a more complicated localization theory, although certain ways

of looking at the localization using the energy sphere model ([21], Appendix

II) of 2-channel systems can provide insight into both the localization

and phasiness aspects of velocity models. We get the Makita localization

6V and forward fixed head localizations 0 F as before by:

ILI2-1RI2 (14)
tanO V = tan{ iLi2+i.i2+2Re(LR,)

sin% = sin{ ILI2-IRI2 ilS)
ILI2+InI2+2ae(LR*)

In general, for given speaker outputs ILl 2 and Iai 2, with interspeaker

phase _ we have

$
Re(LR) = ILllalcosC (16)

so that the denominators of (14) and (15) diminish as interspeaker phase

increases, so that the sound image widens.

As for phasinesst since only YV is non-real, the phasiness affects

only the ear-axis direction, with magnitude Im YV' which equals

2 Im LR

q = sin{ iLi2+iRi2+ZRe(LR,) , (17)

which equals
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2 sin_ sin_

when the left speaker phase leads the right speaker by a phase angle _.

We remark that the "phasiness" q introduced in [21] Appendix II and in

[37] omitted the factor sin_ in (17) and (18), so that the "phasiness"

q encountered in this and subsequent parts of this Paper is smaller than

that discussed in [21] and [37]. In those references, we were only concerned

with properties not involving the precise positioning of speakers.

BBC data [22] shows that for _ = 300 , and central sound images

(ILl = IRI), an interspeaker phase difference of I_l up to 450 is

"negligable", i.e.

2._.sin45 °
q = 1+1+2cos45 u = _(_-1) = 0.207

is the maximum for "negligable" effect. Similarly, {_1 of up to 900 was

found to be "acceptable", i.e.

Iq{ = = 0.5001+1

Thus we see that, according to these criteria,

]ql < 0.207

ia "negligable' and

Iql < 0.500

is "acceptable", as reported earlier (in terms of Q = 2q) in [21] Appendix

II. We caution the reader that interspeaker phase actually has no "minimum

audible" value, and in some circumstances, and with suitably experienced

listeners, values of Iql < 0.05 can be heard, depending on the program

material and especially on the loudspeakers used.

Use of (18) will quickly show that a given interspeaker phase
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difference _ gives less phasiness at the edge of the stereo stage (i.e.

IL/RI << 1 or {R/L{ << 1) than at the centre. Thus for _ = 450 and

IL/R{ = 3, we compute that

q = 0.124

which is smaller than the centre-stage value q = 0.207 for _ = 45 °.

One of the most interesting aspects of interspeaker phase in

stereo reproduciton is the effect of having speakers at a finite distance d.

Putting the speed of sound = c and the frequency of a sound = F, the

speaker proximity modifies the values of xV and YV as follows

x v = cos_ (1 - 2--_d )

L-R

YV = sin_ (L-_)(1 - 2--_d )

due to the bass boost 1 - jc of velocity components of the sound
2_Fd

field due to speaker proximity. For Makita and fixed head localization,

we see that Re xv is unchanged, but that Re YV has the value

C

Re YV = Re YV+ 2--_-dIm YV (19)

where YV is the value for infinite distance. Thus the finite-distance

Makita localization is given by

{Ll2-lal2+_-_ddlL{lRlsin_
tanO V = tan_ {. (20)

[L{2+iR{2+mlLi{Rioos_} '

For example, if ]L[= [RI and _ = 90o (i.e. left leads an equal right

channel by 90 °, and if c = 340m/s, and the speaker distance d is 2m, then

tans V = tan_ (27_0______6)

where F is the frequency in Hz. For F = lO0 Hz and 2_ = 600, this gives
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a Makita azimuth equal to

8V = 8'880

which gives an image displaced about 0.3 of the way torwards the left

loudspeaker.at 100 Hz. This image shift, as a proportion of subtended

interspeaker angle, diminishes inversely proportional to speaker distance

and inversely proportional to frequency. Nevertheless, it will be seen

that interspeaker phase difference lead to significant displacements of

the bass frequencies of sounds towards the phase-leading speaker. This

phenomenon of shift towards phase leading speakers has been noted by Bauer

et al. [38], although we do not claim that tile proximity effect is the

only mechanism involved. (Indeed, in [39] it is shown that similar shifts

occur at higher frequencies where other effects must be responsible).

It might be argued that the effect on localization at such low

frequencies is "unimportant", but we believe this not to be so insofar

as the more things that are made correct the better. Also, the effect is

significant below 300 Hz, i.e. over about half of the 700 Hz range over

which low frequency localization theory is expected to be apt. Fortunately,

it is easy to modify a stereo reproducer to avoid proximity effect by

putting the difference L-R signal only (and not the sum signal L+R) through

an RC high-pass filter with response

je
i / (1 - 2-_-_) (21)

with -3dB point at 54/d Hz (d in metres). It will be seen that this restores

YV to its ideal YV form. In practice, a fixed compensation corresponding

say to d = 3m would give useful improvements and a more accurate stereo

reproduction for all types of program. Most of the effect of the high-pass

filter (21) is due to its effect on phase response rather than to the small

effect on amplitude response.
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Figure 2. Ambiguity cone of directions at angle O to

ear axis. (See [31] for a further discussion.)
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