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General Metatheory of Auditory Localisation
Michael A. Gerzon

Technical Consultant, 57 Juxon St., Oxford 0X2 6DJ, U.K.

Abstract

This paper presents a general metatheory (theory of theories)
of directional sound localisation suited to the design of
directional sound reproduction systems using loudspeakers.
It is shown that any theory of localisation can be
expressed as a composite of "primitive" component theories
based on three hierarchies: degree of nonlinearity, order
of spherical-harmonic directionality, and degree of use of
head movement. These component primitive theories are
mathematically tractable for design purposes. An appendix
illustrates applications of the metatheory to previous
models for stereo localisation.

0. Author's Note

This paper on the basic theory of auditory localisation aimed at
designing directional loudspeaker reproduction systems was originally
written in 1976/7, under the cumbersome title "The Rational Systematic
Design of Surround Sound Recording and Reproduction Systems. Part I.
General Theory of Directional Psychoacoustics and Applications".

This paper was circulated (with slight editing of the
diametric decoder theorem, which was the subject of U.K. Patent
2,073,556 filed in 1980) at that time to the FCC and EBU as part
of technical submissions by the British N.R.D.C. on technical
standardisation proceedings on "quadraphonic!" systems. Although
copies have also been circulated to individuals, the paper has never
been available in the open literature.

The original paper was the first part of a massive three-part paper
which described the detailed design procedure of Ambisonic encoding

and decoding systems, and many of the results of this paper have

been applied to commercial ambisonic decoders. Although some of the
detailed technical references in the paper may be somewhat "dated", the
contents of the paper remain relevant to the design of directional
sound reproduction systems, and not merely to those that are "ambisonic".
References [41] to [42] are recent examples of technical papers that
have made use of the results of this paper, and it is its continuing
relevance to contemporary work that has prompted the formal

publication of this work.

Apart from changing the ending of the "Conclusions" section to make it
relevant to current work, the paper is exactly as written in the 1970's,
since I feel that attempts to "update" the paper would not significantly
improve on the original presentation.



1., INTRODUCTION

Hitherto, the design of surround sound systems has been a
"black art" rather than a systematic procedure. Generally (and the
author does not exclude his own early work), the procedure has been
to juggle with the mathematical patterns of speaker feeds until they
satisfy some pattern considered nice or plausible by the designer,
and possibly to back up this by poorly-defined '"psychoacoustic” rules-
of-thumb that had little general predictive value, and often based on
either little hard experimental evidence, or on an extreme extrapoiation
of results obtained under a limited set of test conditions. Of these
heuristic system designs, possibly the most successful [1] (at least
in surround reproduction performance) was the UMX system of Cooper and
Shiga [2], which was based on requiring a rotational invarience of
mathematical properties, and backed up by Makita's localization criterion
which sometimes (but not always) gives moderately good predictions.

A number of papers have appeared, of various degrees of
sophistication [3],[4],([5],[6],[33] attempting to explain various
aspects of directional psychoacoustics as it pertains to surround sound
reproduction. The present paper lays the foundations required for a
systematic design of complete surround sound systems. Since the aim
of such systems is (or should be) to produce a reliable and convincing
illusion to domestic listeners of the intended encoded directional
effect [7], it is essential to begin such designs with a reliable and
mathematically tractable theory of human directional psychoacoustics.

It is evident that until one knows what information needs to be presented
at the listener's ears, no rational system design can proceed.
(Historically, it is interesting that modern 2-speaker stereo was

designed backwards from the ears of the listener by Blumlein in 1931 [8]).
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This paper presents for this purpose a novel approach to
directional psychoacoustics. Much of the philosophy and theory was
described in nonmathematical form in a previous paper [6] of the author,
and the mathematically less sophisticated reader will find this an ideal
preparation for this paper. Essentially, the novelty of this work lies
in three important features:
(i) It is assumed that the ears have no single method of localizing
sounds, but that many different methods are used. In the case that not
all methods give the same results, it is supposed that the ear takes
some sort of "majority decision', except when a complete conflict of
cues is heard when the localization will also be confused.
(ii) A "metatheory" (i.e. theory of theories) of directional psychoacoustics
is developed that in principle allows arbitrary complex methods of sound
localization to ye expressed in terms of a heirarchy of relatively simple
"primitive" theories, rather as in applied mathematics one might approximate
a complicated function by a sum of much simpler polynomial terms. It is
not suggested that the "primitive" theories themselves necessarily describe
the way or ways the ears localize sound, but that if the various
requirements for accurate localization demanded by "primitive' theories
are satisfied, then the likelihood of correct localization by the ears'
actual localization mechanisms is greatly increased. In general, the more
"primitive" requirements are satisfied, the more reliable will be the
localization heard, and the degree to which various "primitive" theories
fail to be satisfied may be used to describe various qualities of faulty
localization.
(iii) A great simplification in the theory is obtained by treating the
ears as a "black box" responding to an incident sound field, and by not

attempting to describe the internal mechanisms in the ears and brain
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responsible for the black box behaving in the way it does. For engineering
purposes, it is clearly sufficient to know how the ears respond, and not
necessary to know why. In fact, a number of the "low degree low order"
primitive models described in this paper may be filled out with great
detail involving computing acoustic waveform arrivals at the ears, as is
done by Clark Dutton and Vanderlyn [9], Makita [10] and Tager [11],
among others {5),[12],[13). However, a comparison of the computations
in [5],[9]-[11] with the corresponding black box theory of this paper
shows that the same results can be deduced with very much simpler
mathematics by the process of ignoring the inner workings of the ears.
While the resultant theory looks much more "abstract", it is much more
amenable to complicated design calculations and more accessible to
intuition because of its fundamental simplicity. Some physical idea of
how this black box approach works is described in [6] with especial
reference to its figure 1.

We lay emphasis on theory being "simple" and '"tractable"
(which is not the same as "elementary" or even "easy"), since our aim
is more ambitious than merely to be able to analyse an already-designed
encode/decode system. The design of encoders and decoders involves
tens or hundreds of parameters, all of which can be varied. There is
clearly little chance of ending up with a near-optimal design (especially
if the number of criteria of goodness used is also large) if one relied
on guesswork in choosing designs. Even with large-scale computing
facilities, it is virtually impossible to evaluate and optimise systems
with more than about 7 or 8 free parameters. Therefore, to do better
than this, the mathematics of the psychoacoustic theory must be of such
a form that there are general mathematical results (Theorems) that

permit a drastic reduction in the number of parameters that need to be
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considered. The "diametric decoder theorem" 1atér in this paper is an
example of a result that reduces the number of parameters to be considered.
(That theorem describes mathematical relationships between speaker feed
signals that ensure automatically that more than one localization criterion
is satisfied). A more extreme example of reduction of parameters is
discussed in part III of this series of papers, whereby we shall show
how to optimise the whole encode/decode system by reducing the problem
to a 4-parameter problem.

Thus, precisely because the design of decoders would otherwise
be too hard a problem to solve, the style of these papers is mathematical.
Readers who only wish to understand the physical ideas behind this
mathematical approach are referred to [6]. However, we do make some attempt
at not burdening the reader with more formalism than he needs for
engineering design tasks. An exception is the section below dealing with
the heirarchical metatheory of directional psychoacoustics. This is
because we owe the reader some general background to explain what would
otherwise seem an arbitrary choice of models of directional hearing.

No claim is made that theory described in this paper is good
for all possible applications. Without considerable extension or modification,
the theory is unsuitable for dealing with ambient sounds and with the
effects of inter-speaker time delays. Such aspects will be considered
in part in subsequent papers.

It is an essential feature of the psychoacoustic metatheory of
this paper that it includes as special cases the theories of auditory
localization pufsued by a large number of previous authors, such as
[3]-[5],[8]~-[16]. In Appendix I, we describe briefly how previous theories
may be incorporatédlinto the present one, and discuss applications to

2-speaker stereo localization.



The theory in this paper is presented in a form that may be
applied either to horizontal-only or with-height reproduction. Although
the presentation would have been somewhat simplified by not including
the with-height case, we believe that the methods described in this
paper and in subsequent parts makes with-height (periphonic [17])
reproduction of sound an entirely practical proposition, and there
seemed to be a strong case for advancing the sound reproduction art
further by making this information available.

Some difficulties of reading this paper arise because its
conceptual framework is not entirely conventional (so that explanations
of concepts require careful thought of the reader), and yet has to be
expressed in somewhat complex mathematical form in order to do computations.
The notations used have not been made so abstract that the statement and
proof of results becomes very short but difficult to 'see through'
physically, but involve sufficient abstraction not to make all the.
results totally unwieldy. Some use (explained in the text) has been
made of simple .tensor notations where this is of some assistance, notably
in the so-called '"cross-bispectral" models.

The first-time reader is advised to skim through to get the
'gist' rather than to get bogged down in details that he might not need
for his purposes. In particular, of all the classes of models considered,
the velocity and energy models are the most important, and others may
be omitted on first reading. The writing-out of the various equations
for familiar decoders (e.g. BMX and TMX decoders [2]) is a. useful aid
to understanding the significance of the mathematics given, and is

recommended.



2. CONVENTIONS

It is convenient to describe some general aspects of notation
and some general assumptions adopted in this paper, for ease of
reference.

We set up (x,y,z) axes in space that are rectangular cartesian
coordinates centred upon the listener, with the x-axis pointing forward,
the y-axis leftward and the z-axis upward. Thus, for example, the
horizontal plane is the x-y plane, and a loudspeaker placed at azimuth ¢
measured anticlockwise from due front (the x-axis) at a distance d from
the listener has coordinates (x,y) = (dcos¢d,dsin¢). All azimuth angles
are measured anticlockwise from due front, and symbols involving ¢ will
represent the azimuths of reproducing speakers, whereas those involving
6 will represent the apparent azimuths of recorded sounds.

It is assumed in this paper (Part I only) that all loudspeakers
are placed at an identical distance d from the listener, so that identical
sounds emitted from all speakers reach the listener at the same time and
with the same amplitude. Unless otherwise specifically stated, it is
assumed that the distance d is large, so that the wavefronts from the
loudspeakers arrive at the listener in the form of a plane wave. Although
such a restriction is not fundamental, it simplifies the theory to
consider a sound field as resulting solely from a finite number of
infinitely distant point sources. As we shall see, it is possible to
remove this restriction by subsequent simple modifications, and this
order of doing things is much easier than the opposite one of starting
with the greatest generality and then restricting to special cases.

Speaker feed signals, and signals from which they are matrixed,
are indicated by sans-serif letters, which are usually capitals, and

the corresponding signal gains for individual encoded sounds are
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indicated by the same letters in ordinary type-face. Thus LB,LF,RF,RB
represent signals fed to left-back, left-front, right-front and right-
back speakers, and LB,LF,RF,RB represent the corresponding (generally
complex) signal gains. The symbol j=/-1 is used to indicate a +90°
relative phase shift (Hilbert transform) when applied to signals and
to indicate v-1 when applied to signal gains, as usual. The letters
X,Y,Z or x,y,z are used to indicate signals associated with the components
of sound field velocity in the respective directions of the x,y and
z-axes, and 1in particular we let X ,y,2 indicate signals with
sounds encoded with respective gains x,y,z where x2+y2+z2=1 and (x,y,z)
is a vector pointing towards the intended direction of the encoded sound.
Thus a sound from azimuth O in the horizontal plane has x=cosf, y=sinf,
2=0, and a sound from azimuth O and elevation 1" above horizontal has

x=cosfcosn, y=sinfcosn, z=sinn. (x,y,z) is termed the direction cosines

of the direction of the vector. The symbol 1 is used to indicate a
signal with all sounds encoded with the uniform gain 1, and the letter
W is used in connection with signals representing reproduced sound field
pressure. The letter P is used to indicate general speaker feed signals.

The letter t is used to indicate time, c the speed of sound,
F frequency and w=27TF angular frequency. For complex numbers u+jv, we
use the symbols Re, Im and * as follows:

Re(u+jv) = u , Im(u+jv) =v , (u+Jv)* = u=jv
In some of the paper, we find it convenient to write vectors

in the form xP = (xl,xz,xs) rather than in the form (x,y,z). The

superscript here (which is written as P or 1 when any coordinate is
considered, where p,q=1,2,3) should not be confused with a power or

exponent, but is just a coordinate index. Capital letter subscripts

are invariably not intended to stand for numbers, and we occasionally



(and with warning) use the Einstein summation convention whereby
repeated superscripts or subscript in a product are intended to be

added over all possible values of the repeated superscript or

subscript.
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3. HEIRARCHIES OF MODELS

The models of directional localization that we shall consider
are graded in order of complexity in 3 different ways. The first parameter
describing the heirarchy of models describes the degree to which the
model is nonlinear. Thus a linear model is "first degree", a quadratic
or correlation model is ''second degree'", a cubic or bispectral model
is “third degree', etc. The second parameter describing the place of a
model in the heirarchy is the order of directionality, i.e. the order
of the spherical harmonics in direction to which the model reponds.
Thus a zeroth order model is non-directional, a first order model responds
to Yector aspects of directionality, etc. The third parameter describes
the degree to which head-movement is taken into account by the modél,
i.e. whether the model supposes the head to be stationary, in an
arbitrary orientation, or some intermediate situation. We now describe
each of these heirarchies in more detail, and then put them together.

(i) Nonlinear Heirarchy.

Under certain conditions, a nonlinear operator N acting on n
input signals fi(t) (i=1,2,...,n) will produce an output signal that may

be expressed in the general form of a Volterra Series [18],[19] via

Ngey = ¥ f... Sk, (b=t ..., t-t )F, (t.)...f, (t)  dt,....dt
£ D=0 D-fold 11...1D 1 D 11 1 lD D 1 D

where we use the Einstein summation convention of summing over all

and where for each set i_...1

possible values of the indices il""’iD" 1 b

of indices, ki i is a function of D time variables known as the
PRERE
Volterra kernel. In the special case D=1, ki(t) is the ordinary convolution

kernel of a linear system, and in general, the D'th term of the Volterra

series describes a nonlinearity of D-th degree in the input signals.



By taking each term separately, we may consider a model of D-th degree

nonlinearity. For example, if the ears respond via
Ngr) = e ez et
£ 1 L

which is the total energy of the signal, the model would be quadratic,
i.e. of degree D=2. Similarly, a model with D=3 is termed cubic. Most
models considered in the literature are either essentially linear
([4)-(6],([8]1-(13),[15),[16]) or essentially quadratic ([3],[6],[14],[20]).

(ii) Directional Heirarchy

The ears as a system may be considered as responding to a function
of direction. (This function may be sound waveform amplitude in a linear
theory, sound energy in a quadratic theory, and more complicated quantities
in a D-th degree theory). The degree to which the polar diagrams describing
the reception of the sound information are directional determines the order
of the theory.

A function of the direction may [17] be described as a function
on the surface of a sphere, and expressed uniquely as a sum of spherical
harmonics. The order of the theory is the order of spherical harmonics
used by the médel. Thus expressing the incoming sound information as a
function £(x,y,z) of the direction cosines (x,y,z), the order of a theory
is the order of the spherical harmonic components [17] of £ to which
it responds. Thus a first order theory responds to functions only of
the form l+ox+By+Yz (0.,B,Y constants), whereas a 2nd order theory responds
also to functions involving terms quadratic in the direction cosines.

(1ii) Moving Head Heirarchy

Given a model of known degree and order, the extent to which
use is made of information obtained by moving the head is still not

determined. The moving head heirarchy of models is obtained by choosing
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which of the parameters in a given model are physically significant.
For example, with the head absolutely fixed, vector components of sound
arriving in a direction 90° from the axis of the ears are not used.

In a second class of models (e.g. see [12],[20]), only information

that varies to first order in head movement is used, whereas at the
other extreme, a model may use information in a totally direction-
independent fashion, i.e. without the model having any preferred

- spatial orientation.
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L, SOME "PRIMITIVE" MODELS

Based on the heirarchies described above, it is possible to
describe what the lowest models in these heirarchies look like. Here we
list some basic "primitive" models, describing them in terms of the
information received by the ear/brain system when respondihg to' a number
n of equally distant sound signals Pi placed in the direction with
direction cosines (Xi’yi'zi)' We also discuss briefly the approximate
ph&sical significance of the various parameters occuring in these models.

(1) First Degree First Order Models (Velocity Models)

Consider the signals (representing pressure and velocity)

n
' =
Wy =ik Py
n
| =
X'y =ik %P
n
voo= L
Yy i=1 ylpl
n
\ =
2y =ik %P
and for a single encoded sound with associated complex pgains w&,x&,yo,zb,
and write
o= [ 1
xv X V/w v
= ) t
Yy AR
- [ '
zv 4 v/w v

so as to eliminate the effect of the overall signal level w'v from the

direction-determining aspects of our models.
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Then write

rvﬁv = Re Xy
ry¥y = Reyy
rvﬁv = Re zZy
where r, = {(Re xv)2+(Re yv)2+ (Re ZV>2}é and §V2+§v2+£V2 = 1, and Re

stands for "real part of". Thus (X ) are direction cosines.

V'yV’zV

v,yv,ﬁv) is the apparent direction of the sound

The direction (%
according to Makita's theory of sound localization (used in [2],[5],[10])

and is thus called the Makita localization. The quantity r_ equals 1 for

N

a single sound source (as a calculation quickly shows) and ideally

should be as close to 1 as possible for a reproduced sound. rv is called

the velocity magnitude of the sound. All low frequency interaural phase

theories of sound localization (which ignore any effect of amplitude
differences between the ears) assume that the only quantities relevant
to localization are the Makita localization (ﬁv,ﬁv,ﬁv) and the velocity
magnitude rv. Such theories apply at audio frequencies somewhat below
700 Hz.

For horizontal sound sources, we may rewrite the above by putting

(for speakers with azimuths ¢i)

n

X'y = 3Ly Pyeosd;
n

V'y = 3I; Pysingg

and computing xv,yv as above, and finally putting

T cosev = Re x

v A

rv51nev = Re Yy

where eV is the Makita azimuthal localization and‘rv>0 is again the velocity
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magnitude.

The remaining three real parameters

Im ﬁv , Im 9v , Im ﬁv

describing localization in this class of models are termed the phasiness
in (respectively) the directions of the x,y and z-axes. As discussed
in Appendix II of [21], the phasiness describes departures from the ideal
low frequency theories, as well as unpleasant qualities of localization
discussed experimentally in [22]. Phasiness describes quite well the
overall degree of blurring and unpleasantness caused by the use of phase~
shifting circuitry in decoding equipment, and is probably apt at frequencies
above about 300 Hz but below about 1500 Hz. These figures are guesstimates
based on a mixture of theory and experience. Experimental evidence [22]
suggests thaf the magnitude of the vector component of phasiness in the
direction of the ear~axis should not exceed about 0.21 in order to be
practicaliy inaudible, although experience suggests that sensitivity
to phasiness grows with experience.

For a forward-facing listener (with horizontal head), the
component (Im ?V) of phasiness parallel to his ear-axis is thought to
be subjectively the most important. Idealiy, the phasiness should be zero,
and certainly should be less than 1.

For sound sources (i.e. loudspeakers) at a finite distance d,
the above model must be slightly changed. The quantity w'v describing
sound field pressure is given as above, but the formulae for the velocity

components x' z'v at the listener should be changed to:

[
vvyvr
n

1 = - .J..(_:.
X'y =k /PO

n

T p ic
t - -
Vv 181 ¥iP (7 )
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n (o
2y =Ly 7P 0 0D
where the distance d is in metres, c¢ is the speed of sound in metres/sec
(334 m/s), and where w is the angular frequency of the sound in sec—1
The rest of the calculation of the localization parameters is as before.
Essentially, the factor (l-jc/wd) is the familiar 'bass boost' of velocity
for a source at a finite distance, and is caused by the curvature of
the sound field for such a source. Alternatively, it is possible to deduce
this modification of the sound localization by complicated calculations
on the waves arriving at the two ears in models in which such aspects
are calculated ", It will be seen that the bass boost affects mainly
low frequencies, and that its main effect will be to convert phasiness
into an alteration of the Makita azimuth.

We comment that the localization parameters described here may
properly be regarded as a function of sound frequency, and it is possible
for some designs of equipment that the various parameters might actually
be designed to vary with frequency.

(2) Second Degree First Order Models (Energy Models)

The model considered here is similar to the first degree model,

except that the sound amplitude gain P_ from each speaker is replaced

i
) 2
by its energy gain IPiI .

w'g T 121 |p1|2

x'g = 121 xilpilz
Vg T 121 yilpilz
2'g T 121 z|P K
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As before, we write

=3 T ; t
xE X E/w E

= ' 1
Vg y E/w E

= 1 1
zE 4 E/w £

and further write

r_X = X

E°E E
'eYg T Yg
g’g T g

where r. = {(XE)2+(YE)Z+(ZE)2}%’ and where ()’EE)2+(§E)2+(’Z‘E)2 =1,

Then the direction having direction cosines (ﬁE,ﬁE,SE) is called the

energy vector localization and the quantity o is termed the energy vector

magnitude. These are the two quantities describing localization in the
model now considered, which is thought to apply to some degree in the
frequency region 500 - 5000 Hz. For a single sound gource, an easy
calculation shows that rE=1, so that ideally this value should be attained
for all reproduced sounds. However, we can prove the following theorem:
Theorem 1 If two or more distinct sound sources at a large and equal
distance from the listener are fed with a sound with non-zero gains,

then the associated energy vector magnitude r, is strictly less than 1.

E
Proof ' This is shown by observing that re is the length of an average
!2

»

of unit length vectors (xi,yi,zi) with positive weights |Pi|2 /j£1|Pj
for r, to equal 1 it would be necessary for the length of this sum

of vectors to equal the sum of the lengths of the vectors, which in turn
would require all vectors (and hence speakers) to lie in the same direction,
contrary to the assumption of the theorem. This completes thée proof.

As in the case of the previous models, the energy vector magnitude

and energy vector localization may be computed separately either for each
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frequency, or for each of a band of frequencies, in the case that the
signal gains Pi vary with frequency.

(3) Third Degree First Order Models (Bispectral Models)

The theory of third degree models is somewhat more complex, and
relies on somewhat deeper theory than it is practical to give in the present
paper, so that the form given below has, to some extent, to be taken on
trust. Although the detailed theory will be published elsewhere, we assume
that third degree aspects of the ears act as a bispectral analyser,
where for a signal f£(t), the bispectrum is defined as that function of

pairs of frequencies Fl,Fz (with 0<F2<F1) that is the Fourier transform
of the triple correlation

lim 1 T
D00 BT -7 Ft)F(t+ty ) F(trtp)dt

The theory of the bispectrum is given (very mathematically) in ([23],[24],
[256], and we comment that the bispectrum measures the degree of mutual
correlation between three frequencies Fl’ F2 and F1+F2, and is also a
measure of waveform asymmetry. Some elementary discussion of the bispectral
theory of hearing is given in [26].

Writing the gains of the sound emerging from the i'th loudspeaker
at frequency F as Pi(F)’ the bispectral fheory computes for each pair

F F_, of frequencies (with O<F <F1) the quantities

1’ 2 2
n *
Wiy = Iy Py FDP (F{P (F4F))
n
! = ¥ x.P (F)P (F){P,(F_+F )}*
*'p i1 %515 YT
n
' = I P (FOP, (F )P (F +F )}*
Y'p 381 Y35 P W T
n

2'y = Iy 2P (FOP (F )P, (F +F)) }*



19

*
where indicates complex conjugation. Note the curious asymmetric way
complex conjugation occurs, whereas in the 2nd degree case we had
*
[Pi(F)[2 = Pi(F){Pi(F)} in our expressions. Then as in the first

degree case, we compute the complex quantities

= (] ]
*g *'g/V'g
= [ '
g A
= ] 1t
zB Z B/w B
and from these in turn compute T and (ﬁB,§B,ﬁa) via the equations
erB .= Re xB
rpfp = Re g
rBzB = Re zB
2 2 2.%
where rB = {(Re xB) +(Re yB) +(Re zB) } and where it follows that
A2A2A2_ N o s
Xy +yB +zB = 1 . The direction (xB,9B,zB) is the bispectral vector

localization, and rg is termed the bispectral vector magnitude. For a

single sound source, r =1 and its localization is the bispectral vector

B
localization. Additional quantities produced by this localization theory

are the bispectral phasiness components

Im xB , Im yB , Im zB

in the directions respectively of the x, y and z axes. Ideally these
should be zero.

We reiterate that if a frequency-dependent decoder is used, so
that Pi(F) varies with frequency F, the bispectral localization is a

function of pairs of frequencies F, and Fz (with 0<F2<F1). This can

1
make computations tedious unless the decoder is frequency-independent.

The bispectrum of a signal describes its timbre or sound-

colour, and the frequencies F1 and F2 are the frequencies of the formants
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of the sound, i.e. frequencies at which the sound has been subject to
broad resonances [27]. Although sufficient data is not yet available,

the bispectral theories- are thought to apply for frequencies Fl' F2
and F1+F2 in the range 300 Hz - 5 kHz approximately.

(4) First Degree Second Order Models

In order to illustrate the way higher orders of directionality

~ can enter into a theory, we consider the case of a 2nd order 1lst degree
theory; such a theory is probably apt in the frequency region 400 - 1000 Hz
in which the 1lst order theory starts failing. In the 2nd order theory, the
available information includes 9 signals with complex gains coxresponding
to 9 independent zero first and 2nd spherical harmonics. If f(x,y,z) is

a spherical harmonic (i.e., a polynomial function on the sphere of direction
cosines orthogonal to all polynomials of lower degree [17]) of 0, 1lst or

2nd order, then the signal Sé with gain

n
'o=
Sp = 4Ly £y ez Py

conveys information about sound directionality. Denoting by 1 the special

function on the sphere that equals 1 everywhere,

n
1 =
sl i§1 Pi

and we may thus consider localization as depending on the 8 complex parameters
= [ v
Sf Sf/S1
for 8 independent 1st and 2nd order spherical harmonics [17]; if we only
consider horizontal directions, then we need only consider the 4 complex
parameters given by putting

f(cos0,sing,0) = e—je,eje,e_zje,ezje

such as considered in [2].

Determining how apparent direction depends on the 16 real parameters

Re Sf and Im Sf is clearly a much more complicated task than when we
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considered only 6 real patameters as in the firs; order first degree models.
It really requires more experimental data than is presently available to
refine the interpretation of the 16 parameters at each frequency, and the
present status of 2nalorder models }s largely to give a geheral idea of

how 1st order models start to go wrong as the frequency is raised, rather
than to give detailed predictions.

(5) A 3rd Degree 3rd Order Model (Cross-Bispectral Models)

We here déscribe an example of a high degree high order model
in order to show that although the general class of such models is too
complex to handle in any detail, particular models may well be simple
enough‘to give useful depailed predictions. The model we shall use will
be called the "cross-bispectral' model, and is a 3rd degree 3rd order
model; like the "bispectral" 3rd deégree fifst'order model considered
earlier it envisages an impression of directionality due to correlations

between the frequency components of signals at frequencies F F2 and

1’

F3 = F1+F2 . The theory given here differs from the bispectral model

considered earlier in that it envisages that correlations between output
signals from sources in different directions may influence apparent sound
direction; for example, a sound emerging at frequencies F1 and Fé from

one speaker and at frequency F3 = F1+F2 from a second speaker may produce

aﬁ image situated at neither speaker. The present model describes locdlization
in terms of cubic functions of the direction cosines of loudspeakers, and

go is a 3rd order.model.

Using the notations described earlier, consider the complex

quantities at frequencies Fl' F2:

Vo plodok * i 3 : k - ¥
¥'op AN pi(Fl)pJ(Fz){pk<F1+F2)} (< Pi(Fl))(‘Z Pj (Fz))(Z P, (Fy))



22

' _ 1 pa.q *
X % k}p (Fy )p (F, y{p (FS)}

q
*eB T 3 j

q p q. P _4q
{xix,xk + X% Xy +

k .

where the indices i,j,k run from 1 to n, Zi, Zj, L" mean summation over
all values of these indices, where p,q=1,2,3 represent the coordinates of

vectors in respectively the x,y and z directions (so that x: =X, xf & yi
3

and xg = zi), and where we use the Einstein summation convention that
repetition of an index in any product of terms means that we'must sum over

9,4 11 22 33
= = ‘o P).
the repeated indices (so that x1 j x b +xixJ+x x, and xiP1 x1P1+ +xn n)

We use F3 to denote F1+F2 We remark that the vector quantity vaB may be

P p

regarded as a function xc on the sphere (u1)2+(u2)24(u3)2 =1, and

that this function is % times the lst spherical harmonic compdnent of

the 3rd degree function apqrupuqur on the sphere, where

pqr _ p q
a = XXX P (F))P (Fz){P (F >}

Given the scalar w!

l
A and complex vectors xGB' as is now familiar, we form

a cross-bispectral vector

p - .'p .
Xop = *c¢B/ YeB

for p=1,2,3 , and form the vector ﬁ%B of unit length such that

p . P
CBSECB = Re Xy

3
p'2'}
> -
where r 0 eqguals {pgl(Re xCB)‘} GB is the cross bLSpectral

CB
vector localization and rCB the cross-bispectral vector magnitude. The .
vector Im x%B is. the cross-bispectral phas;ness vector.

Unlike the earlier bispectral model, the cross-bispectral model
applies only to very accurately-positioned listeners who are precisely
equidistant from the sources i=1,...,n, We shall see later that the
cross-bispectral model gives the same predicted localization as velocity
models under a wide range of special conditions, although in general

(e.g. when the different frequency components emerge from different spedkers)

it gives very different predictions
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5. INTERPRETATION OF MODELS

The effeqt of head mOVemgnt has not been discussed explicitly
in the above models, but it is useful to give some general indication of
how head movement may be described explicitly. In the velocity, energy,
bispectral and pross-bispectral models, we have a direction cosine vector

(%,§,2) and a vector length r given by the models. (%,¥,2) may be considered

as the diraction of the sound as determiﬁed by someone orienting their head
until the sound seems straight in front of them. In the velocity model,
(iv,9v,ﬁv) is called the Makita localization ([2],([10],[5]. Alternatively,
taking the realistic view that real-world sound fields will be degraded
by the presence of random room reflections and the like, it is not to be
expected that the effective vector length r "heard" by the ear will be as
great as 1 everl for single sound sources, so that one presumes that the
ears are equipped with means of allowing for this; such means must involve
movements of the head, but not necessarily movements so drastic as to
make the listener face the source. Leakey [12] was led to the same
localization as Makita just by considering information deduced by looking
at thé change of interaural localization for small head movements.

However, there will be cases when head movements do not occur,
or when sounds change too rapidly for the effect heard at different head
orientations to be compared, or where changes are small in relation to
the complexity of total sound information reaching the ears. In these
cases, a fixed head médel is apt. While room acoustics may degrade the
effective value of r, there will be a short period of time between the
arrival of a d;rect sound and its reflections during which the room has
no effect on the vaiue of r. Thus we may expect that in some circumstances
fixed-head theotries may also have some predictive value. (It has been

found by experience that reflections from room walls of loudspeaker
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signals may be treated as part of the direct sound provided that the

delay of the reflections are less than 10ms, i.e.‘provided that the speakers
are closer than 14m to the nearest walls. With larger distances from room
walls, the ears appear to treat early reflections not as a paft of the
initial transient, but erronecusly as & part of the subsequent period
during which room acoustics do not yet affect r. The results are that
surround localization is poor for such away-from-wall layouts).

The fixea-head localization i& obtained by taking the vector
(r®,r§,r2), taking its component in the direétion of the unit vector
(ul,uz,us) along the ear axis (pointing towards, say, the left ear),
and the resultant quanfity (if less than 1) is the cosine of the apparent
sound direction's angle from the ear-axis. Thus put

& = arc cos(r:’iul + rix‘u2 + riua)

and the sound appears to arrive at an angle 0 from the leftward axis of
the ears (see figure 1). It will be seen that:

(1) if r = 1, the fixed-head localization is the same as the vector
localization (%,%,2), although it suffers from an ambiguity due to the
fact (shown in figure 2) that there is a cone of directions at an angle
0 to the ear-axis. The well-known front-back ambiguity [16][30] is a
well-known example of this ambiguity.

(2) if r < 1, then the apparent fixed-head direction of the sound is
further from the ear-axis (and closer to plane of gsymmetry of the head)
than the vector localization. This causes a 'narrowing of images'.

2., r2u3| < 1, then the apparent fixed-

(3) i2 r > 1 and |r5Eu1 + rfu
head direction is closer to the ear-axis (and further from the symmetry
plane) than the vector localization; giving a 'wider image'.
(4) if the projection onto the ear-axis has leﬁgth > 1, i.e.

IrSEu1 + r9u2 + rﬁual> 1, the quality of localization is unlike any
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encountered for real sounds. In such a case, the localization quﬁlity
may be to the side of the head but disturbing, or may have no clear
localization.

We mention the theories of Strutt [16], Clark Dutton Vanderlyn
(9], Bauer [15]), de Boer [14] and Damaske and Ando [3] as examples of
fixed-head theories.

Some of the theories considered (velocity, bispectral and cross-
bispectral models) also have a 'phasiness vector' affecting localization,
which is zero for real-world direct sounds. The effect of such phasiness
quantities on localization is not easy to predict in detail. Not only
does phasiness affect the quality of the localized sound (producing
listener fatigue and poor localization quality, as well as affecting
tone color), but it may also alter the actual localization perceived
from that given above to some degree, which may vary with frequency (or
w1£n pairs of frequencies in bispectral and cross-bispectral models).

The precisé way in which this happené varies from theory to theory, but
in some theories, the localization may be approximately predicted by

taking the vector
(rﬁ+ap1, r§+ap2, r2+ap3)

where (pl,pz,ps) is the phasiness vector, and where a is a numerical
constant (often equal to about 0.3), and treating this as the vector
from‘which fixed and moving-head localizations may be deduced.
Implicit in the déscription of ;he models was two assumptions:
(1) that sounds only occur one at a time, i.e. that oﬁly‘one monophonic
;ound is fed to the n loudspeakers at any time. In praétice many
different monophonic sounds with different complex gains for each
speaker will occur in actual program material.

(ii) that the listener is precisely equidistant from all loudspeakers.
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These two assumptions have some inter-relation and may often
be weakened substantially. First we note that in the velocity and energy
models, it does not matter that different sounds occur at different
frequencies, since the models assume that ea¢h frequency or frequency
band may be handled independently. Similarly in the bispectral and cross-
bispectral models, sounds with different ‘'bispectral frequency pairs
Fl,Fz' (i.e. different formant frequencies) may be handled as if occuring
separately even if they actually occur together; the mathematical proof
of this lies in the 'stochastic independence' of signals bispectra (23].

However, even for sounds with the same frequencies .or 'bifréquencies
FI’F ', there is a possibility that the ears can simultaﬁeously distinguish
among more than one sound independently sounding from different apparent
directions. We cannot here go into the mathematical theory of why this
should be, except to point out to the interested reader that the spectrum
of a multichannel signal is a 'covarience matrix' or complex ‘tensor of
2nd rank' and that the bispectrum is a complex 3rd rank tensor [23].

As a result, the number of independent spectral and bispectral variables
available to- the ear is larger than the number of vector variables used
for localization. Indeed, in principle, the bispectral models are capable
of localizing up to 4 sounds sharing the same bispectrum and sounding at
the same time from different directions [25].

The velocity and cross-bispectral models demand that the listener
be precisely the same distance from all speakers for them to give valid
predictions, but the energy and bispectral models do not demand this.

This is because the latter models assume éach speaker is an independent
source, and only time-averaged quantities from them (e.g. the eneigy or
bispectrum) add up at the listeners ears. As a result, it is expected

that the energy and bispectral models will give useful predictions also
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for non-central listeners, provided that the change in intensity of

sound due to speaker distance and speaker direction changes are taken
into account. We hope to desc¢ribe in another publication applications

of a random version 0f the velocity models to non-central listeners.
However, all these models ultimately give predictions based on the
time-averaged properties of signals reaching the ears, and it is possible
and likely that the different localizations occuring immediately after
transients when the sound of only some speakers has arrived at the
listener's ears will modify the overall directional impression (e.g.

the Haas precedence effect [28][29]).
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6. THEOREMS ABOUT MAKITA LOCALIZATION

We have seen that the Makita localization is only one of many
localizations predicted by the various primitive models of sound
localization. If the various methods of sound localization do not agree,
then the Makita localization is not a reliable way of préedicting where

. sounds come from. However, as we shall see, there is a range of conditions
that automatically ensure that various methdds of localization do agree
with the Makita prediction. Indeed, given that we can design decoding
apparatus to give correct Makita localization, we may use the following
theorems to design decodeérs to give correct localization according to
other c¢riteria as well,

Thus, in the subsequent work in this and following papers, we
shall lay gréat emphasis oﬂ getting correct Makita localization. This
is not because we consider Makita's theory to be "correct' or "reliable"
(we do not), but because the art of designing good decoders may be reduced
to getting correct Makita localization as a first step, and then to using
results in this and later papers to get other localization criteria
right as well.

The fundamental design theory ofAdecoders is based largely on
velocity and energy models. Other models enter largely as an aid to
refining designs. Our basic approacﬁ will be‘to demand that deco&ers
should, as a very minimum reguirement, give localization that is identical
according to both the Makita and energy vector localization criteria.

The reason for this is as follows:

We know that the Makita localizatioh is one of the things we
wish to get right ﬁt low frequencies well below 700 Hz. We can aiso get
the velocity vector hagnitude ry right if in an initial design it does

not equal the desired value of one by changing the gain of the sum of
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the speaker signals until rv does equal 1. It is likely, however
that such a change of design will give a less-than-optimal value of the
energy vector magnitude rE. There is a rather indeterminate band of
frequencies (say 250 Hz ~ 1500 Hz) where it is not clear which of velocity
and energy models applies.

The designer of a decoder will wish to optimise localization
both at low and high frequencies. The best way of doing this is to design
a decoder which takes the form of one matrix at low frequencies and another
at high frequencies. It is necessary that the transition between these
two matrices also satisfies relevant localization criteria. Given that
it is probably not possible to design a decoder to be simultaneously
optimal according to both velocity and energy models, we seek to satisfy
both Makita and energy vector localization in the intermediate band of
frequencies, and to get some compromise among the other criteria of
localization. The following theorems ensure that it is possible to make
Makita and energy vector localizations the same, and also tell us how
to do this.

Consider four loudspeakers placed in a rectangle (see fig. 3)
with speakers handling respective signals LB, LF,RF,RB placed at azimuths
180°%-¢,4,-¢ and -180%+¢ respectively, i.e. with respective direction
cosines (-x,y,0), (x,y,0), (x,~y,0) and (-x,-y,0) where x=cos¢, y=sing.
(It is convenient from now on to suppress the third 0 z-coordinate as

irrelevant). Then we shall prove:

Theorem 2 (Rectangle Decoder Theorem )

The Makita and energy vector localization of a rectangle speaker
layout coincide if the signal
G = #(-LB+LF-RF+RB)

is either zero or bears for all sounds a 90° phase relation to X,Y,
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where the 3 signals W,X,Y are defined by:

W = 3(B+LF+RF+RB)
X = J(-LB+LF+RF~RB)
Y = }(LB+LF-RF-RB)

In the case Q bears a 90° phase relation to W,X,Ythe latter 2 signals
must bear a real phase relation to one another, and the Makita and
energy vector localizations and velocity vector magnitude rv are not
changed by replacing Q by a zero signal, but the energy vector magnitude
rp is increased when Q is replaced by zero. In all these cases, for
speaker azimuths 180°-¢,¢,-¢ and -180°+¢ respectively for LB,LF,RF,RB

we have that the apparent Makita azimuth (and hence energy vector

azimuth) Gv is .given by the proportional equation
coseV : sinev = (cosd)Re(X/W) : (sind)Re(Y/W)
or by the equivalent equation
* *
cosev : sinev = cosd Re(XW ) : sind Re(¥YW )

Proof Note that in terms of the signals W,X,Y, @ defined in the theorem

that
LB = }(-X+W+Y-Q)
LF = #( X+W+Y+Q)
RF = %( X+W-Y-Q)
RB = }(~X+W-Y+Q)

as an easy algebraic manipulation will verify. It may also be checked
that the total energy gain

|LB!2+|LF|2+|RF|2+IRB|2
equals

2 (12 1012, 102
[x| % fw| "+ v ] "+]e] %,
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2 2 2 *
using the fact that |o+B|” = |o|“+]|B|“+2Re(aB ) for any complex
numbers o,B in the calculation.
Using the notations of the velocity and energy models described

earlier, we have that

w'v = LB+LF+RF+RB = 2W
x'v = cos¢ (~LB+LF+RF-RB) = 2Xcos¢
y'v = gin¢ ( LB+LF-RF-RB) = 2Y¥sin¢

so that the Makita azimuth Gv is given by

rvcosev Re(x'v/w‘v) cos¢ Re(X/W)

L
"

r sinev

v sin¢ Re(Y/W)

L} 1
Re(y'y/w v)
as required in the statement of the theorem. Clearly, no prediction of
the velocity models of localization is changed by any choice of the signal

Q, since it does not enter the formulae for w' ,x' or y',, so that r
i v v

v A

and ev are not affected by replacing Q by zero.
' * *
Note for any complex numbers o,B that o/B = (@B )/(BB ) =
-2 % -2 *
= |B| (0B ), so that Re(o/BR) = |B| Re (B ), which proves the last
equation of theorem 2.

Calculating the energy model parameters shows

wo = 182 ur| %+ |re| %+ [RB|® = [x|%e|w|®4|v]|?+]q)?

X' = cos¢(—|LB|2+|LF|2+|RF|2—|RB|2) = cos$(2ReXW +2Re¥Q")

y'p = sing( |LB|2+|LF|2-|RF|2—|RB|2) = sing(2ReYW +2RexQ’)
Clearly we have Xp 1 Vg = x'E : y'E = cos¢ Rexw*‘: sing ReYW*

* .
ReYQ = 0, so that Q being in 90°¢ phase

provided only that ReXQ
relation to X and Y is sufficient to ensure that the Makita and energy

vector localizations coincide. Finally, we note that replacing a Q
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having a 90° phase relation to both X and Y by zero leaves ev,rv

and SE = 0,, unaltered, but that ro is then multiplied by

v
{|x12+|w|2+|¥|2+|Q|2} / {ix|2+|w12+|v|2} > 1 . Thus removal

of the Q signal increases the energy vector magnitude r_, when Q has

E
90° phase relation to X and Y. This completes the proof of theorem 2.

Theorem 2 tends to show that the following remarkable fact holds:

better results for non-speaker directions of sound will be obtained for
a central listener to a rectangle of loudspeakers if only 3 independent
channels of information (W,X,Y) are used to feed them; the presence of
a fourth channel Q can only degrade the results. This is especially true
for signals all having a real phase relation to one another, where it
will be seen from the above method of proof that the following corollary
holds.
Corollary 24
If the signals W,X,Y,Q have a real phase relation to one
another, then the Makita and encrgy vector localization for sounds
not precisely in one of the four loudspeaker directions will not
coincide unless Q = 0.
Proof x'E : y'E = cos¢(XW+YQ) : sindp(YW+XQ) for real W,X,Y,Q ,
and if this coincides with the Makita localization, it equals
cosd(XW) : sind(¥YW), so that if Q = 0 (cosP)Y : (sind)X = (cosd)X
ie. Y X" = 1:1, i.e. coseV : sineV = tcos¢ : *sind.
Thus O, = 6, and Q = 0 implies that 6 = 180°-¢,d,-¢ or -180%+¢
as required to prove corollary 2A.
Using the velocity models, an easy calculation of the vector

(Im x'v/w'

v ! Im y'v/w'v) shows that the first sentence of the next

corrolary holds.

(sind)Y
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Corollary 2B

For a rectangle speaker layout, phasiness according to the
velocity model of hearing is avoided if and only if the signals
W, X,Y (defined in theorenm 2) have a real phase relationship. For
non-speaker directions, the Makita and energy vector localizations
for such signalscoincide only if Q has 90° phase relation to gll of
W,X,Y , and the energy vector magnitude is maximised by putting Q = 0.

Proof It remains only to show that Q must bear a 90" phase relation to

the signals W,X,Y whose gains may be presumed real. BE = Bv only if

cosp Y (ReQ) : sinp X (ReQ) = cosdp X : sinp Y .

As in the proof of corollary 2A, this implies ReQ ; 0 except for sounds
" from the 4 speaker directions. This proves the corolla}y 2B.

The above results show that, for the most common loudspeaker
layouts, there is a definite disadvantage in having a 4th channel Q to
feed the 4 léudspeakers; i.e, 3 channels is best for‘rectangle speaker
layouts. We now consider some results concerning decoding 3 channels
through regu1a¥ polygon loudspeaker layouts.

Given 3 signals W,X,Y with an intended sound localization 61
given by

coseI : sinBI = (Re X/W) :(Re Y/W) ,

the problem arises of how to decode such signals through an arbitrary
speaker layout. We have already solved part of this problem for a rectangle
speaker layout.

Consider a naive decoder for a regular polygon loudspeaker
layout with n speakers at azimuths ¢ differing by 360°/n. The naive decoder

feeds the speaker at azimuth ¢ with the signal

W + Xcos¢d + Ysind,
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as one might expect then we have:

Theorem 3 (Regular Polygon Decoder Theorem)

Let a regular polygon of n > 4 loudspeakers be fed with

3 signals W,X, Y nresented to the loudspeaker at azimuth ¢ in the form
W + Xcosd + Ysind .

Then the Makita and Energy vector localizations éoincide. and the
energy vector magnitude rE cannot exceed 1//5. rE = 1/J§ if and only
if there is a 0 such that W,X,Y have real phase relation and
X = 2}Wcose, Y = 2&Wsin6. In general, the Makita and energy.vector
Azimuths are given by

cosO : sind, = Re(X/W) : Re(Y/W) = Re(xW') : Re(¥w")

All velocity and energy vector model localization criteria for given
signals W, X, Y are identical for all numbers n > 4 of speakers in any

regular polygon array, including a continuous circle of loudspeakers.

Proof We prove the last statement first, since the rest of theorem 3
need then be proved in the special case of a circle of loudspeakers only.
For a function f£(¢) of angle ¢, The integral (2n)*1£g £($)dd¢ (which we
hereafter write J£($)dd) is equal to % i§1£‘¢i) for ¢i = ¢0+2ni/n,
i.e. the integral may be replaced by the average over a regular polygon
of n points, orovided only that £(¢) may be written as a sum of terms of

the form amsin m$¢ or bmcos m¢ with m < n. (This is based on the easily

proved fact that

2mTmi
n

n
1
= i_§_1cos( Yy = 0 = [cos m¢ d

for 0 <m<n with n an integer, and a similar relation with "sin"
replacing "cos"). Now for the polygon decoder described above in the

theorem (with n > 4)
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n
1., =1 = " =
oWy o igl(W+Xcos¢i+Ysin¢i) J (W+Xcosp+Ysing)do w
1 1 32
=gt - =
n X'y A iQI(W*Xcos¢i+Ysin¢i)cos¢i
. 1.1 1 _ 1
= [(Wcosd+ 5 X+ 5 Xcos2¢+ > Ysin29)dp = 5 X
and Ly = l-Y similarl
A 2 Y-
also
1 2 1 2
Ly = -f|w+Xcos¢+Ysin¢|2d¢ = v|w!2+ =%+ =]¥|
n E 2 2
1 2 * 2
o x'o = f|w+XcOS¢+Ysin¢] cospdd = [2Re(XW )cos ¢dd
*
= Re(XW )
. 1 . *
and Y y'E = Re(Y¥W ) similarly,
, B
by replacing Y 1§1 by Jf...dd, which is permissible for n > 4, as no

trigonometric function of m¢ for m > 3 occurs here. It is now easy to
see that the Makita and energy vector localizations ev and GE are given
by

: * *
cosev s sinev = % Re (X/W) : %-Re(Y/W) = Re XW : Re YW

* *
and coseE : sinGEV = Re XW : Re YW also, so that GE = ev.

Moreover, we easily compute that

P2 - {Re(xw*) 2, Re(Yw*)}2 - (Re a)2+(Re B)z
E 2 1,12, 1; 2,2 1, 12 1,122
{lwl®+ 51x)%+ 31¥|%) {1+ 3la| ™ (817}
where .a =" (X/W), B = (Y/W).

Thus rﬁz is maximized for a given value of lalz and of |B|2 by requiring

2
0,8 to be real, and in that case, putting u®= a2+B
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2 u2

E 1 22
(1+ 3 u)

which is easily shown (by differential calculus or otherwise) to be
maximized when u = v2. Thus we may put o = V2 cos@ B = V2 sind for
some 6; the maximum occurs only when this is possible, i.e. when
X= V2 cosB W, ¥ = /2 sin® W. In this case r_ = zz =3 which proves
! E 2 J/2°

the theorem 3.

This limitation that rE < %5 described in theorem 3 does not
apply for all sounds to non-regular-polygon-decoders, but the average
ry over all azimuths obtained from 3 signals W,X,Y still has to meet this
limitation. By way of comparison we mention (without the routine
computational detail) that the standard BMX decoder [2] has Te = 0.500,
the standard TMX decoder [2] has rE = 0.667, the standard QMX decoder

= 0.750,-85 compared with the maximum

{2] via 5 or more speakers has re

o consistently obtainable from 3 channels for a regular polygon decoder

of rp = 0.707. It seems that the relatively small improvement from

rg = 0.707 to rg = 0.750 is not justification enough for adding a fourth
channel to a regular polygon decoding system.

The results above for rectangular and polygonal decoders can be
extended to rectangular cuboid and regular polyhedron decoders in 3 spatial
dimeﬂsioné. We omit proofs, which are broadly similar but more complex,

but state the results here.

Theorem 4 (Cuboid Decodexr Theorem)

Let LBD, LBU, LFD, LFU, RFD, RFU, RBD, RBU (L = left,
R = right, B = baék, F = front, D = down, U = up) be the eight' speaker
signal gains of eight speakers placed in a cuboid (see fig. 4) at

direction cosines respectively equal to
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("xl"'Yi"z)) (“xr“'yt"‘z)’ ("‘X."‘Vn'z). (*x""Y:"'z)r (+xv;YJ“z)’v(*x)“yi+‘z)t
(=x,~y,~2), (-x,cy,*z).

Define eight signals W, X, Y, Z, Qx‘ Qy, Q,, Q. via

2’ Q
W o= ( LBD+LBU+LFD+LFU+RFD+RFU+RBD+RBU)
(+~LBD-LBU+LFD+LFU+RFD+RFU<RBD~RBU)

( LBD#+LBU+LFD+LFU~RFD~RFU~RBD-RBU)

»

13
M
[ = - =

[ SR ) SR )

(~LBD+LBU-LFD+LFU~-RFD+RFU-RBD+RBU)

»
N

(~LBD+LBU-=LFD+LFU+RFD~RFU+RBD-RBU)

o
>
]
- 8
I T
N

‘(*LBD*LBU+LFD~LFU+RFD—RFU~RBD«RBU)

o

<

1]

- ¥
=

(~LBD-LBU+LFD+LFU~RFD~RFU+RBD+RBU)

Sk S

QQ = ( LBD-LBU~LFD+LFU+RFD~RFU~RBD+RBU)

Then for the Makita and energy vector localizations to cotncidé, it is
sufficient either that Q, = Q, = ‘Qz = QQ = 0 or that QQ = 0 and
Qs Qs @, are in 90° phase relation with X, Y, Z or that Qg = Q, =

= Qz = 0. The Makita localization (X Ev) is given by

A
v'yvi
a“cv : 9\1 : 2v = xRe(X/W) : yRe(Y/W) : zRe(Z/W)

* * L. .
= xRe XW : yRe YW ¢ zRe 2ZW .

- In the case Qx = QY = Qz = QQ = 0, we have

Lsn=§€}2—(w~x+v-2)
LBU = o5 (W= X + Y +2)
LFD=—2—§§'(W+x+Y-Z)
LFuy = 5%; W+ X+Y+ 32)
RFD=§-3}-2-(W+X-YI-Z)



as

1
RFU = 355 (W + X = Y 42)

RBD = S5 (W = X - ¥ -2)

1 .
RBU = 272 w - X - ¥ +2) .

Theorem 5 (Regular Polyhedron Theorem)
| Let.four signals W, X, Y, Z be fed "to a layout of more than 4

loudspeakers placed on a sphere at all the points of (i) the face-centers,
(i1) the edge-centers, or (iii) the vertices of a regular polyhedron
(see Stroud [407] for the use of such point-sets.in spherical integration)
such that the speaker at direction cosines (x,y,z) is fed with

W+ xX+yY + zZ.
Then all velocity and energy model 1ocaiizntion parameters are the same
as for a continuous sphere of loudspeakérs féd as indicated, and the
energy vector and Makita localization are the same (ﬁv,9 ,iv), where

iv‘: ?V : ﬁv = Re XW* : Re‘YW* : Re ZW*.
The maximum possible énergy vector magnitude with guch a decoding

arrangement is r, = 1/v/3, and this value is attained if and only if
X = /3xW, Y = /3yw, 2 = /32w,

where (x,y;z) are real direction cosines of some direction, i.e.

x2+y2+zz = 1.

A result of considerable general use applies to arbitrary decoders
having loudspeakers arranged in diametrically opposed pairs, i.e. if
one speaker is in the direction (x,y,z), another one is in the direction

(~%,-y,-z). Such decoders need not be regular.

Theorem 6 (Diametric Decoder Theorem)

Let 2n loudspeakers be arranged equidistant from a listener

such that the loudspeakers are placed in n diametrically opposed pairs
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of speakers. Suppose further that the sum of the signals emitted by
the two speakers in an opposite pair is the same for all pairs, then
the Makita and energy vector localizations of the resultant sound

are the same.

Proof Let the loudspeakers at direction cosines (x

i,yi.zi) and
(=x,,~y,,-2,) be fed with signals W+P and wW-P respectively, as
i i i i i

required by the theorem. Then a computation of velocity and energy

localization parameters gives, for p=1,2,3

w'y = 2nV
'p % D p ‘ s P
xy = (Ll onpy - x/-PHY = 2, Tx0 P,
and
n ' ' n
A 2 2, _ 2 2
"' JZyUlwep |+ w-p ["} = 2n[w|T + 2,2 |p |
n - n
P p 2 _ _Plyp 12} = » *
*E RACALL AR LS A 4Lyx; Re P.W
2 i 2
'p, - ', , 0¥+ TPy 1"
thus Re(x v/w v) (x E/w E){ },

2n|w|®

for p=1,2,3 , which proves that the Makita and energy vector localizations
coincide. This proves theorem 6.
The final general result of this paper relates the results given

by the velocity and cross-bispectral models.

Theorem 7
For an arbitrary 1oudspeakep layout lying equidistant from

the listener, and for any signal fed to those speakers with complex

gains that are independent of frequency, the cross-bispectral localization
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parameters are determined by the velocity model localization parameters.
For a decoder for which in addition the velocity phasiness vector is
zero, the cross-bispectral vector localization is identical to the .

Makita localization, and the c¢ross-bispectral vector magnitude rGB

equals the cube r 3 of the velocity vector magnitude,.

v
" Proof Since we have assumed frequency-independent gains, Pi(F> = Pi
for all frequencies F. Then using the abbreviated notation that we introduced

in connection with cross-<bispectral models,

i

w, = I'p,

x's = xf Pi

Wop = <>:1pi)2(szj>*

xg’B._ % (2P pi)(x‘; Pj)(x: pk)* + b pi)*(xg PJ)Z}

so that putting
xé’B = x'CpB/ W'GB and xp = x P / w!

we have

q,* 1
(xv) +

wiw

p P .4 a
X g Xy Xy Xy

This proves that the cross-bispectral -localization parameters :cé;

are
dependent only on the velocity localization parameters.
In the special case that there is no phasiness in the velocity
py* p
model (i.e. that (xv) = xv ), we have

P _ P .4 .4
Xgp = Fy Ky X

so that the two real vectors x g£ and xp

v are proportional and hence the

Makita and cross-bispectral vector localizations coincide. Moreover,
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2 P P
Yep ¥ *cB*CB
. 2 p P
and rv = xv xv
2 _ . p_2.,p 2 _ & _ .3
so that %CB (xv ry )(xv rv ) rv , d.e. Tap= Ty

as required to prove theorem 7.

Corollarx 7A  1f all‘compohents of the complex velocity model véctor
xs are eithér purely real ot purely imaginary (in any orthogonal
coordinate system), then the Makita and cross-bispectral vector
localizations coincide. |

Proof  Under these assumptions xq xg is real, and so xé% is a real

linear combination of xs and (x ) , with coefficients whose sum is greater

than zero (or equal to 0). Thus the ¢ross-bispectral vector localiztion

CB
This proves the corollary.

in the direction of Re x P is also in the direction of Re x = Re(xv)
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- 7+ CONCLUSIONS
Although a metatheory (theory of theories) of sound localization
_leads to a large number of possible "primitive" models of sound localization,
many of these primitive theories can be rendered useful for designing
decodérs because their mathematical structure pérmit; the proof of theorems
that -show that a variety of différent localization criteria are satisfied
simultaneéusly provided that various easily-arranged relationships between
the signals fed to loudspeakers are designed into therdecoder. A particular
‘case of one of thses theorems hids shown that an optimal decoder feeding
four loudspeakers LB, LF, RF, RB in a rectangle array should have
~LB+LF~RF+RB = 0 for best résults dver the whole frequency range, and as
a result, 3=channel systems for horizontal—only‘reproductioh will actually
give better localization than 4-channel systems, except for sounds precisely
in the direction of the 4 loudspeakers.
0f the various models of localization considered in this paper,
the most important are the velocity models (apt at freguencies below
700 Hz, but possibly having some application up to 1500 Hz) and energy
models (apt at frequencies above 1000 Hz, but possibly having some application
down to say 400 Hz). Most hodels of localization considered in the previous
literature (other than high frequency interaural delay models and pinna-
coloration models (31]) are.subsumed in the veélocity and energy models
as gpecial cases. While most of the design theory conceptrated on the
velocity and energy models, other high order ana degree models have peen
described for finer investigation of the properties of decoders; such
‘models havé proved valuable in practice.
This paper, despite its length, has had to be rather sketchy
about some of the foundations of the theory, and also on the detailed

proofs of the more complex theorems. It is intended to publish many of.
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these details elsewhere, notably in a yét unpublisted paper [25]
originally prepared in 1974/5. That paper has been quite widely
circulated to individuals since the 1970's, and it is hoped to
formally pﬁblish a version of ‘it in the near future.

As illustrated by both the appendix of this paper and by the
recent references [41]-[43] on miltispeaker stereo and ambisonic
systems; the theory of this paper is a very practical tool for
designing concrete directional encoding and decoding systems, having
a wide range of applications varying from the design of panpots to
the design of decoding and transmission systems [44, 45], and we shall
publish other applications in the future.

No claim is made that the theory of this paper is complete and
exhaustive. In particular, this paper says little about frequencies
above éround 4 or 5 kHz where pinna colouration -cues become dominant,
as noted in [6], although ref. [41] described some methods of
adapting the theory to this high frequency region to a limited degree.
The paper also has. not dealt with noncgntral listening, although the
methods actually extend to that case, as mentioned in [6] and
discussed briefly in [41].

ﬁbwever, the generality of the methods of this paper; and the.
fact that it takes account of many auditory localisation mechanisms,
means that designs based -on satisfying several "primitive" component
theories of hearing tend to have much lower listening fatigue, and
tend to be much more robust under conditions of technical or user
abuse, than directional sound reproduction systems based on satisfying
only one or two sound localisation mechanisms. This ability to design
"robust" directional reproduction systems is the main use and strength

of the work. of this paper.
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APPENDIX I. EXISTING LOCALIZATION THEORIES AND STEREO REPRODUCTION

The energy vector and velocity models of this paper reduce in
special cases to a number of localization theories in the existing literature.
We detail some of these connections, and consider their apﬁlications to
the perception of 2-speaker stereo sound. This is not only of:interest in
existing stereo applications, but 2-speaker presentation provides a means
of experimentally determining how much of varioug types of localization
fault is subjectively acceptable [22]; and it is gseful for surround
reproduction applications to determine the tolergble associated localization
parameters such as phasiness, rE and rv.

The Makita azimuth Gv is the localization considered by Makita
[10], Leakey ([12],; Bernfeld [4], Nishimaki and Hirano[5] and Cooper and
Shiga [2]. All excepnt Leakey derive it as the azimuth which ihé head must
face to give zero interaural phase difference at low frequencies. As we
showed‘in the description of velocity models, at very.low frequencies in
the presence of phasiness, the Makita azimuth computed assuming very large
speaker distance is not the same as for when the speaker distance is finite,
although this 'infinite distance' assumption is common in the literature.

Another class of low frequency interaural theories considers fixed
heads, usually facing straight forward. The component of the velocity vector
(r coseV

sinev) along the ear axis is r sinGv, and the apparent fixed-

v Ty v

head localization GF is given by

sin BF = rvsinev 1)

since a fixed head generally has no way of knowing that rv # 1, This fixed
head theory has been used by Bernfeld (4], Strutt [16], Blumlein [8], Clark
Dutton and Vanderlyn [9] and Bauer [15], among others and is conveniently

termed the CDV localization theory. (Although we have named theories after
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Makita and Clark-Dutton-Vanderlyn, we do not necessarily imply that these
were the first to give explicit expression to these theories, only that
they were the first to popularize these theories among audio engineers).
Theories based on the energy models have long been popular and
include de Boer [14], Damaske and Ando [3] and Gerzon [20]([6]. Such theories,
however, have hitherto had a mathematically intractible form, and tpe
equivalence of an 'interaural correlation' model (such as [3] and Sayers
and Cherry [34]) and energy models of first or higher order is not
immediately obvious, since correlations occur in the time domain whereas
spectra occur in the Fourier transform of the time domain. Our theory
formulated in terms of what happens at each frequency may be shown to be
a reformulation of cross-correlation models via the Fourier transformation.
The energy vector azimuth GE appears to be new (except for a
previous discussion in [6] by the author), since direction-finding by
making both ear signals identical does not appear to have been considered
in the energy or correlation theory literature. However, the localization

given by the energy analog of CDV localization, with azimuth eFE given by

sineFE = rEsineE (2)

has in effect been considered by de Boer [14] and Damaske and Ando [3],
but not in that language. Also the models of [3] and [14] to some extent
(especially at higher frequencies) include 2nd and higher order directional
sensitivities of the ears.

The higher degree theories involving triple correlations and (in
their Fourier formulation) bispectra appear to be new with the author (25],
[26], but there is strong evidence from phonetics [27] and the cocktail
party effect that the ears must make use of such triple correlations in

perceiving sounds; in particular, bispectral theories include the formant
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theories of tone-color perception [27) as a special case. We remark that
predictions from the bispectral model of this paper have been confirmed
experimentally, and we shall give full details elsewhere.

Consider now applications to conventional 2~speaker stereo
localizatioh. Consider two loudspeakers situated (initially at a large
distance) at azimuths *¢ relative to due front, and put x = cos¢,

y = sind so that the speaker direction cosines are (x,*y). (see figure 5).

Initially we consider the simplest case where the signal gains
L and R fed to the left and right speaker are real (as in ordinary stereo
pan-potting). Then supposing that L+R > 0, the localization parameters ;f

the velocity model are real and easily computed to be given by

¢ t = =
X, = X v/w v (L+R)cos¢/ (L+R) cosf
Yy = y' /W' = (L-R)sind/(L+R) = L-R sing
A vty L+R
Thus the Makita azimuth ev is given by
= = LR
tanev = Y%, = IR tand (3)

which is the stereophonic law of tangents of Leakey [12] and Makita [10].

Using (1), the CDV localization is given by

= LR sind (4)

sinb, = vy, L+R

which is the stereophonic law of sines of Bauer [15] and Clark, Dutton,
Vanderlyn [9].

The velocity vector magnitude r_  is given by

v

ry = (xv2+yv2)i = (L2+R2+2LRcos2¢)%/(L+R) . (5)

This equals 1 for L =0 or R = 0, and equals cos$ for L = R.

The energy vector localization OF is similarly given by
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2 2
tanBE = LZ—RZ tang , - (6)
L +R

the fixed-head localization eFE as in (2) is given by

sinf = Lz—Rz
FE - L2+R2

sing ) 7)

and the energy vector magnitude r_ is given by

E

2 3

4+2L2R cos2¢)

r = (L4+R /(L2+R2) . .(8)

E

2
(6),(7) and (8) are the same as (3),(4),(5) except that L~ and R2 replace
L and R. Except for the cases L = 0, R =0 or L = R, the energy localization
GE does not equal the Makita. localization ev, and similarly GF # GFE
except for L =0, R=0 or L = R. For bispectral localizations, we
. 3 3
replace L and R in (3),(4),(5) by L. and R .

Using theorem 7 of this paper in the real gain case also gives

a cross-bispectral localization

O I
eCB = ev = tan (L+R tang) . (9)

and a cross-bispectral vector magnitude:
3 - .
r = r = (L2+R2+2LRcosz¢)3/2/(L+R) . (10)

In order to illustrate the theories further,'consider the fixed-
head localization heard not by a listener facing forward, but by one facing
an azimuth . When L and R are both positive (in-phase sounds), then the
sound image will tend to be displaced towards the head azimuth since rv <1,
re < 1 and ch <1,

More precisely, the leftward ear-axis has direction cosines

(-siny,cosy), so that for the velocity model, the projection of (xv,yv)

onto this axis is (—xvsinw, +yvcosw) and this equals sin(eﬁ—w) where 6#
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is the apparent sound azimuth in the fixed-head case. Thus

(0’ - = si L-R
51n(6F ) sin$ cosy iR siny cos¢ ‘ (11)

gives the apparent localization for the listener with head at angle .
For example, when he faces the left speaker (so that Y = ¢), we have

manipulating (11):

(B - = - R
-sxn(GF ) = LR sin2¢ . (12)

For example, for L = R,

0p = ¢ - sin"‘(3sin2¢) > 0O (13)

s0 that central sounds shift towards the left speaker. For a typical
interspeaker angle 2¢ = éOo,rthe shift is given by 6% = 4.34%, whereas
for 2¢ = 960, the shift is 6% = 150, which shoys that wide interspeaker
angle 2¢ in stereo leads to images which are unstable under head movement.
The most extreme case of (11) when 1 = 90° (i.e. speaker pair at side of
listener) gives 9% = +¢, i.e. the supposed central souna is drawn unstably
to one speaker or the other (ambiguously), which certéinly agrees with
experimental results on side-image localization via 2 speakers [1],{3],
[35],(36]. We observe that a similar theory replacing L and R by L2 and R2
predicts a similar ambiguity in the energy models, so that one presumes,
using the philosophy of the introduction to this paper, that the similar
ambiguous positioning according to two different models will make such
ambiguities likely in practice for pairs of loudspeakers at the side of
the listener.

Stereophonic localization for forward-facing listeners when the
gains L and R are complex (i.e. with interchannel phase differences) is

of particular interest. For this case we find that
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Xy, = cos¢
L-R .
Yy = Lar ¢

as before, except that now yv is complex. Thus

2 .12
|L]®-|r]

|L|2+|R|2+2Re(LR*)

Re vy = Re(%ig sing) = sing

This gives a more complicated localization theory, although certain ways
of looking at the localization using the energy sphere model ([21], Appendix
11) of 2-channel systems can provide insight into both the localization
and phasiness aspects of velocity models. We get the Makita localization

8,, and forward fixed head localizations BF as before by:

v
2 (2
tanev = tan¢ 2|L| ;IRl ¥ (14)
|L]“+|R|“+2Re (LR )
2 .12
sind, = sing L] |R] (15)

|L|2+|r| Z+2Re (LR™)

2 2
In general, for given speaker outputs ]Ll and ]RI , with interspeaker

phase £ we have
Re(LR") = |L||R|cosE (16)

so that the denominators of (14) and (15) diminish as interspeaker phase
increases, so that the sound image widens.
As for phasiness, since only Yy is non-real, the phasiness affects

only the ear-axis direction, with magnitude Im yv, which equals

*
q = sind 2 Im LR , an

|L] %+ |R|?+2Re (LR™)

which equals
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(18)

when the left speaker phase leads the right speaker by a phase angle £.
We remark that the "phasiness" Q introduced in [21] Appendix II and in
[37] omitted the factor sind in (17) and (18), so that the "phasiness"
q encountered in this and subsequent parts of this paper is smaller than
that discussed in [21] and [37]. In those references, we were only concerned
with properties not involving the precise positioning of speakers.

BBC data [22] shows that for ¢ = 30°, and central sound images
(|L] = IRI), an interspeaker phase difference of |£| up to 45° is

"negligable”, i.e.

2+%-s5in45°
- ——-————-—u— = - = .
a 1+1+2co0s45 i(JE b 0.207

is the maximum for "negligable" effect. Similarly, |E| of up to 90° was

found to be "acceptable'", 1i.e.
laj = == = 0.500

Thus we see that, according to these criteria,

la] < o.207
is "negligable" and

la] < o0.500
is "acceptable", as reported earlier (in terms of Q = 2q) in [21] Appendix
II. We caution the reader that interspe;ker phase actually has no "minimum
audible'" value, and in some circumstances, and with suitably experienced
listeners, values of Iql < 0.05 can be heard, depending on the program
material and especially on the loudspeakers used.

Use of (18) will quickly show that a given interspeaker phase
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difference £ gives less phasiness at the edge of the stereo stage (i.e.
|L/R| << 1 or |R/L| << 1) than at the centre. Thus for £ = 45° and
IL/R' = 3, we compute that
q = 0:124

which is smaller than the centre-stage value q = 0.207 for § = 459,

One of the most interesting.aspects of interspeaker phase in
stereo reproduciton is the effect of having speakers at a finite distance d.
Putting the speed of sound = ¢ and the frequency of a sound = F, the

speaker proximity modifies the values of x

v and yy as follows

- e
cost (1 - Trva)

»
1]

. L-R. . _ _jc
Yy sing () (L - i)

It

due to the bass boost 1 - 5%%3 of velocity components of the sound

field due to speaker proximity. For Makita and fixed head localization,

we see that Re xv is unchanged, but that Re yv has the value

R = Re y. +-—o—1Iny. 19
e¥y T Re ¥yt omra ™Yy (19

o0
where Yy is the value for infinite distance. Thus the finite-distance

Makita localization is given by

(L|2-|r|%+ =<|L] |R|sinE
tanb. = tand { nrd . (20)

v IL{2+[R|2+2|L||R|cos£

]

For example, if ]Ll = |R| and & = 90 (i.e. left leads an equal right

channel by 900, and if c¢ = 340m/s, and the speaker distance d is 2m, then

tanﬁv = tan¢ (21§9§)

where F is the frequency in Hz, For F = 100 Hz and 2¢ = 600, this gives
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a Makita azimuth equal to

- 0
ev 8.88

which gives an image displaced about 0.3 of the way torwards the left
loudspeaker .at 100 Hz. This image shift, as a proportion of subtended
interspeaker angle, diminishes inve?sely proportional to speaker distance
and inversely proportional to frequency. Nevertheless, it will be seen
that interspeaker phase difference lead to significant displacements of
the bass frequencies of sounds towards the phase-leading speaker. This
phenomenon of shift towards phase leading speakers has been noted by Bauer
et al..[38], although we do not claim that the proximity effect is the
only mechanism involved. (Indeed, in [39] it is shown that similar shifts
occur at higher frequencies where other effects must be responsible).

It might be argued that the effect on localization at such low
frequencies is "unimportant", but we believe this not to be so insofar
as the more things that are made correct the better. Also, the effect is
significant below 300 Hz, i.e. over about half of the 700 Hz range over
which low frequency localization theory is expected to be apt. Fortunately,
it is easy to modify a stereo reproducer to avoid proximity effect by
putting the difference L-R signal églx (and not the sum signal L+R) through

an RC high-pass filter with response

jec
271Fa

1/ (- ) (21)

with -3dB point at 54/d Hz (d in metres). It will be seen that this restores
Yy to its ideal y$ form. In practice, a fixed compensation corresponding
say to d = 3m would give useful improvements and a more accurate stereo
reproduction for all types of program. Most of the effect of the high-pass
filter (21) is due to its effect on phase response rather than to the small

effect on amplitude response.
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Figure 1. DPixed head sound localization € .
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Figure 2. Ambiguity cone of directions at angle © to

ear axis. (See [311 for a further discussion.)
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Figure 3.

Rectangle layout used in {this paper.
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Figure 4. Rectangular cuboid loudspeaker layout,

showing (x,y,z) axis directions.
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Figure 5.

2-gpeaker stereo sound reproduction,

ghowing x~ and y-axes.



